

Module 1: Introduction and Asymptotic Analysis

CS 240 – Data Structures and Data Management

M. Petrick and O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science,
University of Waterloo

Winter 2026

Outline

- CS240 overview
 - course objectives
 - course topics
- Introduction and Asymptotic Analysis
 - algorithm design
 - pseudocode
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

Outline

- CS240 overview
 - course objectives
 - course topics
- Introduction and Asymptotic Analysis
 - algorithm design
 - pseudocode
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

Course Objectives: What is this course about?

- Computer Science is mostly about problem solving
 - write program that converts given input to expected output
- When first learn to program, emphasize *correctness*
 - does program output the expected results?
- This course is also concerned with *efficiency*
 - does program use computer resources efficiently?
 - processor time, memory space
 - strong emphasis on mathematical analysis of efficiency
- Study efficient methods of *storing*, *accessing*, and *organizing* large collections of data
 - typical operations: *inserting* new data items, *deleting* data items, *searching* for specific data items, *sorting*

Course Objectives: What is this course about?

- New **abstract data types** (ADTs)
 - how to implement ADT efficiently using appropriate data structures
- New **algorithms** solving problems in **data management**
 - sorting, pattern matching, compression
- Algorithms
 - presented in pseudocode
 - analyzed using order notation (big-Oh, etc.)

Course Topics

- asymptotic (big-Oh) analysis mathematical tool for efficiency
- priority queues and heaps
- sorting, selection
- binary search trees, AVL trees
- skip lists
- tries
- hashing Data Structures and Algorithms
- quadtrees, kd-trees, range search
- string matching
- data compression
- external memory

CS Background

- Topics covered in previous courses with relevant sections [Sedgewick]
 - arrays, linked lists (Sec. 3.2–3.4)
 - strings (Sec. 3.6)
 - stacks, queues (Sec. 4.2–4.6)
 - abstract data types (Sec. 4-intro, 4.1, 4.8–4.9)
 - recursive algorithms (5.1)
 - binary trees (5.4–5.7)
 - basic sorting (6.1–6.4)
 - binary search (12.4)
 - binary search trees (12.5)
 - probability and expectation (Goodrich & Tamassia, Section 1.3.4)

Outline

- CS240 overview
 - Course objectives
 - Course topics
- **Introduction and Asymptotic Analysis**
 - algorithm design
 - pseudocode
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

Algorithm Design Terminology

- **Problem:** description of input and required output
 - for example, given an input array, rearrange elements in non-decreasing order
- **Problem Instance:** one possible input for specified problem
 - $I = [5, 2, 1, 8, 2]$
- **Size of a problem instance $\text{size}(I)$**
 - non-negative integer measuring size of instance I
 - $\text{size}([5, 2, 1, 8, 2]) = 5$
 - $\text{size}([]) = 0$
- Often input is array, and instance size is usually array size

Algorithm Design Terminology

- **Algorithm:** step-by-step process (can be described in finite length) for carrying out a series of computations, given an arbitrary instance I
- **Solving a problem:** algorithm A *solves* problem Π if for every instance I of Π , A computes a valid output for instance I in finite time
- **Program:** *implementation* of an algorithm using a specified computer language
- In this course, the emphasis is on algorithms
 - as opposed to programs or programming

Algorithms and Programs

- From problem **Π** to program that solves it
 1. **Algorithm Design:** design algorithm(s) that solves **Π**
 2. **Algorithm Analysis:** assess *correctness* and *efficiency* of algorithm(s)
 3. **Implementation:** if acceptable (correct and efficient), implement algorithms(s)
 - for each algorithm, multiple implementations are possible
 4. If multiple acceptable algorithms/implementations, run experiments to determine a better solution
- CS240 focuses on the first two steps
 - the main point is to avoid implementing obviously bad algorithms

Outline

- CS240 overview
 - Course objectives
 - Course topics
- **Introduction and Asymptotic Analysis**
 - algorithm design
 - **pseudocode**
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

Pseudocode

- Pseudocode is a method of communicating algorithm to a human
 - whereas program is a method of communicating algorithm to a computer

```
insertion-sort( $A$ ,  $n$ )
```

A : array of size n

1. **for** $i \leftarrow 1$ **to** $n - 1$ **do**
2. $j \leftarrow i$
3. **while** $j > 0$ and $A[j] < A[j - 1]$ **do**
4. swap $A[j]$ and $A[j - 1]$
5. $j \leftarrow j - 1$

- preferred language for describing algorithms
- omits obvious details, e.g. variable declarations
- sometimes uses English descriptions (swap)
- has limited if any error detection, e.g. assumes A is initialized
- sometimes uses mathematical notation
- should use good variable names

Pseudocode Details

- Control flow

- if ... then ... [else ...]**

- while ... do ...**

- repeat ... until ...**

- for ... do ...**

- indentation replaces braces

- Expressions

- \leftarrow assignment

- \equiv equality testing

- n^2 superscripts and other mathematical formatting allowed

- Method declaration

- Algorithm *method* (*arg*, *arg*...)**

- Input ...

- Output ...

Algorithm *arrayMax*(*A*, *n*)

Input: array *A* of *n* integers

Output: maximum element of *A*

currentMax $\leftarrow A[0]$

for *i* $\leftarrow 1$ **to** *n* – 1 **do**

if *A*[*i*] > *currentMax* **then**

currentMax $\leftarrow A[i]$

return *currentMax*

Outline

- CS240 overview
 - Course objectives
 - Course topics
- **Introduction and Asymptotic Analysis**
 - algorithm design
 - pseudocode
 - **measuring efficiency**
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

Efficiency of Algorithms/Programs

- Efficiency
 - **Running Time:** *amount of time* program takes to run
 - **Auxiliary Space:** *amount of additional memory* program requires
 - additional to the memory needed for the input instance
- Primarily concerned with time efficiency in this course
 - but also look at space efficiency sometimes
 - same techniques as for time apply to space efficiency
- When we say efficiency, assume time efficiency
 - unless we explicitly say space efficiency
- Running time is sometimes called **time complexity**
- Auxiliary space sometimes is called **space complexity**

Efficiency is a Function of Input

- Time (and space) efficiency a program usually depends on the given instance
 - instance size
 - instance composition (what is stored in the instance)

Algorithm *hasNegative*(*A*, *n*)

```
Input: array A of n integers
for i  $\leftarrow 0$  to n – 1 do
    if A[i] < 0
        return True
return False
```

$$T([3, 4]) < T([3, 1, 4, 7, 0])$$
$$T([3, -1, 4, 7, 10]) < T([3, 1, 4])$$

- So we express time or memory efficiency as a function of instances, i.e. $T(I)$
- Deriving $T(I)$ for each specific instance I is impractical
- Group all instances of size n into set $I_n = \{ I \mid \text{size}(I) = n \}$
 - I_4 is all arrays of size 4
- **Measure efficiency over the set I_n :** $T(n) = \text{"time for instances in } I_n\text{"}$
 - average over I_n ?
 - smallest time instance in I_n ?
 - largest time instance in I_n ?

Running Time, Option 1: Experimental Studies

- Write program implementing the algorithm
- Run program with inputs of *varying size* and *composition*

```
Algorithm hasNegative(A, n)
```

Input: array *A* of *n* integers

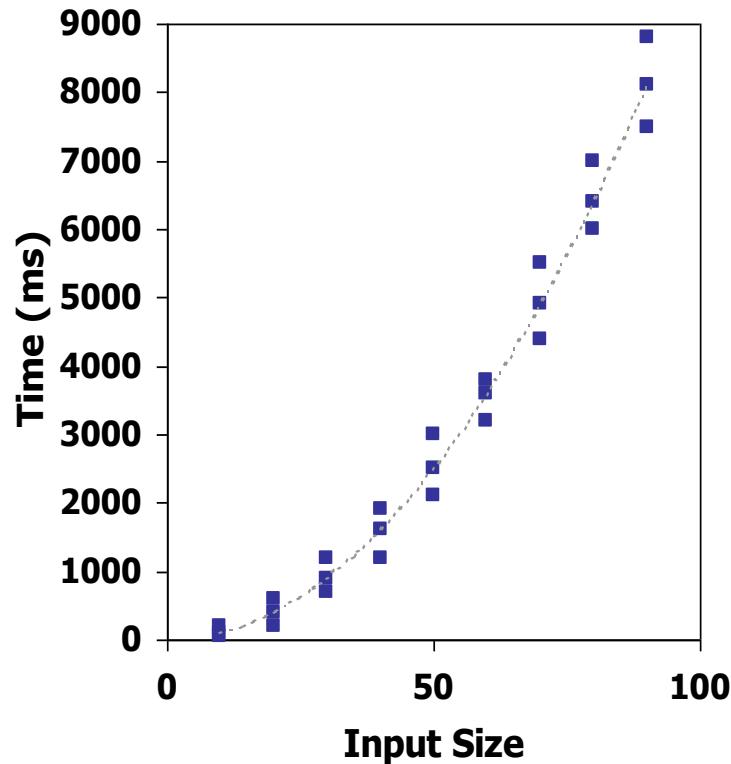
for *i* \leftarrow 0 to *n* – 1 **do**

if *A*[*i*] < 0

return *True*

return *False*

- Shortcomings
 - implementation may be complicated/costly
 - timings are affected by many factors
 - *hardware* (processor, memory)
 - *software environment* (OS, compiler, programming language)
 - *human factors* (programmer)
 - cannot test all inputs, hard to select good *sample inputs*



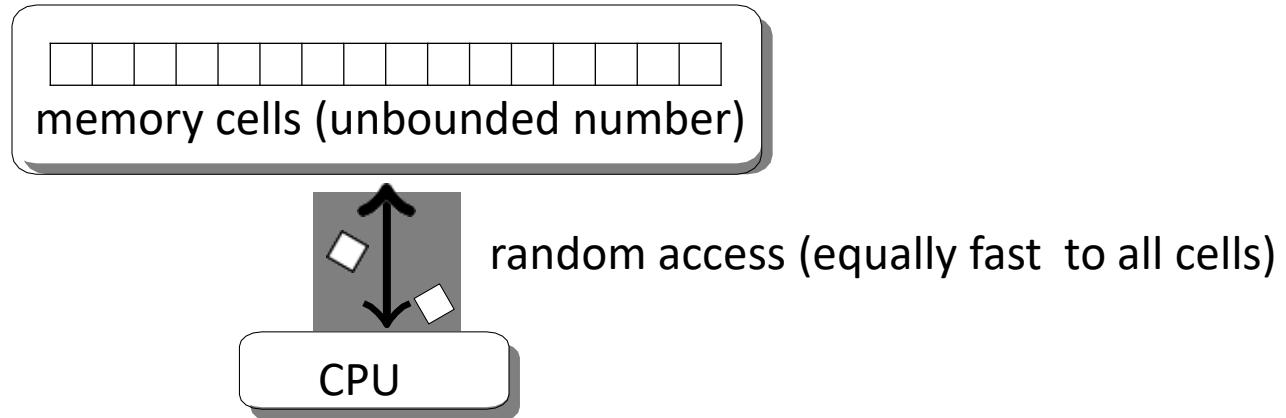
Running Time, Option 2: Theoretical Analysis

- Does not require implementing the algorithm
- Independent of hardware/software environment
- Considers all possible input instances
- Side note: experimental studies are still useful
 - especially when theoretical analysis yields no useful results for deciding between multiple algorithms

Theoretical Analysis: Idealized Computer Model

- For theoretical analysis, need an idealized computer model
 - “run” algorithms on idealized computer model
 - states explicitly all the assumptions
 - this allows to understand how to compute running time and space theoretically
- Many possible theoretical models, we use RAM
 - random access model

Random Access Machine (RAM) Idealized Computer Model



- Has a set of **memory cells**, each cell stores one data item
 - number, character, reference
 - memory cells are big enough to hold stored items
- Any **access to a memory location** takes the same constant time
 - i.e. time is *independent of the input size n*
- Memory access is an example of a **primitive operations**
- Can run other primitive operations (arithmetic, etc.)
 - **primitive operations take the same constant time**
- These assumptions may be invalid for a real computer
 - but makes algorithm analysis easier

Theoretical Framework For Algorithm Analysis

- Write algorithms in pseudo-code
- Run algorithms on idealized computer model
- **Time efficiency:** count # *primitive operations*
 - **as a function of problem size n**
 - running time is proportional to number of primitive operations
 - since all primitive operations take the same constant time
 - can get complex functions like $99n^3 + 8n^2 + 43421$
 - hard to compare complex functions
 - measure time efficiency in terms of *growth rate*
 - behaviour of the algorithm as the input gets larger
 - avoids complex functions and isolates the factor that effects the efficiency the most (for large inputs)
- **Space efficiency:** count maximum # of *memory cells* ever in use
- This framework makes many simplifying assumptions
 - makes algorithm analysis easier

Theoretical Analysis of Running time

- Pseudocode is a sequence of *primitive operations*
- A primitive operation is
 - independent of input size
- Examples of Primitive Operations
 - arithmetic: $-$, $+$, $\%$, $*$, mod, round
 - assigning a value to a variable
 - indexing into an array
 - returning from a method
 - comparisons, calling subroutine, entering a loop, breaking, etc.
- To find running time, count the number of primitive operations
 - as a function of input size n

Algorithm *arrayMax*(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax $\leftarrow A[0]$

for $i \leftarrow 1$ **to** $n - 1$ **do**

if $A[i] > currentMax$ **then**

currentMax $\leftarrow A[i]$

return *currentMax*

Primitive Operation Exercise

- n is the input size
- x^n is a primitive operation
 - a) True
 - b) False

Primitive Operation Exercise

- n is the input size
- $x^{1000000000000}$ is a primitive operation
 - a) True
 - b) False

Theoretical Analysis of Running time

- To find running time, count the number of primitive operations $T(n)$
 - function of input size n

Algorithm <i>arraySum(A, n)</i>	# operations
<i>sum</i> $\leftarrow A[0]$	2
for <i>i</i> $\leftarrow 1$ to <i>n</i> $- 1$ do	
<i>sum</i> \leftarrow <i>sum</i> + <i>A</i> [<i>i</i>]	
{ increment counter <i>i</i> }	
return <i>sum</i>	

Theoretical Analysis of Running time

- To find running time, count the number of primitive operations $T(n)$
 - function of input size n

Algorithm $arraySum(A, n)$

```
sum ← A[0]
for  $i \leftarrow 1$  to  $n - 1$  do
    sum ← sum + A[i]
    { increment counter  $i$  }
return sum
```

operations

2

$i \leftarrow 1$
 $n - 1$
 $i = 1$, check $i \leq n - 1$ (go inside loop)
 $i = 2$, check $i \leq n - 1$ (go inside loop)
...
 $i = n - 1$, check $i \leq n - 1$ (go inside loop)
 $i = n$, check $i \leq n - 1$ (do not go inside loop)

Total: $2+n$

Theoretical Analysis of Running time

- To find running time, count the number of primitive operations $T(n)$
 - function of input size n

Algorithm <i>arraySum(A, n)</i>	# operations
<i>sum</i> $\leftarrow A[0]$	2
for <i>i</i> $\leftarrow 1$ to <i>n</i> – 1 do	$2 + n$
<i>sum</i> \leftarrow <i>sum</i> + <i>A</i> [<i>i</i>]	$3(n - 1)$
{ increment counter <i>i</i> }	$2(n - 1)$
return <i>sum</i>	1

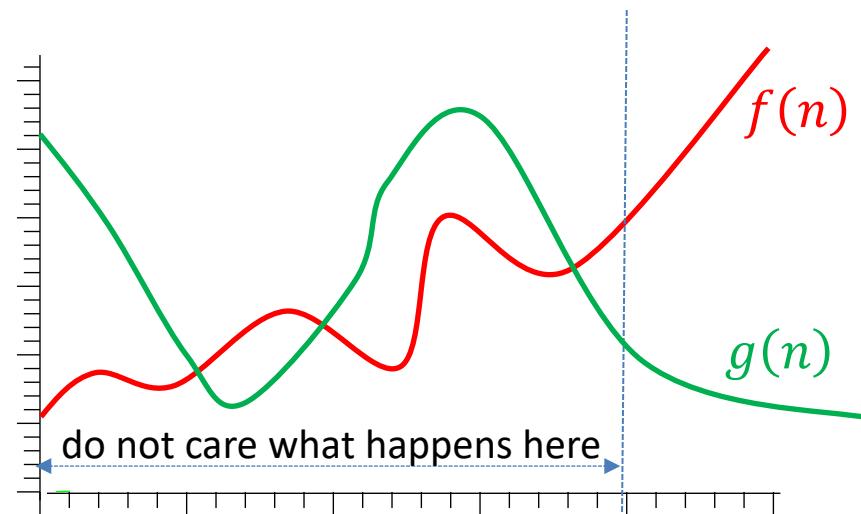
Total: $6n$

Theoretical Analysis of Running time: Multiplicative factors

- Algorithm ***arraySum*** executes $T(n) = 6n$ primitive operations
- On a real computer, primitive operations will have different runtimes
- Let
 - a = time taken by fastest primitive operation
 - b = time taken by slowest primitive operation
- Actual runtime is bounded by two linear functions
$$a(6n) \leq \text{actual runtime}(n) \leq b(6n)$$
- Changing hardware/software affects runtime by a multiplicative factor
 - a and b will change, but the runtime is always bounded by $\text{const} \cdot n$
 - therefore, multiplicative constants are not essential
- Want to **ignore constant multiplicative** factors and say $T(n) = 6n$ is essentially n
 - in a theoretically justified way

Theoretical Analysis of Running time: Lower Order Terms

- Interested in runtime for large inputs (large n)
 - datasets keep increasing in size
- Consider $T(n) = n^2 + n$
- For large n , fastest growing factor contributes the most
$$T(100,000) = 10,000,000,000 + 100,000 \approx 10,000,000,000$$
- Want to ignore lower order terms in a theoretically justified way
- Perform analysis for large n (or ‘eventual’ behaviour)
 - this further simplifies analysis and algorithm comparison



Theoretical Analysis of Running time

- We want
 - 1) ignore multiplicative constant factors
 - 2) focus on behaviour for large n (i.e. ignore lower order terms)
- This means focusing on the *growth rate* of the function
- Want to say

$$\begin{array}{ll} f(n) = 10n^2 + 100n & \text{has growth rate of } g(n) = n^2 \\ f(n) = 10n + 10 & \text{has growth rate of } g(n) = n \end{array}$$

- Asymptotic analysis gives tools to formally focus on growth rate
- To say that function $f(n)$ has growth rate expressed by $g(n)$
 - 1) **upper bound**: asymptotically bound $f(n)$ **from above** by $g(n)$
 - 2) **lower bound**: asymptotically bound $f(n)$ **from below** by $g(n)$
 - asymptotically means: for large enough n , ignoring constant multiplicative factors

Outline

- CS240 overview
 - Course objectives
 - Course topics
- **Introduction and Asymptotic Analysis**
 - algorithm design
 - pseudocode
 - measuring efficiency
 - **asymptotic analysis**
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

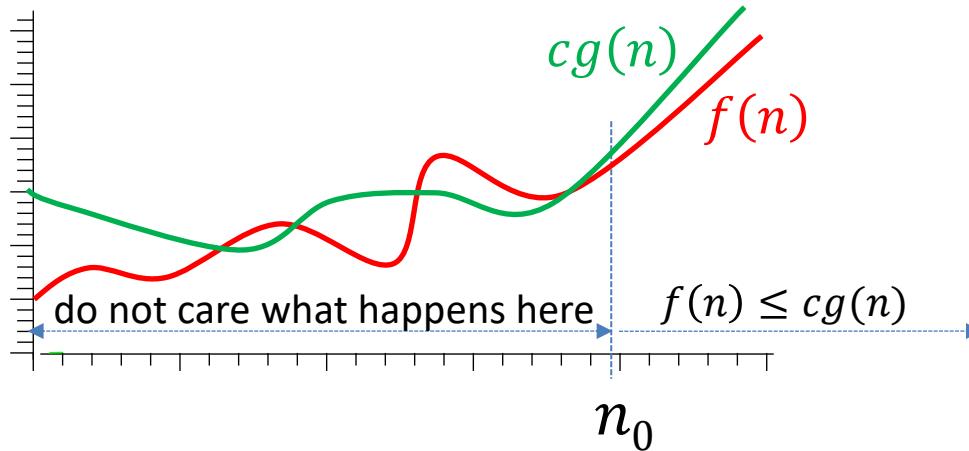
Order Notation: big-Oh

- Upper bound: asymptotically bound $f(n)$ from above by $g(n)$
 - $f(n)$ is running time, is function expressing growth rate $g(n)$

$f(n) \in O(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ s.t.

$$|f(n)| \leq c|g(n)| \quad \text{for all } n \geq n_0$$

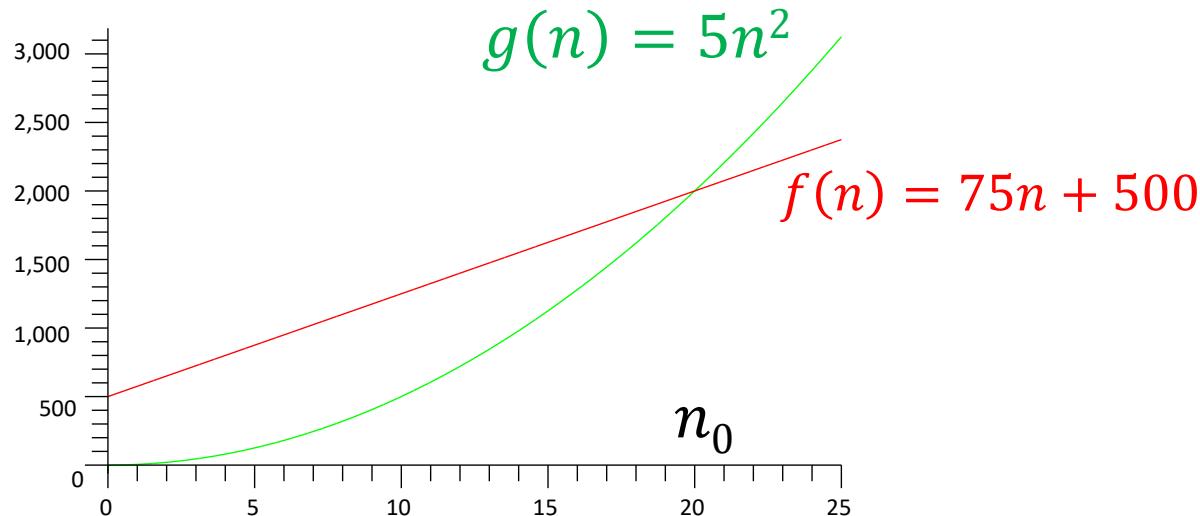
a set of
functions



- Need c to get rid of multiplicative constant in growth rate
 - cannot say $5n^2 \leq n^2$, but can say $5n^2 \leq cn^2$ for some constant c
- Absolute value not relevant for run-time, but useful in other applications
- Unless say otherwise, assume n (and n_0) are real numbers

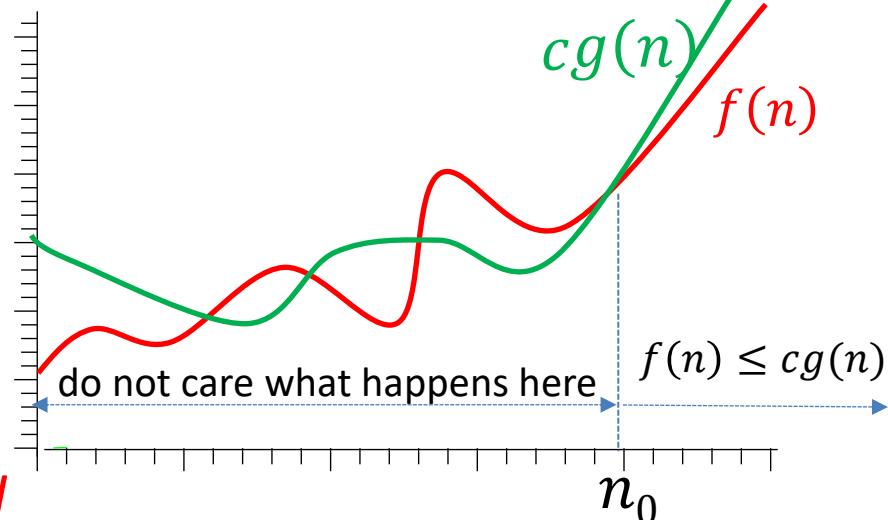
big-Oh Example

$f(n) \in O(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ s.t.
 $|f(n)| \leq c|g(n)|$ for all $n \geq n_0$



- Take $c = 1, n_0 = 20$
 - many other choices work, such as $c = 10, n_0 = 30$
- Conclusion: $f(n)$ has same or slower growth rate as $g(n)$

Order Notation: big-Oh

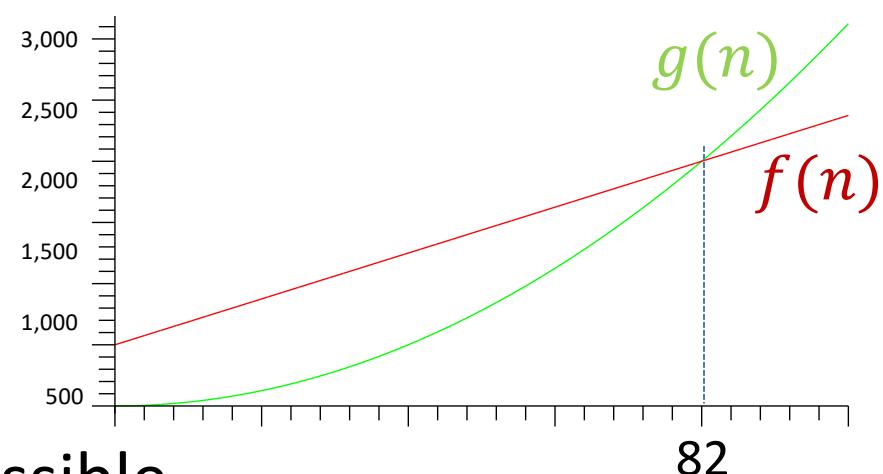


- Big-O gives asymptotic *upper bound*
 - $f(n) \in O(g(n))$ means function $f(n)$ is “bounded” above by function $g(n)$
 1. eventually, for large enough n
 2. ignoring multiplicative constant
 - Growth rate of $f(n)$ is slower or the same as growth rate of $g(n)$
- Use big-O to upper bound the growth rate of algorithm
 - $f(n)$ for running time
 - $g(n)$ for growth rate
 - should choose $g(n)$ as simple as possible
- Saying $f(n)$ is $O(g(n))$ is equivalent to saying $f(n) \in O(g(n))$
 - $O(g(n))$ is a set of functions with the same or smaller growth rate as $g(n)$

Order Notation: big-Oh

$f(n) \in O(g(n))$

if there exist constants $c > 0$ and $n_0 \geq 0$
s.t. $|f(n)| \leq c|g(n)|$ for all $n \geq n_0$



- Choose $g(n)$ as simple as possible
- Previous example: $f(n) = 75n + 500$, $g(n) = 5n^2$
- Simpler function for growth rate: $g(n) = n^2$
- Can show $f(n) \in O(g(n))$ as follows
 - set $f(n) = g(n)$ and solve quadratic equation
 - intersection point is $n = 82$
 - take $c = 1, n_0 = 82$

Order Notation: big-Oh

$f(n) \in O(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$
s. t. $|f(n)| \leq c|g(n)|$ for all $n \geq n_0$

- Do not have to solve equations
- $f(n) = 75n + 500, g(n) = n^2$
- For all $n \geq 1$

$$75n \leq 75n \cdot n = 75n^2$$

$$500 \leq 500 \cdot n \cdot n = 500n^2$$

- Therefore, for all $n \geq 1$

$$75n + 500 \leq 75n^2 + 500n^2 = 575n^2$$

Side note: for $0 < n < 1$
 $75n > 75n \cdot n = 75n^2$

- So take $c = 575, n_0 = 1$

Order Notation: big-Oh

$f(n) \in O(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ s.t. $|f(n)| \leq c|g(n)|$ for all $n \geq n_0$

- Better (i.e. “tighter”) bound on growth
 - can bound $f(n) = 75n + 500$ by slower growth than n^2
- $f(n) = 75n + 500$, $g(n) = n$
- Show $f(n) \in O(g(n))$

$$75n + 500 \leq 75n + 500n = 575n$$

for all $n \geq 1$

- So take $c = 575$, $n_0 = 1$

More big-O Examples

- Prove that

$$2n^2 + 3n + 11 \in O(n^2)$$

- Need to find $c > 0$ and $n_0 \geq 0$ s.t.

$$2n^2 + 3n + 11 \leq cn^2 \text{ for all } n \geq n_0$$

$$2n^2 + 3n + 11 \leq 2n^2 + 3n^2 + 11n^2 = 16n^2$$

for all $n \geq 1$

- Take $c = 16, n_0 = 1$

More big-O Examples

- Prove that

$$2n^2 - 3n + 11 \in O(n^2)$$

- Need to find $c > 0$ and $n_0 \geq 0$ s.t.

$$2n^2 - 3n + 11 \leq cn^2 \text{ for all } n \geq n_0$$

$$2n^2 - 3n + 11 \leq 2n^2 + 0 + 11n^2 = 13n^2$$

for all $n \geq 1$

- Take $c = 13, n_0 = 1$

More big-O Examples

- Be careful with logs
- Prove that

$$2n^2 \log n + 3n \in O(n^2 \log n)$$

- Need to find $c > 0$ and $n_0 \geq 0$ s.t.

$$2n^2 \log n + 3n \leq cn^2 \log n \quad \text{for all } n \geq n_0$$

$$2n^2 \log n + 3n \leq 2n^2 \log n + 3n^2 \log n \leq 5n^2 \log n$$

~~for all $n \geq 1$~~

for all $n \geq 2$

- Take $c = 5, n_0 = 2$

Theoretical Analysis of Running time

- To find running time, count the number of primitive operations $T(n)$
 - function of input size n
- Last step: express the running time using asymptotic notation

Algorithm *arraySum(A, n)* # operations

```
sum ← A[0]            $c_1$   
for  $i \leftarrow 1$  to  $n - 1$  do  
    sum ← sum + A[i] }  $c_2n$   
    { increment counter  $i$  }  
return sum            $c_3$ 
```

Total: $c_1 + c_3 + c_2n$ which is $O(n)$

Theoretical Analysis of Running time

- Distinguishing between c_1 c_2 c_3 has no influence on asymptotic running time
 - can just use one constant c throughout

Algorithm *arraySum*(A, n) # operations

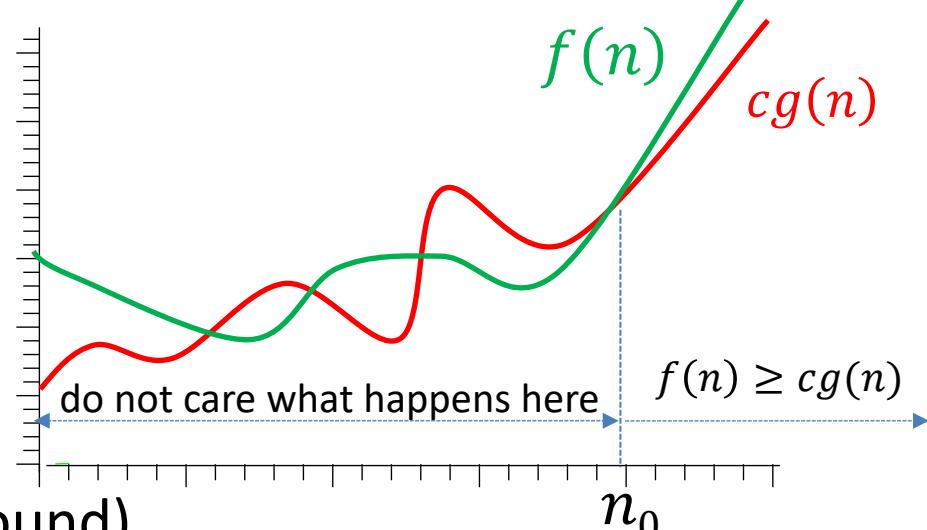
```
sum ←  $A[0]$ 
for  $i \leftarrow 1$  to  $n - 1$  do
    sum ← sum +  $A[i]$ 
    { increment counter  $i$  }
return sum
```

Total: $c + cn$ which is $O(n)$

Need for Asymptotic Tight bound

- $2n^2 + 3n + 11 \in O(n^2)$
- But also $2n^2 + 3n + 11 \in O(n^{10})$
 - this is a true but hardly a useful statement
 - if I say I have less than a million \$ in my pocket, it is a true, but useless statement
 - i.e. this statement does not give a tight upper bound
 - upper bound is *tight* if it uses the slowest growing function possible
- Want an asymptotic notation that guarantees a *tight* upper bound
- For tight bound, also need asymptotic *lower bound*

Asymptotic Lower Bound



- **Ω-notation (asymptotic lower bound)**

$f(n) \in \Omega(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$

s.t. $|f(n)| \geq c|g(n)|$ for all $n \geq n_0$

- $f(n) \in \Omega(g(n))$ means function $f(n)$ is asymptotically bounded below by function $g(n)$
 1. eventually, for large enough n
 2. ignoring multiplicative constant
- Growth rate of $f(n)$ is **larger or the same** as growth rate of $g(n)$
- $f(n) \in O(g(n)), f(n) \in \Omega(g(n)) \Rightarrow f(n)$ has same growth as $g(n)$

Asymptotic Lower Bound

$f(n) \in \Omega(g(n))$ if \exists constants $c > 0$, $n_0 \geq 0$ s.t. $|f(n)| \geq c|g(n)|$ for $n \geq n_0$

- Prove that $2n^2 + 3n + 11 \in \Omega(n^2)$

- Find $c > 0$ and $n_0 \geq 0$ s.t.

$$2n^2 + 3n + 11 \geq cn^2 \text{ for all } n \geq n_0$$

$$2n^2 + 3n + 11 \geq 2n^2 \text{ for all } n \geq 0$$

- Take $c = 2, n_0 = 0$

Asymptotic Lower Bound

$f(n) \in \Omega(g(n))$ if \exists constants $c > 0$, $n_0 \geq 0$ s.t. $|f(n)| \geq c|g(n)|$ for $n \geq n_0$

- Prove that $\frac{1}{2}n^2 - 5n \in \Omega(n^2)$
 - to handle absolute value correctly, need to insure $f(n) \geq 0$ for $n \geq n_0$
- Need to find c and n_0 s.t. $\frac{1}{2}n^2 - 5n \geq cn^2$ for all $n \geq n_0$
- Unlike before, cannot just drop lower growing term, as $\frac{1}{2}n^2 - 5n \leq \frac{1}{2}n^2$

$$\frac{1}{2}n^2 - 5n = \frac{1}{4}n^2 + \frac{1}{4}n^2 - 5n = \frac{1}{4}n^2 + \left(\frac{1}{4}n^2 - 5n \right) \geq \frac{1}{4}n^2 \quad \text{if } n \geq 20$$

$\underbrace{\qquad\qquad\qquad}_{\geq 0, \text{ if } n \geq 20}$

- Take $c = \frac{1}{4}$, $n_0 = 20$
 - $f(n) \geq \frac{1}{4}n^2$ for $n \geq 20 \Rightarrow f(n) \geq 0$ for $n \geq 20$
 - as needed to handle absolute value correctly

Tight Asymptotic Bound

- **Θ-notation**

$f(n) \in \Theta(g(n))$ if there exist constants $c_1, c_2 > 0, n_0 \geq 0$ s.t.

$$c_1|g(n)| \leq |f(n)| \leq c_2|g(n)| \text{ for all } n \geq n_0$$

- $f(n) \in \Theta(g(n))$ means $f(n), g(n)$ have equal growth rates
 - typically $f(n)$ is complicated, and $g(n)$ is chosen to be simple
- Easy to prove that
$$f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in O(g(n)) \text{ and } f(n) \in \Omega(g(n))$$
- Therefore, to show that $f(n) \in \Theta(g(n))$, it is enough to show
 1. $f(n) \in O(g(n))$
 2. $f(n) \in \Omega(g(n))$

Tight Asymptotic Bound

- Proved previously that
 - $2n^2 + 3n + 11 \in O(n^2)$
 - $2n^2 + 3n + 11 \in \Omega(n^2)$
- Thus $2n^2 + 3n + 11 \in \Theta(n^2)$
- Ideally, should use Θ to determine growth rate of algorithm
 - $f(n)$ for running time
 - $g(n)$ for growth rate
- Sometimes determining tight bound is hard, so big-O is used

Tight Asymptotic Bound

Prove that $\log_b n \in \Theta(\log n)$ for $b > 1$

- Find $c_1, c_2 > 0, n_0 \geq 0$ s.t. $c_1 \log n \leq \log_b n \leq c_2 \log n$ for all $n \geq n_0$
- $\log_b n = \frac{\log n}{\log b} = \frac{1}{\log b} \log n$
- $\frac{1}{\log b} \log n \leq \log_b n \leq \frac{1}{\log b} \log n$
- Since $b > 1, \log b > 0$
- Take $c_1 = c_2 = \frac{1}{\log b}$ and $n_0 = 1$
 - rarely $c_1 = c_2$, normally $c_1 < c_2$

Common Growth Rates

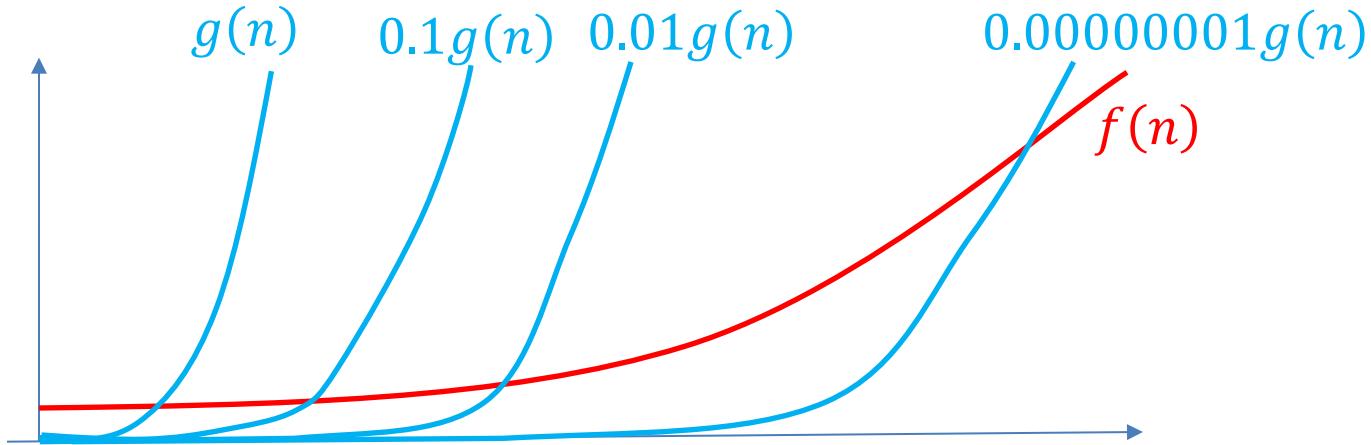
- $\Theta(1)$ *constant*
 - 1 stands for function $f(n) = 1$
- $\Theta(\log n)$ *logarithmic*
- $\Theta(n)$ *linear*
- $\Theta(n \log n)$ *linearithmic*
- $\Theta(n \log^k n)$ *quasi-linear*
 - k is constant, i.e. independent of the problem size
- $\Theta(n^2)$ *quadratic*
- $\Theta(n^3)$ *cubic*
- $\Theta(2^n)$ *exponential*
- These are listed in increasing order of growth
 - how to determine which function has a larger order of growth?

How Growth Rates Affect Running Time

- How running time affected when problem size **doubles** ($n \rightarrow 2n$)
 - $T(n) = c$ $T(2n) = c$
 - $T(n) = c \log n$ $T(2n) = T(n) + c$
 - $T(n) = cn$ $T(2n) = 2T(n)$
 - $T(n) = cn \log n$ $T(2n) = 2T(n) + 2cn$
 - $T(n) = cn^2$ $T(2n) = 4T(n)$
 - $T(n) = cn^3$ $T(2n) = 8T(n)$
 - $T(n) = c2^n$ $T(2n) = \frac{1}{c}T^2(n)$

Strictly Smaller Asymptotic Bound

- $f(n) = 2n^2 + 3n + 11 \in \Theta(n^2)$
- How to say $f(n)$ is **grows slower** than $g(n) = n^3$?



- **o -notation [asymptotically strictly smaller]**
 $f(n) \in o(g(n))$ if **for any constant** $c > 0$, there exists a constant $n_0 \geq 0$ s.t. $|f(n)| \leq c|g(n)|$ for all $n \geq n_0$
- Think of c as being arbitrarily small
- No matter how small c is, $c \cdot g(n)$ is eventually larger than $f(n)$
- Meaning: f grows slower than g , or growth rate of f is less than growth rate of g
- Useful for certain statements
 - there is no general-purpose sorting algorithm with run-time $o(n \log n)$

Big-Oh vs. Little-o

- Big-Oh, means f grows at the **same rate or slower** than g

$f(n) \in O(g(n))$ if there **exist** constants $c > 0$ and $n_0 \geq 0$
s.t. $|f(n)| \leq c|g(n)|$ for all $n \geq n_0$

- Little-o, means f grows **slower** than g

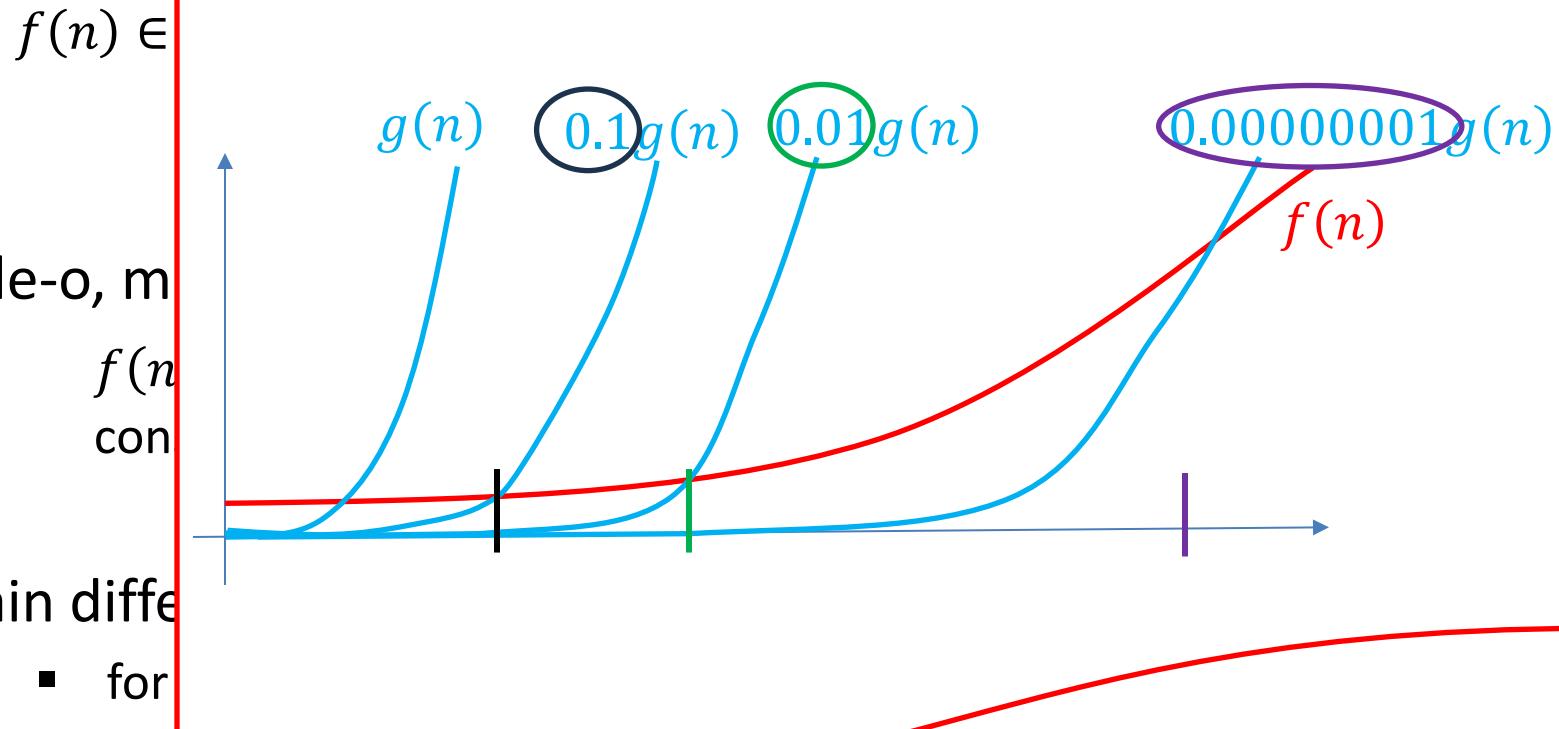
$f(n) \in o(g(n))$ if for **any** constant $c > 0$, there exists a
constant $n_0 \geq 0$ s.t. $|f(n)| \leq c|g(n)|$ for all $n \geq n_0$

- Main difference is the quantifier for c : **exists** vs. **any**

- for big-Oh, you can choose any c you want
- for little-o, you are given c , it can be arbitrarily small
- in proofs for little-o, n_0 will normally depend on c , so it is really a
function $n_0(c)$
 - $n_0(c)$ **must** be a constant with respect to n

Big-Oh vs. Little-o

- Big-Oh, means f grows at the same rate or slower than g



- Little-o, means

$f(n)$
con

- Main difference

- for Big-Oh, c is a constant
- for little-o, c can be arbitrarily small
- in proofs for little-o, n_0 will normally depend on c , so it is really a function $n_0(c)$
 - $n_0(c)$ **must** be a constant with respect to n

Strictly Smaller Proof Example

$f(n) \in o(g(n))$ if **for any** $c > 0$, there exists $n_0 \geq 0$ s.t. $|f(n)| \leq c|g(n)|$ for all $n \geq n_0$

Prove that $5n \in o(n^2)$

- Given $c > 0$ need to find n_0 s.t. [solve for n in terms of c]

$$5n \leq cn^2 \text{ for all } n \geq n_0$$

divide both sides by n
 \Leftrightarrow

$$5 \leq cn \text{ for all } n \geq n_0$$

solve for n
 \Leftrightarrow

$$n \geq \frac{5}{c}$$

- Therefore, $5n \leq cn^2$ for $n \geq \frac{5}{c}$

- Take $n_0 = \frac{5}{c}$

- n_0 is a function of c

- if you have your proof something like $n_0 = \frac{5n}{c}$, **the proof is wrong**
 - n_0 cannot depend on n

Strictly Smaller Proof Example

$f(n) \in o(g(n))$ if **for any** $c > 0$, there exists $n_0 \geq 0$ s.t. $|f(n)| \leq c|g(n)|$ for all $n \geq n_0$

Prove that $5n + 10n^4 \in o(n^5)$

- Given $c > 0$ need to find n_0 s.t.

$$5n + 10n^4 \leq cn^5 \text{ for all } n \geq n_0$$

[difficult to solve for n in terms of c]

- First derive simple upper bound

$$5n + 10n^4 \leq 15n^4 \text{ for all } n \geq 1$$

- Solve for n in terms of c for the simple upper bound

$$15n^4 \leq cn^5 \text{ for all } n \geq n_0$$

$$n \geq 15/c$$

- Combine: $5n + 10n^4 \leq 15n^4 \leq cn^5 \text{ for all } n \geq 1 \text{ for all } n \geq \frac{15}{c}$
- Take $n_0 = \max\{15/c, 1\}$

Strictly Larger Asymptotic Bound

- ω -notation

$f(n) \in \omega(g(n))$ if **for any constant** $c > 0$, there exists a constant $n_0 \geq 0$ s.t. $|f(n)| \geq c|g(n)|$ for all $n \geq n_0$

- think of c as being arbitrarily large
- Meaning: f grows much faster than g

Strictly Larger Asymptotic Bound

- $f(n) \in \omega(g(n))$ if **for any constant** $c > 0$, there is constant $n_0 \geq 0$ s.t. $|f(n)| \geq c|g(n)|$ for all $n \geq n_0$
- Claim: $f(n) \in \omega(g(n)) \Rightarrow g(n) \in o(f(n))$

Proof:

- Given $c > 0$ need to find n_0 s.t.

$$g(n) \leq cf(n) \text{ for all } n \geq n_0 \quad \text{divide both sides by } c \iff$$

$$\frac{1}{c}g(n) \leq f(n) \quad \text{for all } n \geq n_0$$

- Since $f(n) \in \omega(g(n))$, for any constant, in particular for constant $\frac{1}{c}$ there is m_0 s.t.

$$f(n) \geq \frac{1}{c}g(n) \quad \text{for all } n \geq m_0$$

- $n_0 = m_0$ and we are done!

Limit Theorem for Order Notation

- So far had proofs for order notation from the *first principles*
 - i.e. from the definition

Limit theorem for order notation

- Suppose for all $n \geq n_0$, $f(n) > 0$, $g(n) > 0$ and $L = \lim_{n \rightarrow \infty} \frac{f(n)}{g(n)}$
- Then $f(n) \in \begin{cases} o(g(n)) & \text{if } L = 0 \\ \Theta(g(n)) & \text{if } 0 < L < \infty \\ \omega(g(n)) & \text{if } L = \infty \end{cases}$

- Limit can often be computed using l'Hopital's rule
- Theorem gives sufficient but not necessary conditions
- Can use theorem *unless* asked to prove from the first principles

Example 1

Let $f(n)$ be a polynomial of degree $d \geq 0$ with $c_d > 0$

$$f(n) = c_d n^d + c_{d-1} n^{d-1} + \cdots + c_1 n + c_0$$

Then $f(n) \in \Theta(n^d)$

Proof:

$$\begin{aligned} \lim_{n \rightarrow \infty} \frac{f(n)}{n^d} &= \lim_{n \rightarrow \infty} \left(\frac{c_d n^d}{n^d} + \frac{c_{d-1} n^{d-1}}{n^d} + \cdots + \frac{c_0}{n^d} \right) \\ &= \lim_{n \rightarrow \infty} \underbrace{\left(\frac{c_d n^d}{n^d} \right)}_{= c_d} + \lim_{n \rightarrow \infty} \underbrace{\left(\frac{c_{d-1} n^{d-1}}{n^d} \right)}_{= 0} + \cdots + \lim_{n \rightarrow \infty} \underbrace{\left(\frac{c_0}{n^d} \right)}_{= 0} \\ &= c_d > 0 \end{aligned}$$

Example 2

- Compare growth rates of $\log n$ and n

$$\lim_{n \rightarrow \infty} \frac{\log n}{n} = \lim_{n \rightarrow \infty} \frac{\frac{\ln n}{\ln 2}}{n} = \lim_{n \rightarrow \infty} \frac{1}{\frac{\ln 2 \cdot n}{1}} = \lim_{n \rightarrow \infty} \frac{1}{n \cdot \ln 2} = 0$$

↓

L'Hopital rule

- $\log n \in o(n)$

Example 3

- Prove $(\log n)^a \in o(n^d)$, for any (big) $a > 0$, (small) $d > 0$
 - $(\log n)^{1000000} \in o(n^{0.0000001})$

1) Prove (by induction):

$$\lim_{n \rightarrow \infty} \frac{\ln^k n}{n} = 0 \text{ for any integer } k$$

- Base case $k = 1$ is proven on previous slide
- Inductive step: suppose true for $k - 1$

$$\lim_{n \rightarrow \infty} \frac{\ln^k n}{n} = \lim_{n \rightarrow \infty} \frac{\frac{1}{n} k \ln^{k-1} n}{1} = k \lim_{n \rightarrow \infty} \frac{\ln^{k-1} n}{n} = 0$$

L'Hopital rule

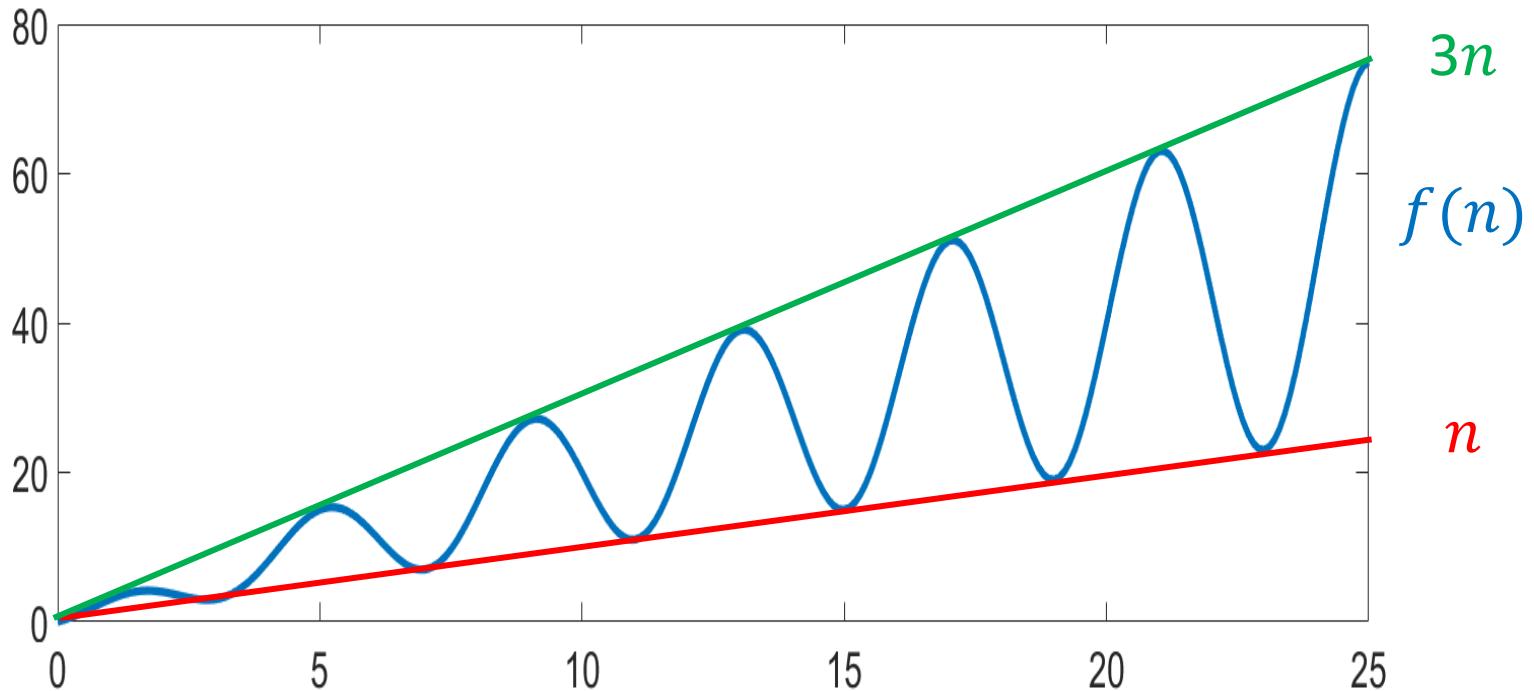
2) Prove $\lim_{n \rightarrow \infty} \frac{\ln^a n}{n^d} = 0$

- $\lim_{n \rightarrow \infty} \frac{\ln^a n}{n^d} = \left(\lim_{n \rightarrow \infty} \frac{\ln^{a/d} n}{n} \right)^d \leq \left(\lim_{n \rightarrow \infty} \frac{\ln^{[a/d]} n}{n} \right)^d = 0$

3) Finally $\lim_{n \rightarrow \infty} \frac{(\log n)^a}{n^d} = \lim_{n \rightarrow \infty} \frac{\left(\frac{\ln n}{\ln 2} \right)^a}{n^d} = \left(\frac{1}{\ln 2} \right)^a \lim_{n \rightarrow \infty} \frac{(\ln n)^a}{n^d} = 0$

Example 4

- Sometimes limit does not exist, but can prove from first principles
- Let $f(n) = n(2 + \sin \frac{n\pi}{2})$
- Prove that $f(n)$ is $\Theta(n)$



Example 4

- Let $f(n) = n\left(2 + \sin\frac{n\pi}{2}\right)$, prove that $f(n)$ is $\Theta(n)$
- Proof

$$-1 \leq \sin(\text{any number}) \leq 1$$

$$f(n) \leq n(2 + 1) = 3n \quad \text{for all } n \geq 0$$

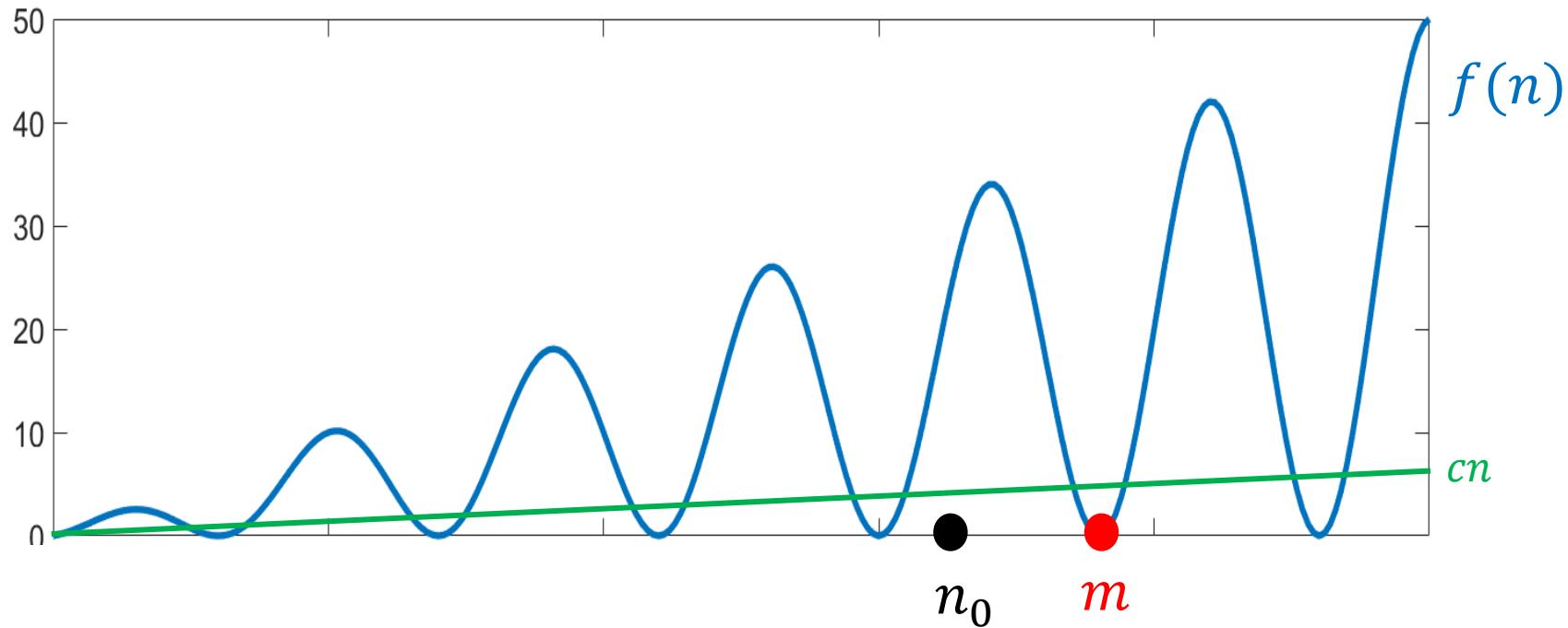
$$n = n(2 - 1) \leq f(n) \quad \text{for all } n \geq 0$$

- Use $c_1 = 1, c_2 = 3, n_0 = 0$

Example 5

$f(n) \in \Omega(g(n))$ if \exists constants $c > 0$, $n_0 \geq 0$ s.t. $|f(n)| \geq c|g(n)|$ for $n \geq n_0$

- Let $f(n) = n(1 + \sin \frac{n\pi}{2})$, prove that $f(n)$ is **not** $\Omega(n)$



- Many points do not satisfy $f(n) \geq cn$ for $n \geq n_0$, but easiest to use zero-valued one for the formal proof

Example 5

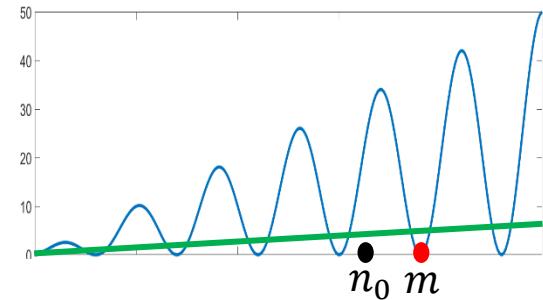
- Let $f(n) = n(1 + \sin \frac{n\pi}{2})$
- Prove that $f(n)$ is **not** $\Omega(n)$
- Proof: (by contradiction)
 - suppose $f(n)$ is $\Omega(n)$
 - then $\exists n_0 \geq 0$ and $c > 0$ s.t. $f(n) \geq cn$ for $n \geq n_0$
 - [for contradiction, will find $m \geq n_0$ s.t. $0 = f(m)$]

$$n(1 + \sin n\pi/2) \geq cn \quad \text{for all } n \geq n_0 \iff$$

$$(1 + \underbrace{\sin n\pi/2}_{-1}) \geq c \quad \text{for all } n \geq n_0$$

need to make this -1 for contradiction for some $m \geq n_0$

- need $\frac{m\pi}{2} = \frac{3\pi}{2} + 2\pi i$ for some integer i and $m \geq n_0 \iff$
- need $m = 3 + 4i$ for some integer i and $m \geq n_0$
- take $m = 3 + 4[n_0] > n_0$



Order notation Summary

- $f(n) \in \Theta(g(n))$: growth rates of f and g are the same
- $f(n) \in o(g(n))$: growth rate of f is less than growth rate of g
- $f(n) \in \omega(g(n))$: growth rate of f is greater than growth rate of g
- $f(n) \in O(g(n))$: growth rate of f is the same or less than growth rate of g
- $f(n) \in \Omega(g(n))$: growth rate of f is the same or greater than growth rate of g

Relationship between Order Notations

One can prove the following relationships

- $f(n) \in \Theta(g(n)) \Leftrightarrow g(n) \in \Theta(f(n))$
- $f(n) \in O(g(n)) \Leftrightarrow g(n) \in \Omega(f(n))$
- $f(n) \in o(g(n)) \Leftrightarrow g(n) \in \omega(f(n))$
- $f(n) \in o(g(n)) \Rightarrow f(n) \in O(g(n))$
- $f(n) \in o(g(n)) \Rightarrow f(n) \notin \Omega(g(n))$
- $f(n) \in \omega(g(n)) \Rightarrow f(n) \in \Omega(g(n))$
- $f(n) \in \omega(g(n)) \Rightarrow f(n) \notin O(g(n))$

Algebra of Order Notations (1)

- The following rules are easy to prove [exercise]

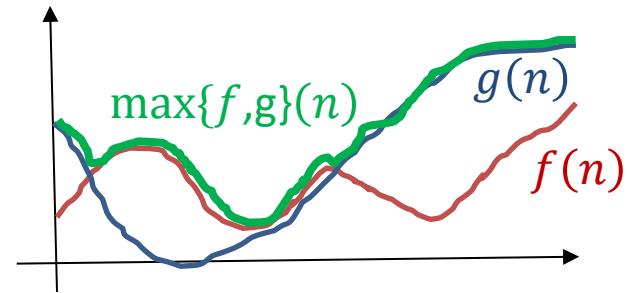
1. **Identity rule:** $f(n) \in \Theta(f(n))$

2. **Transitivity**

- if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$
- if $f(n) \in \Omega(g(n))$ and $g(n) \in \Omega(h(n))$ then $f(n) \in \Omega(h(n))$
- if $f(n) \in o(g(n))$ and $g(n) \in o(h(n))$ then $f(n) \in o(h(n))$

Algebra of Order Notations (2)

$$\max\{f, g\}(n) = \begin{cases} f(n) & \text{if } f(n) > g(n) \\ g(n) & \text{otherwise} \end{cases}$$



3. Maximum rules

Suppose that $f(n) > 0$ and $g(n) > 0$ for all $n \geq n_0$, then

- a) $f(n) + g(n) \in \Omega(\max\{f(n), g(n)\})$
- b) $f(n) + g(n) \in O(\max\{f(n), g(n)\})$

Proof: a) $f(n) + g(n) \geq$ either $f(n)$ or $g(n) = \max\{f(n), g(n)\}$ function positivity

$$\begin{aligned} \text{b) } f(n) + g(n) &= \max\{f(n), g(n)\} + \min\{f(n), g(n)\} \\ &\leq \max\{f(n), g(n)\} + \max\{f(n), g(n)\} \\ &= 2\max\{f(n), g(n)\} \end{aligned}$$

- Usage: $n^2 + \log n \in \Theta(n^2)$

Abuse of Order Notation

- Normally, say $f(n) \in \Theta(g(n))$ because $\Theta(g(n))$ is a set
- Sometimes it is convenient to abuse notation
 - $f(n) = 200n^2 + \Theta(n)$
 - $f(n)$ is $200n^2$ plus a term with linear growth rate
 - nicer to read than $200n^2 + 30n + \log n$
 - does not hide the constant term 200, unlike if we said $O(n^2)$
 - $f(n) = n^2 + o(1)$
 - $f(n)$ is n^2 plus a vanishing term (term goes to 0)
 - example: $f(n) = n^2 + 1/n$
- Use these sparingly, typically only for stating final result
- But **avoid** arithmetic with asymptotic notation, can go very wrong
- Instead, replace $\Theta(g(n))$ by $c \cdot g(n)$
 - still sloppy, but less dangerous
 - if $f(n) \in \Theta(g(n))$, more accurate statement is $c \cdot g(n) \leq f(n) \leq c' \cdot g(n)$ for *large enough* n

Outline

- CS240 overview
 - Course objectives
 - Course topics
- **Introduction and Asymptotic Analysis**
 - algorithm design
 - pseudocode
 - measuring efficiency
 - **analysis of algorithms**
 - analysis of recursive algorithms
 - helpful formulas

Techniques for Runtime Analysis

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the *input size n*

Test1(n)

```
1.   sum ← 0
2.   for i ← 1 to n do
3.       for j ← i to n do
4.           sum ← sum + (i − j)2
5.   return sum
```

- Identify *primitive operations*: these require constant time
- Loop complexity expressed as *sum* of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives *nested summations*

Techniques for Runtime Analysis

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the *input size n*

Test1(n)

```
1.   sum ← 0
2.   for i ← 1 to n do
3.       for j ← i to n do
4.           sum ← sum + (i − j)2    c
5.   return sum
```

- Identify *primitive operations*: these require constant time
- Loop complexity expressed as *sum* of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives *nested summations*

Techniques for Algorithm Analysis

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the *input size n*

Test1(n)

```
1.   sum ← 0
2.   for i ← 1 to n do
3.       for j ← i to n do
4.           sum ← sum + (i - j)2
5.   return sum
```

$$\sum_{j=i}^n c$$

- Identify *primitive operations*: these require constant time
- Loop complexity expressed as *sum* of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives *nested summations*

Techniques for Algorithm Analysis

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the *input size n*

Test1(n)

```
1.   sum ← 0
2.   for i ← 1 to n do
3.     for j ← i to n do
4.       sum ← sum + (i - j)2
5.   return sum
```

$$\sum_{i=1}^n \sum_{j=i}^n c$$

- Identify *primitive operations*: these require constant time
- Loop complexity expressed as *sum* of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives *nested summations*

Techniques for Algorithm Analysis

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the *input size n*

Test1(n)

```
1.   sum ← 0
2.   for i ← 1 to n do
3.     for j ← i to n do
4.       sum ← sum + (i - j)2
5.   return sum
```

$$\sum_{i=1}^n \sum_{j=i}^n c + c$$

- Identify *primitive operations*: these require constant time
- Loop complexity expressed as *sum* of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives *nested summations*

Techniques for Algorithm Analysis

Test1(n)

```
1.   sum ← 0
2.   for i ← 1 to n do
3.       for j ← i to n do
4.           sum ← sum + (i – j)2
5.   return sum
```

- Derived complexity as

$$c + \sum_{i=1}^n \sum_{j=i}^n c$$

- Some textbooks will write this as

$$c_1 + \sum_{i=1}^n \sum_{j=i}^n c_2$$

- Or even as

$$1 + \sum_{i=1}^n \sum_{j=i}^n 1$$

- Now need to work out the sum

Sums: Review

$$\sum_{j=1}^n 1 = 1 + 1 + 1 + \dots + 1 = n$$

summand

index of summation

$j = 1$ $j = 2$ $j = 3$... $j = n$

Sums: Review

terms from 1 to $i - 1$
are missing

$$\sum_{j=i}^n 1 = 1 + 1 + \dots + 1 = n - i + 1$$

$j = i$ $j = i + 1$... $j = n$

Sums: Review

$$\sum_{j=i}^n (n - e^x) = n - e^x + n - e^x \dots + n - e^x = (n - e^x)(n - i + 1)$$

j = i j = i + 1 ... j = n

Sums: Review

$$S = \sum_{i=1}^n i = \frac{1}{2} (n + 1) n$$

Diagram illustrating the sum of the first n natural numbers. The sum is shown as the sum of two series: $S = \sum_{i=1}^n i$ and $S = \sum_{i=1}^n i$. The terms are grouped into pairs of circles, each pair summing to $n + 1$. The first pair contains 1 and n . The second pair contains $+2$ and $+(n - 1)$. The third pair contains $+3$ and $+(n - 2)$. Ellipses indicate that this pattern continues to the middle of the sequence.

$$2S = (n + 1)n$$

$$S = \frac{1}{2} (n + 1)n$$

Sums: Review

$$\begin{aligned}
 S &= \sum_{i=a}^b i = a + b + (a+1) + (b-1) + \dots + b + a
 \end{aligned}$$

$$2S = (a+b)(b-a+1)$$

$$S = \frac{1}{2}(a+b)(b-a+1)$$

Techniques for Algorithm Analysis

Test1(*n*)

1. *sum* \leftarrow 0
2. **for** *i* \leftarrow 1 **to** *n* **do**
3. **for** *j* \leftarrow *i* **to** *n* **do**
4. *sum* \leftarrow *sum* + (*i* - *j*)²
5. **return** *sum*

$$\begin{aligned} c + \sum_{i=1}^n \sum_{j=i}^n c &= c + \sum_{i=1}^n c(n - i + 1) = c + c \sum_{i=1}^n (n - i + 1) \\ &= c + c \sum_{i=1}^n n - c \sum_{i=1}^n i + c \sum_{i=1}^n 1 \\ &= c + c n^2 - c \frac{(n + 1)n}{2} + c n = c \frac{n^2}{2} + c \frac{n}{2} + c \end{aligned}$$

- Complexity of algorithm *Test1* is $\Theta(n^2)$

Techniques for Algorithm Analysis

Test1(n)

1. $sum \leftarrow 0$
2. **for** $i \leftarrow 1$ **to** n **do**
3. **for** $j \leftarrow i$ **to** n **do**
4. $sum \leftarrow sum + (i - j)^2$
5. **return** sum

- Can use Θ -bounds earlier, before working out the sum

$$c + \sum_{i=1}^n \sum_{j=i}^n c \quad \text{is} \quad \Theta\left(\sum_{i=1}^n \sum_{j=i}^n c\right)$$

- Therefore, can drop the lower order term and work on

$$\sum_{i=1}^n \sum_{j=i}^n c$$

- Using Θ -bounds earlier makes final expressions simpler
- Complexity of algorithm *Test1* is $\Theta(n^2)$

Techniques for Algorithm Analysis

- Two general strategies
 1. Use Θ -bounds *throughout the analysis* and obtain Θ -bound for the complexity of the algorithm
 - used this strategy on previous slides for **Test1** Θ -bound
 2. Prove a O -bound and a *matching* Ω -bound *separately*
 - use upper bounds (for O -bounds) and lower bounds (for Ω -bound) early and frequently
 - easier because upper/lower bounds are easier to sum

Techniques for Algorithm Analysis

- Second strategy: **upper bound** for **Test1**

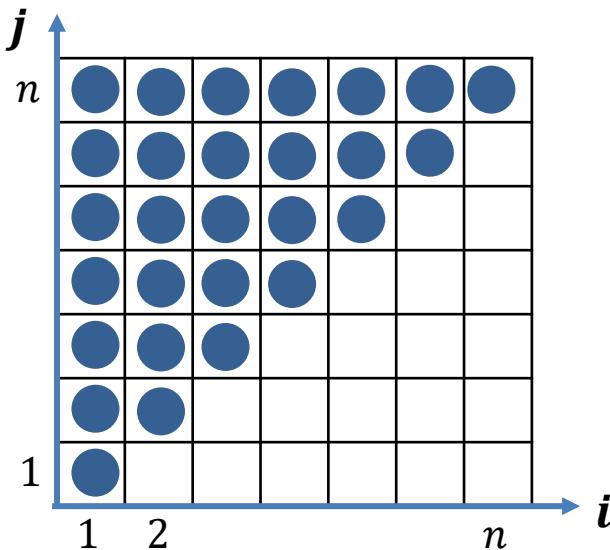
$$\sum_{i=1}^n \sum_{j=i}^n c$$

Test1(n)

```
1.  sum ← 0
2.  for i ← 1 to n do
3.      for j ← i to n do
4.          sum ← sum + (i - j)2
5.  return sum
```

- Add more iterations to make sum easier to work out

$$\sum_{i=1}^n \sum_{j=i}^n c \leq \sum_{i=1}^n \sum_{j=1}^n c = \sum_{i=1}^n cn = c \sum_{i=1}^n n = cn^2$$



Techniques for Algorithm Analysis

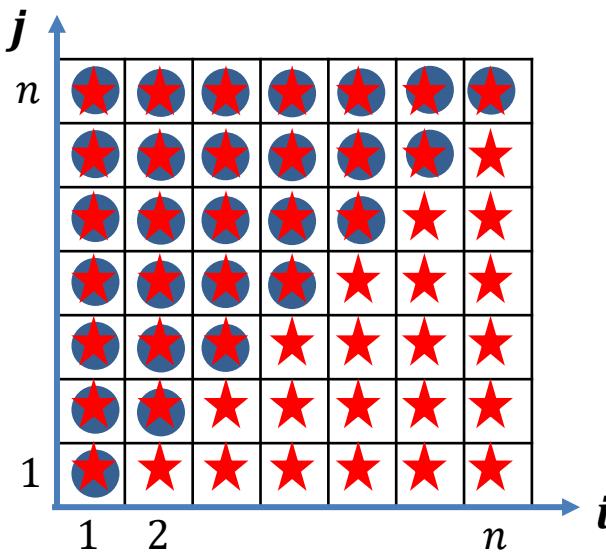
- Second strategy: **upper bound** for **Test1**

$$\sum_{i=1}^n \sum_{j=i}^n c$$

- Add** more iterations to make sum easier to work out

$$\sum_{i=1}^n \sum_{j=i}^n c \leq \sum_{i=1}^n \sum_{j=1}^n c = \sum_{i=1}^n cn = c \sum_{i=1}^n n = cn^2$$

upper bound \star



- Test1** is $O(n^2)$

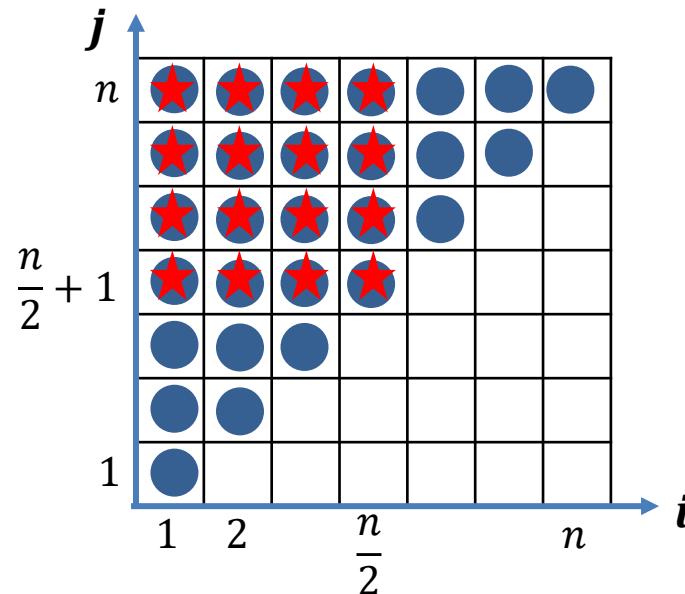
Techniques for Algorithm Analysis

- Second strategy: **lower bound** for **Test1**

$$\sum_{i=1}^n \sum_{j=i}^n c$$

- Remove** iterations to make sum easier to work out

$$\sum_{i=1}^n \sum_{j=i}^n c \geq \sum_{i=1}^{n/2} \sum_{j=1+n/2}^n c = \sum_{i=1}^{n/2} c \frac{n}{2} = c \sum_{i=1}^{n/2} \frac{n}{2} = c \left(\frac{n}{2}\right)^2$$



- Test1** is $\Omega(n^2)$

Techniques for Algorithm Analysis

- Second strategy: **lower bound** for **Test1**

$$\sum_{i=1}^n \sum_{j=i}^n c$$

- **Remove** iterations to make sum easier to work out
- Can get the same result without visualization
- To remove iterations, increase lower or increase upper range bounds, or both

- Examples: $\sum_{k=10}^{100} c \geq \sum_{k=20}^{80} c$ $\sum_{k=i}^j 1 \geq \sum_{k=i+1}^{j-1} 1$

- In our case:

$$\sum_{i=1}^n \sum_{j=i}^n c \geq \sum_{i=1}^{n/2} \sum_{j=i}^n c \geq \sum_{i=1}^{n/2} \sum_{j=1+n/2}^n c = c \left(\frac{n}{2}\right)^2$$

now $i \leq n/2$

- **Test1** is $\Omega(n^2)$, previously concluded that **Test1** is $O(n^2)$
- Therefore **Test1** is $\Theta(n^2)$

Techniques for Algorithm Analysis

Test1(n)

1. $sum \leftarrow 0$
2. **for** $i \leftarrow 1$ **to** n **do**
3. **for** $j \leftarrow i$ **to** n **do**
4. $sum \leftarrow sum + (i - j)^2$
5. **return** sum

- Annoying to carry constants around
- Running time is proportional to the number of iterations
- Can first compute the number of iterations

$$\sum_{i=1}^n \sum_{j=i}^n c$$

$$\sum_{i=1}^n \sum_{j=i}^n 1 = \frac{n^2}{2} + \frac{n}{2} + 1$$

- And then say running time is c times the number of iterations

Techniques for Algorithm Analysis

- Inner **while** loop

- iteration 1: $j = 0$
- iteration 2: $j = 1 \cdot i$
- iteration k : $j = (k - 1) \cdot i$
- terminate when $(k - 1) \cdot i \geq i^2$
 - $k \geq 1 + i$
- inner while loop takes $(1 + i)c$ time

- Outer **while** loop

- iteration 1: $i = n$
- iteration 2: $i = n/2^{2-1}$
- iteration t : $i = n/2^{t-1}$
- terminates when $\frac{n}{2^{t-1}} < 2$
 - $t > \log n$ (more precisely, last iteration is at $t = \lceil \log n \rceil - 1$)

- Total time, ignoring multiplicative c

$$\sum_{t=1}^{\log n} (1 + n/2^{t-1}) = \sum_{t=1}^{\log n} 1 + n \sum_{t=1}^{\log n} 1/2^t < \log n + n \sum_{t=1}^{\infty} 1/2^t \in O(n)$$

some constant

Algorithm *Test2*(n)

```
sum ← 0
i = n
while i ≥ 2 do
    j = 0
    while j < i2 do
        sum ← sum + 1
        j = j + i
    i = i/2
return sum
```

$O(1)$

Worst Case Time Complexity

- Can have different running times on two instances of equal size

```
insertion-sort(A, n)
A: array of size n
1. for i ← 1 to n – 1 do
2.     j ← i
3.     while j > 0 and A[j] < A[j – 1] do
4.         swap A[j] and A[j – 1]
5.         j ← j – 1
```

- Let $T(I)$ be running time of an algorithm on instance I
- Let $I_n = \{I : \text{Size}(I) = n\}$
- Worst-case complexity of an algorithm:** take the worst I
- Formal definition: the worst-case running time of algorithm A is a function $f : \mathbb{Z}^+ \rightarrow \mathbb{R}$ mapping n (the input size) to the *longest* running time for any input instance of size n

$$T_{\text{worst}}(n) = \max_{I \in I_n} \{T(I)\}$$

Worst Case Time Complexity

- **Worst-case complexity of an algorithm:** take worst instance I

```
insertion-sort(A, n)
```

A: array of size n

```
1. for  $i \leftarrow 1$  to  $n - 1$  do
2.    $j \leftarrow i$ 
3.   while  $j > 0$  and  $A[j] < A[j - 1]$  do
4.     swap  $A[j]$  and  $A[j - 1]$ 
5.    $j \leftarrow j - 1$ 
```

worst I is reverse sorted array

$$\sum_{i=1}^{n-1} \sum_{j=1}^i c = \sum_{i=0}^{n-1} ci = c(n-1)n/2$$

- $T_{worst}(n) = c(n - 1)n/2$
 - this is primitive operation count as a function of input size n
 - after primitive operation count, apply asymptotic analysis
 - $\Theta(n^2)$ or $O(n^2)$ or $\Omega(n^2)$ are all valid statements about the worst case running time of *insertion-sort*

Best Case Time Complexity

insertion-sort(A, n)

A : array of size n

```
1.  for  $i \leftarrow 1$  to  $n - 1$  do
2.       $j \leftarrow i$ 
3.      while  $j > 0$  and  $A[j] < A[j - 1]$  do
4.          swap  $A[j]$  and  $A[j - 1]$ 
5.           $j \leftarrow j - 1$ 
```

best instance is sorted array

$$\sum_{i=1}^{n-1} c = c(n - 1)$$

- **Best-case complexity of an algorithm:** take the best instance I
- Formal definition: the best-case running time of an algorithm A is a function $f: \mathbb{Z}^+ \rightarrow \mathbb{R}$ mapping n (the input size) to the *smallest* running time for any input instance of size n

$$T_{best}(n) = \min_{I \in I_n} \{T(I)\}$$

- $T_{best}(n) = c(n - 1)$
 - this is primitive operation count as a function of input size n
 - after primitive operation count, apply asymptotic analysis
 - $\Theta(n)$ or $O(n)$ or $\Omega(n)$ are all valid about best case running time

Best Case Time Complexity

- Note that best-case complexity is a **function of input size n**
- Think of the best instance of **size n**
- For *insertion-sort*, best instance is sorted (non-increasing) array A of size n
- **Best instance is not an array of size 1**
- Best-case complexity is $\Theta(n)$

insertion-sort(A, n)

A : array of size n

1. **for** $i \leftarrow 1$ **to** $n - 1$ **do**
2. $j \leftarrow i$
3. **while** $j > 0$ and $A[j] < A[j - 1]$ **do**
4. swap $A[j]$ and $A[j - 1]$
5. $j \leftarrow j - 1$

- For *hasNegative*, best instance is array A of size n where $A[0] < 0$
- **Best instance is not an array of size 1**
- Best-case complexity is $\Theta(1)$

hasNegative(A, n)

Input: array A of n integers

for $i \leftarrow 0$ **to** $n - 1$ **do**
 if $A[i] < 0$
 return *True*
return *False*

Best Case Running Time Exercise

- $$T(n) = \begin{cases} c & \text{if } n = 5 \\ cn & \text{otherwise} \end{cases}$$

Algorithm *Mystery*(A, n)

Input: array A of n integers

if $n = 5$

return $A[0]$

else

for $i \leftarrow 1$ **to** $n - 1$ **do**

print($A[i]$)

return

- Best case running time?

a) $\Theta(1)$

b) $\Theta(n)$

Average Case Time Complexity

Average-case complexity of an algorithm: The average-case running time of an algorithm A is function $f: \mathbb{Z}^+ \rightarrow \mathbb{R}$ mapping n (input size) to the *average* running time of A over all instances of size n

$$T_{avg}(n) = \frac{1}{|I_n|} \sum_{I \in I_n} T(I)$$

- Will assume $|I_n|$ is finite
- If all instances are used equally often, $T_{avg}(n)$ gives a good estimate of a running time of an algorithm on average in practice

Average vs. Worst vs. Best Case Time Complexity

- Sometimes, best, worst, average time complexities are the same
- If there is a difference, then best time complexity could be overly optimistic, worst time complexity could be overly pessimistic, and average time complexity is most useful
- However, average case time complexity is usually hard to compute
- Therefore, most often, we use worst time complexity
 - worst time complexity is useful as it gives bound on the maximum amount of time one will have to wait for the algorithm to complete
 - default in this course
 - unless stated otherwise, whenever we mention time complexity, assume we mean worst case time complexity
- Goal in CS240: for a problem, find an algorithm that solves it and whose tight bound on the worst case running time has the smallest growth rate

O -notation and Running Time of Algorithms

- It is important not to try make *comparisons* between algorithms using O -notation
- Suppose algorithm **A** and **B** both solve the same problem
 - **A** has worst-case runtime $O(n^3)$
 - **B** has worst-case runtime $O(n^2)$
- Cannot conclude that **B** is more efficient than **A**
- O -notation is only an upper bound
 - **A** could have worst case runtime $O(n)$
 - while for **B** the bound of $O(n^2)$ could be tight
- To compare algorithms, it is better to use Θ notation

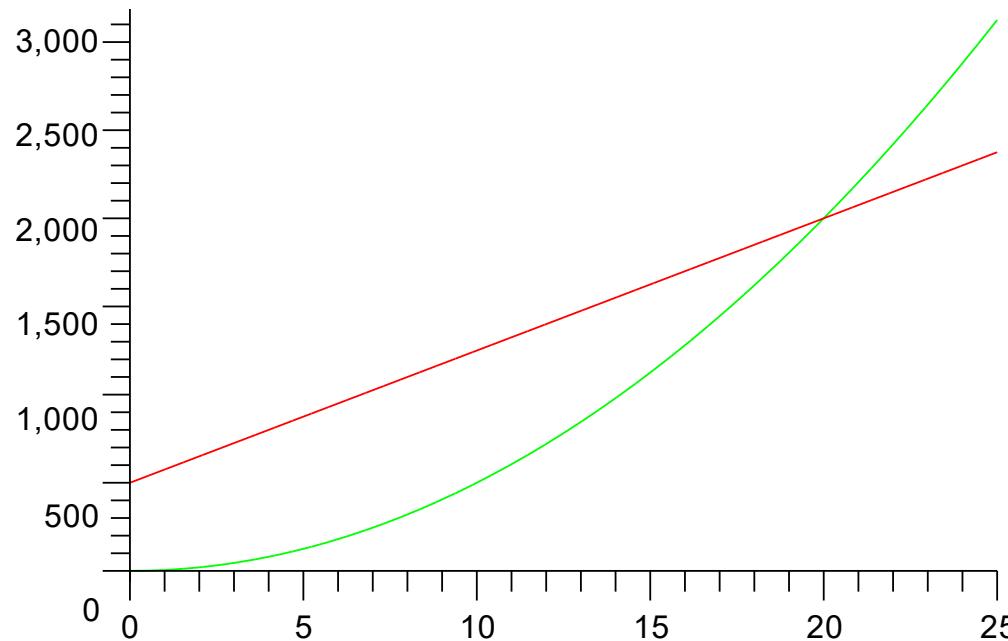
Θ -notation and Running Time of Algorithms

- Have to be careful with Θ -notation
- Suppose algorithm **A** and **B** both solve the same problem
 - **A** has worst-case runtime $\Theta(n^3)$
 - **B** has worst-case runtime $\Theta(n^2)$
- Cannot conclude that **B** is more efficient than **A** for **all inputs**
 - the worst case runtime may be achieved only on some instances

Running Time: Theory and Practice, Multiplicative Constants

- Algorithm **A** has runtime $T(n) = 10000n^2$
- Algorithm **B** has runtime $T(n) = 10n^2$
- Theoretical efficiency of **A** and **B** is the same, $\Theta(n^2)$
- In practice, algorithm **B** will run faster (for most implementations)
 - multiplicative constants matter in practice, given two algorithms with the same growth rate
 - but we are concerned with theory (mostly), and multiplicative constants do not matter in asymptotic analysis

Running Time: Theory and Practice, Small Inputs



- Algorithm A running time $T(n) = 75n + 500$
- Algorithm B running time $T(n) = 5n^2$
- Then B is faster for $n \leq 20$
 - use this fact for practical implementation of recursive sorting algorithms

Theoretical Analysis of Space

- Interested in *auxiliary* space
 - space used in addition to the space used by the input data
- To find *space* used by an algorithm, count total number of auxiliary memory cells ever accessed (for reading or writing or both) by algorithm
 - as a function of input size n
 - space used must always be initialized, although it may not be stated explicitly in pseudocode
- *arrayMax* uses 2 memory cells
 - $T(n) = 2$
 - space efficiency is $O(1)$

```
Algorithm arrayMax( $A$ ,  $n$ )
  currentMax  $\leftarrow A[0]
  for  $i \leftarrow 1$  to  $n - 1$  do
    if  $A[i] > currentMax$  then
      currentMax  $\leftarrow A[i]
  return currentMax$$ 
```

Theoretical Analysis of Space

- arrayCumSum uses $1 + n$ memory cells
 - $T(n) = 1 + n$
 - space efficiency is $O(n)$

Algorithm $\text{arrayCumSum}(A, n)$

Input: array A of n integers

initialize array B of size n to 0

$B[0] \leftarrow A[0]$

for $i \leftarrow 1$ to $n - 1$ do

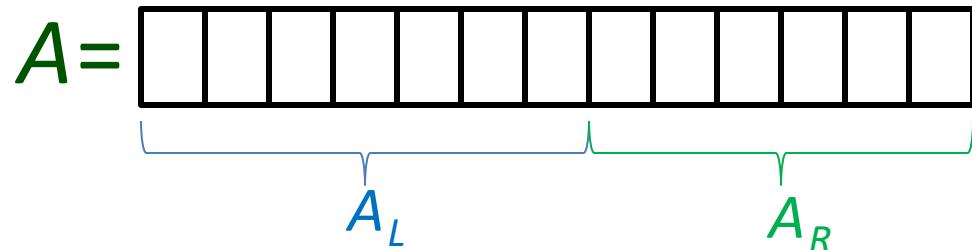
$B[i] \leftarrow B[i - 1] + A[i]$

return B

Outline

- CS240 overview
 - Course objectives
 - Course topics
- **Introduction and Asymptotic Analysis**
 - algorithm design
 - pseudocode
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - **analysis of recursive algorithms**
 - helpful formulas

MergeSort: Overall Idea



Input: Array A of n integers

1: split A into two subarrays

- A_L consists of the first $\left\lceil \frac{n}{2} \right\rceil$ elements
- A_R consists of the last $\left\lceil \frac{n}{2} \right\rceil$ elements

2: *Recursively* run *MergeSort* on A_L and A_R

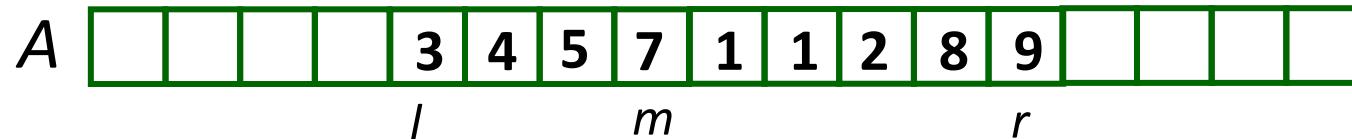
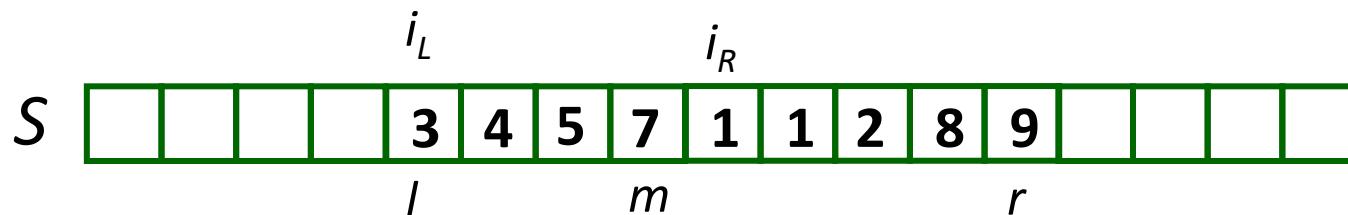
3: After A_L and A_R are sorted, use function *Merge* to merge them into a single sorted array

MergeSort: Pseudo-code

```
merge-sort( $A, n, \ell \leftarrow 0, r \leftarrow n - 1, S \leftarrow \text{NIL}$ )
 $A$ : array of size  $n$ ,  $0 \leq \ell \leq r \leq n - 1$ 
1.  if  $S$  is  $\text{NIL}$   initialize it as array  $S[0..n - 1]$ 
2.  if  $(r \leq \ell)$  then
3.      return
4.  else
5.       $m = \lfloor (r + \ell)/2 \rfloor$ 
6.      merge-sort( $A, n, \ell, m, S$ )
7.      merge-sort( $A, n, m + 1, r, S$ )
8.      merge( $A, \ell, m, r, S$ )
```

- Two tricks to avoid copying/initializing too many arrays
 - recursion uses parameters that indicate the range of the array that needs to be sorted
 - array S used for merging is passed along as parameter

Merging Two Sorted Subarrays: Initialization



Merging Two Sorted Subarrays: Merging Starts

A	3	4	5	7	1	1	2	8	9
-----	---	---	---	---	---	---	---	---	---

k

A	1	4	5	7	1	1	2	8	9
-----	---	---	---	---	---	---	---	---	---

k

A	1	1	5	7	1	1	2	8	9
-----	---	---	---	---	---	---	---	---	---

k

A	1	1	2	7	1	1	2	8	9
-----	---	---	---	---	---	---	---	---	---

k

A	1	1	2	3	1	1	2	8	9
-----	---	---	---	---	---	---	---	---	---

k

A	1	1	2	3	4	1	2	8	9
-----	---	---	---	---	---	---	---	---	---

k

S	3	4	5	7	1	1	2	8	9
-----	---	---	---	---	---	---	---	---	---

i_L

i_R

S	3	4	5	7	1	1	2	8	9
-----	---	---	---	---	---	---	---	---	---

i_L

i_R

S	3	4	5	7	1	1	2	8	9
-----	---	---	---	---	---	---	---	---	---

i_L

i_R

S	3	4	5	7	1	1	2	8	9
-----	---	---	---	---	---	---	---	---	---

i_L

i_R

S	3	4	5	7	1	1	2	8	9
-----	---	---	---	---	---	---	---	---	---

i_L

i_R

S	3	4	5	7	1	1	2	8	9
-----	---	---	---	---	---	---	---	---	---

i_L

i_R

Merging Two Sorted Subarrays: Merging Cont.

A	1	1	2	3	4	1	2	8	9
k									

S	3	4	5	7	1	1	2	8	9
	i_L				i_R				

A	1	1	2	3	4	5	6	2	8	9
k										

S	3	4	5	6	7	1	1	2	8	9
	i_L				i_R					

A	1	1	2	3	4	5	6	7	8	9
k										

S	3	4	5	6	7	1	1	2	8	9
	i_L				i_R					

$i_L > m$, done with the first subarray

A	1	1	2	3	4	5	7	8	9
k									

S	3	4	5	7	1	1	2	8	9
	i_L			i_R					

A	1	1	2	3	4	5	7	8	9
k									

S	3	4	5	7	1	1	2	8	9
	i_L				i_R				

Merge: Pseudocode

Merge(A, ℓ, m, r, S)

$A[0..n - 1]$ is an array, $A[\ell..m]$ is sorted, $A[m + 1..r]$ is sorted

$S[0..n - 1]$ is an array

1. copy $A[\ell..r]$ into $S[\ell..r]$
2. $(i_L, i_R) \leftarrow (\ell, m + 1);$
3. **for** ($k \leftarrow \ell; k \leq r; k++$) **do**
4. **if** ($i_L > m$) $A[k] \leftarrow S[i_R++]$
5. **else if** ($i_R > r$) $A[k] \leftarrow S[i_L++]$
6. **else if** ($S[i_L] \leq S[i_R]$) $A[k] \leftarrow S[i_L++]$
7. **else** $A[k] \leftarrow S[i_R++]$

- *Merge* takes $\Theta(r - l + 1)$ time
 - this is $\Theta(n)$ time for merging n elements

Analysis of MergeSort

- Let $T(n)$ be time to run *MergeSort* on an array of length n

```
merge-sort(A, n, l ← 0, r ← n – 1, S ← NULL)
```

A : array of size n , $0 \leq l \leq r \leq n - 1$

if $r \leq l$ **then** \\\ base case

return

if S is *NULL* initialize it as array $S[0 \dots n - 1]$

$m = \lfloor (l + r)/2 \rfloor$

merge-sort(A, n, l, m, S)

merge-sort($A, n, m + 1, r, S$)

merge(A, l, m, r, S)

c

cn

c

$T\left(\left\lfloor \frac{n}{2} \right\rfloor\right)$

$T\left(\left\lfloor \frac{n}{2} \right\rfloor\right)$

cn

- Recurrence relation for *MergeSort*

$$T(n) = \begin{cases} T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + cn & \text{if } n > 1 \\ c & \text{if } n = 1 \end{cases}$$

Analysis of MergeSort

- Recurrence relation for *MergeSort*

$$T(n) = \begin{cases} T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + cn & \text{if } n > 1 \\ c & \text{if } n = 1 \end{cases}$$

- *Sloppy recurrence* with floors and ceilings removed

$$T(n) = \begin{cases} 2T\left(\frac{n}{2}\right) + cn & \text{if } n > 1 \\ c & \text{if } n = 1 \end{cases}$$

- Exact and sloppy recurrences are *identical* when n is a power of 2
- Recurrence easily solved when $n = 2^j$

Visual proof via Recursion Tree

$$T(n) = \begin{cases} 2T\left(\frac{n}{2}\right) + \textcolor{red}{c}n & \text{if } n > 1 \\ c & \text{if } n = 1 \end{cases}$$

tree levels #nodes

0

20

1

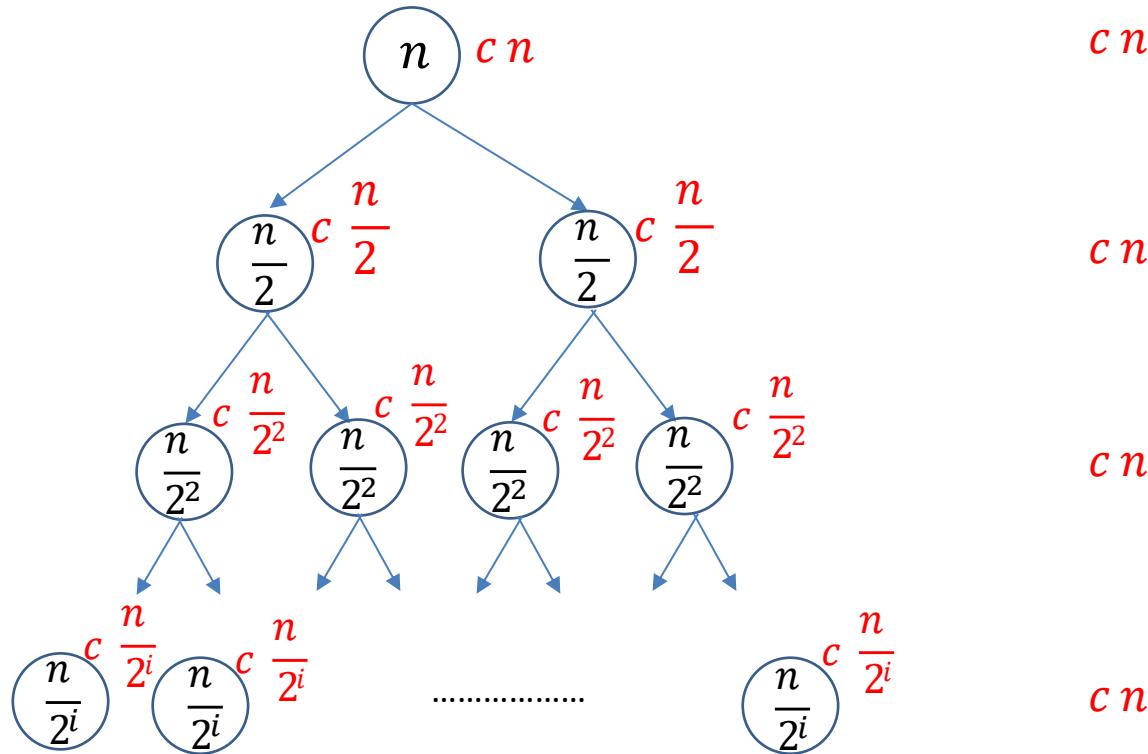
21

2

2²

i

2^l



- Stop recursion when node size is 1 $\Rightarrow \frac{n}{2^i} = 1 \Rightarrow n = 2^i \Rightarrow i = \log n$
- cn operations on each tree level, $\log n$ levels, total time is $cn \log n \in \Theta(n \log n)$

Analysis of MergeSort

- Can show $T(n) \in \Theta(n \log n)$ for all n by analyzing exact (not sloppy) recurrence
 - sloppy recurrence is good enough for this course

Explaining Solution of a Problem

- For Merge-sort design, we had four steps
 1. describe the overall idea
 2. give pseudocode or detailed description
 3. argue correctness
 - key ingredients, no need for a formal proof
 - sometimes obvious enough from idea-description
 4. analyze runtime
- Follow these 4 steps when asked to ‘solve a problem’

Some Recurrence Relations

Recursion	resolves to	example
$T(n) \leq T(n/2) + O(1)$	$T(n) \in O(\log n)$	binary-search
$T(n) \leq 2T(n/2) + O(n)$	$T(n) \in O(n \log n)$	merge-sort
$T(n) \leq 2T(n/2) + O(\log n)$	$T(n) \in O(n)$	heapify (*)
$T(n) \leq cT(n-1) + O(1)$ for some $c < 1$	$T(n) \in O(1)$	avg-case analysis (*)
$T(n) \leq 2T(n/4) + O(1)$	$T(n) \in O(\sqrt{n})$	range-search (*)
$T(n) \leq T(\sqrt{n}) + O(\sqrt{n})$	$T(n) \in O(\sqrt{n})$	interpol. search (*)
$T(n) \leq T(\sqrt{n}) + O(1)$	$T(n) \in O(\log \log n)$	interpol. search (*)

- Once you know the result, it is (usually) easy to prove by induction
- You can use these facts without a proof, unless asked otherwise
- Many more recursions, and some methods to solve, in cs341

Outline

- CS240 overview
 - Course objectives
 - Course topics
- **Introduction and Asymptotic Analysis**
 - algorithm design
 - pseudocode
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - **helpful formulas**

Useful Sums

- **Arithmetic**

$$\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2}$$

$$\sum_{i=0}^{n-1} (a + di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2) \text{ if } d \neq 0$$

- **Geometric**

$$\sum_{i=0}^{n-1} 2^i = 2^n - 1$$

$$\sum_{i=0}^{n-1} ar^i = \begin{cases} a \frac{r^n - 1}{r - 1} \in \Theta(r^{n-1}) & \text{if } r > 1 \\ na \in \Theta(n) & \text{if } r = 1 \\ a \frac{1 - r^n}{1 - r} \in \Theta(1) & \text{if } 0 < r < 1 \end{cases}$$

- **Harmonic**

$$\sum_{i=1}^n \frac{1}{i} = \ln n + \gamma + o(1) \in \Theta(\log n)$$

- **A few more**

$$\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6} \in \Theta(1)$$

$$\sum_{i=1}^n i^k \in \Theta(n^{k+1}) \text{ for } k \geq 0$$

$$\sum_{i=1}^{\infty} \frac{i}{2^i} = \in \Theta(1)$$

$$\sum_{i=0}^{\infty} ip(1-p)^{i-1} = \frac{1}{p} \quad \text{for } 0 < p < 1$$

- You can use these without a proof, unless asked otherwise

Useful Math Facts

Logarithms:

- $y = \log_b(x)$ means $b^y = x$. e.g. $n = 2^{\log n}$.
- $\log(x)$ (in this course) means $\log_2(x)$
- $\log(x \cdot y) = \log(x) + \log(y)$, $\log(x^y) = y \log(x)$, $\log(x) \leq x$
- $\log_b(a) = \frac{\log_c a}{\log_c b} = \frac{1}{\log_a(b)}$, $a^{\log_b c} = c^{\log_b a}$
- $\ln(x)$ = natural log = $\log_e(x)$, $\frac{d}{dx} \ln x = \frac{1}{x}$

Factorial:

- $n! := n(n-1)(n-2) \cdots 2 \cdot 1 =$ # ways to permute n elements
- $\log(n!) = \log n + \log(n-1) + \cdots + \log 2 + \log 1 \in \Theta(n \log n)$

Probability:

- $E[X]$ is the expected value of X .
- $E[aX] = aE[X]$, $E[X + Y] = E[X] + E[Y]$ (linearity of expectation)