
Module 1: Introduction and Asymptotic Analysis

CS 240 – Data Structures and Data Management

M. Petrick and O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science,
University of Waterloo

Winter 2026

Outline

▪ CS240 overview
▪ course objectives

▪ course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design

▪ pseudocode

▪ measuring efficiency

▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms

▪ helpful formulas

Outline

▪ CS240 overview
▪ course objectives

▪ course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design

▪ pseudocode

▪ measuring efficiency

▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms

▪ helpful formulas

▪ Computer Science is mostly about problem solving
▪ write program that converts given input to expected output

▪ When first learn to program, emphasize correctness
▪ does program output the expected results?

▪ This course is also concerned with efficiency
▪ does program use computer resources efficiently?

▪ processor time, memory space

▪ strong emphasis on mathematical analysis of efficiency

▪ Study efficient methods of storing, accessing, and
organizing large collections of data

▪ typical operations: inserting new data items, deleting data
items, searching for specific data items, sorting

Course Objectives: What is this course about?

Course Objectives: What is this course about?

▪ New abstract data types (ADTs)
▪ how to implement ADT efficiently using appropriate

data structures

▪ New algorithms solving problems in data management
▪ sorting, pattern matching, compression

▪ Algorithms
▪ presented in pseudocode

▪ analyzed using order notation (big-Oh, etc.)

Course Topics

▪ asymptotic (big-Oh) analysis

▪ priority queues and heaps

▪ sorting, selection

▪ binary search trees, AVL trees

▪ skip lists

▪ tries

▪ hashing

▪ quadtrees, kd-trees, range search

▪ string matching

▪ data compression

▪ external memory

Data Structures and
Algorithms

mathematical tool
for efficiency

CS Background

▪ Topics covered in previous courses with relevant sections [Sedgewick]

▪ arrays, linked lists (Sec. 3.2–3.4)

▪ strings (Sec. 3.6)

▪ stacks, queues (Sec. 4.2–4.6)

▪ abstract data types (Sec. 4-intro, 4.1, 4.8–4.9)

▪ recursive algorithms (5.1)

▪ binary trees (5.4–5.7)

▪ basic sorting (6.1–6.4)

▪ binary search (12.4)

▪ binary search trees (12.5)

▪ probability and expectation (Goodrich & Tamassia, Section 1.3.4)

Outline

▪ CS240 overview
▪ Course objectives

▪ Course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design

▪ pseudocode

▪ measuring efficiency

▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms

▪ helpful formulas

Algorithm Design Terminology

▪ Problem: description of input and required output

▪ for example, given an input array, rearrange elements in non-
decreasing order

▪ Problem Instance: one possible input for specified problem

▪ 𝐼 = [5, 2, 1, 8, 2]

▪ Size of a problem instance size(𝐼)

▪ non-negative integer measuring size of instance 𝐼

▪ size([5, 2, 1, 8, 2]) = 5

▪ size([]) = 0

▪ Often input is array, and instance size is usually array size

Algorithm Design Terminology

▪ Algorithm: step-by-step process (can be described in finite
length) for carrying out a series of computations, given an
arbitrary instance 𝐼

▪ Solving a problem: algorithm 𝑨 solves problem 𝚷 if for every
instance 𝐼 of 𝚷, 𝑨 computes a valid output for instance 𝐼 in finite
time

▪ Program: implementation of an algorithm using a
specified computer language

▪ In this course, the emphasis is on algorithms
▪ as opposed to programs or programming

Algorithms and Programs

▪ From problem 𝚷 to program that solves it
1. Algorithm Design: design algorithm(s) that solves 𝚷

2. Algorithm Analysis: assess correctness and efficiency of algorithm(s)

3. Implementation: if acceptable (correct and efficient), implement
algorithms(s)

▪ for each algorithm, multiple implementations are possible

4. If multiple acceptable algorithms/implementations, run experiments to
determine a better solution

▪ CS240 focuses on the first two steps
▪ the main point is to avoid implementing obviously bad algorithms

Outline

▪ CS240 overview
▪ Course objectives

▪ Course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design

▪ pseudocode

▪ measuring efficiency

▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms

▪ helpful formulas

Pseudocode
▪ Pseudocode is a method of communicating algorithm to a human

▪ whereas program is a method of communicating algorithm to a computer

▪ preferred language for describing algorithms

▪ omits obvious details, e.g. variable declarations

▪ sometimes uses English descriptions (swap)

▪ has limited if any error detection, e.g. assumes 𝐴 is initialized

▪ sometimes uses mathematical notation

▪ should use good variable names

Pseudocode Details

▪ Control flow
if … then … [else …]
while … do …
repeat … until …
for … do …
indentation replaces braces

▪ Expressions
← assignment
== equality testing
n2 superscripts and other mathematical formatting allowed

▪ Method declaration
Algorithm method (arg, arg…)
 Input …
 Output …

Algorithm arrayMax(A, n)

 Input: array A of n integers

 Output: maximum element of A

 currentMax  A[0]

 for i  1 to n − 1 do

 if A[i]  currentMax then

 currentMax  A[i]

 return currentMax

Outline

▪ CS240 overview
▪ Course objectives

▪ Course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design

▪ pseudocode

▪ measuring efficiency

▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms

▪ helpful formulas

Efficiency of Algorithms/Programs
▪ Efficiency

▪ Running Time: amount of time program takes to run

▪ Auxiliary Space: amount of additional memory program
requires

▪ additional to the memory needed for the input instance

▪ Primarily concerned with time efficiency in this course

▪ but also look at space efficiency sometimes

▪ same techniques as for time apply to space efficiency

▪ When we say efficiency, assume time efficiency

▪ unless we explicitly say space efficiency

▪ Running time is sometimes called time complexity

▪ Auxiliary space sometimes is called space complexity

Efficiency is a Function of Input
▪ Time (and space) efficiency a program usually depends on the given instance

▪ instance size

▪ instance composition (what is stored in the instance)

Algorithm hasNegative(A, n)

 Input: array A of n integers

 for i  0 to n − 1 do

 if A[i] < 0

 return True

 return False

▪ So we express time or memory efficiency as a function of instances, i.e. 𝑇(𝐼)

𝑇([3, 4]) < 𝑇 ([3, 1, 4, 7,0])
𝑇([3, −𝟏, 4, 7,10]) < 𝑇 ([3, 1, 4])

▪ Deriving 𝑇 𝐼 for each specific instance 𝐼 is impractical

▪ Group all instances of size 𝑛 into set 𝐼𝑛 = { 𝐼 |𝑠𝑖𝑧𝑒 𝐼 = 𝑛}

▪ 𝐼4 is all arrays of size 4

▪ Measure efficiency over the set 𝐼𝑛: 𝑇 𝑛 = “time for instances in 𝐼𝑛”
▪ average over 𝐼𝑛?
▪ smallest time instance in 𝐼𝑛 ?
▪ largest time instance in 𝐼𝑛 ?

Running Time, Option 1: Experimental Studies
▪ Write program implementing the algorithm

▪ Run program with inputs of varying size and
composition

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

T
im

e
 (

m
s
)

Algorithm hasNegative(A, n)

 Input: array A of n integers

 for i  0 to n − 1 do

 if A[i] < 0

 return True

 return False

▪ Shortcomings

▪ implementation may be complicated/costly

▪ timings are affected by many factors

▪ hardware (processor, memory)

▪ software environment (OS, compiler, programming language)

▪ human factors (programmer)

▪ cannot test all inputs, hard to select good sample inputs

Running Time, Option 2: Theoretical Analysis

▪ Does not require implementing the algorithm

▪ Independent of hardware/software environment

▪ Considers all possible input instances

▪ Side note: experimental studies are still useful
▪ especially when theoretical analysis yields no useful results for

deciding between multiple algorithms

Theoretical Analysis: Idealized Computer Model

▪ For theoretical analysis, need an idealized computer model

▪ “run” algorithms on idealized computer model
▪ states explicitly all the assumptions

▪ this allows to understand how to compute running
time and space theoretically

▪ Many possible theoretical models, we use RAM

▪ random access model

Random Access Machine (RAM) Idealized Computer Model

▪ Has a set of memory cells, each cell stores one data item

▪ number, character, reference

▪ memory cells are big enough to hold stored items

▪ Any access to a memory location takes the same constant time

▪ i.e. time is independent of the input size 𝑛

▪ Memory access is an example of a primitive operations

▪ Can run other primitive operations (arithmetic, etc.)

▪ primitive operations take the same constant time

▪ These assumptions may be invalid for a real computer

▪ but makes algorithm analysis easier

CPU

memory cells (unbounded number)

random access (equally fast to all cells)

Theoretical Framework For Algorithm Analysis

▪ Write algorithms in pseudo-code

▪ Run algorithms on idealized computer model

▪ Time efficiency: count # primitive operations
▪ as a function of problem size 𝒏

▪ running time is proportional to number of primitive operations

▪ since all primitive operations take the same constant time

▪ can get complex functions like 99𝑛3 + 8𝑛2 + 43421

▪ hard to compare complex functions

▪ measure time efficiency in terms of growth rate

▪ behaviour of the algorithm as the input gets larger

▪ avoids complex functions and isolates the factor that effects the
efficiency the most (for large inputs)

▪ Space efficiency: count maximum # of memory cells ever in use

▪ This framework makes many simplifying assumptions
▪ makes algorithm analysis easier

Theoretical Analysis of Running time

▪ Pseudocode is a sequence of primitive operations

▪ A primitive operation is
▪ independent of input size

▪ Examples of Primitive Operations
▪ arithmetic: -, +, %, *, mod, round

Algorithm arrayMax(A, n)

 Input: array A of n integers

 Output: maximum element of A

 currentMax  A[0]

 for i  1 to n − 1 do

 if A[i]  currentMax then

 currentMax  A[i]

 return currentMax

Algorithm arrayMax(A, n)

 Input: array A of n integers

 Output: maximum element of A

 currentMax  A[0]

 for i  1 to n − 1 do

 if A[i]  currentMax then

 currentMax  A[i]

 return currentMax

▪ assigning a value to a variable

Algorithm arrayMax(A, n)

 Input: array A of n integers

 Output: maximum element of A

 currentMax  A[0]

 for i  1 to n − 1 do

 if A[i]  currentMax then

 currentMax  A[i]

 return currentMax

▪ indexing into an array

Algorithm arrayMax(A, n)

 Input: array A of n integers

 Output: maximum element of A

 currentMax  A[0]

 for i  1 to n − 1 do

 if A[i]  currentMax then

 currentMax  A[i]

 return currentMax
▪ returning from a method

▪ comparisons, calling subroutine,
entering a loop, breaking, etc.

Algorithm arrayMax(A, n)

 Input: array A of n integers

 Output: maximum element of A

 currentMax  A[0]

 for i  1 to n − 1 do

 if A[i]  currentMax then

 currentMax  A[i]

 return currentMax

▪ To find running time, count the number of primitive operations
▪ as a function of input size 𝒏

Primitive Operation Exercise

▪ 𝑥𝑛 is a primitive operation

a) True

b) False

▪ 𝑛 is the input size

▪ Runtime to compute it depends on input size 𝑛

▪ 𝑥𝑛 = 𝑥 ∙ 𝑥 ∙ ⋯ ∙ 𝑥

▪ there is a faster algorithm, but it still depends on 𝑛

√

𝑛 times

Primitive Operation Exercise

▪ 𝑥100000000000 is a primitive operation

a) True

b) False

▪ 𝑛 is the input size

▪ Runtime to compute it does not depend on input size 𝑛

▪ 𝑥100000000000 = 𝑥 ∙ 𝑥 ∙ ⋯ ∙ 𝑥

√

100000000000 times

▪ To find running time, count the number of primitive operations 𝑇(𝒏)
▪ function of input size 𝒏

Algorithm arraySum(A, n)

 sum  A[0]
 for i  1 to n − 1 do

 sum  sum + A[i]

 { increment counter i }

 return sum

Theoretical Analysis of Running time

operations

2

Theoretical Analysis of Running time

operations

2

Algorithm arraySum(A, n)

 sum  A[0]
 for i  1 to n − 1 do

 sum  sum + A[i]

 { increment counter i }

 return sum

i  1
𝑛 − 1
𝑖 = 1, check 𝑖 ≤ 𝑛 − 1 (go inside loop)
𝑖 = 2, check 𝑖 ≤ 𝑛 − 1 (go inside loop)
…
𝑖 = 𝑛 − 1, check 𝑖 ≤ 𝑛 − 1(go inside loop)
𝑖 = 𝑛, check 𝑖 ≤ 𝑛 − 1 (do not go inside loop)

Total: 2+n

▪ To find running time, count the number of primitive operations 𝑇(𝒏)
▪ function of input size 𝒏

Theoretical Analysis of Running time

operations

2

2 + n

3(n − 1)

2(n − 1)

1

Total: 6n

Algorithm arraySum(A, n)

 sum  A[0]
 for i  1 to n − 1 do

 sum  sum + A[i]

 { increment counter i }

 return sum

▪ To find running time, count the number of primitive operations 𝑇(𝒏)
▪ function of input size 𝒏

▪ Algorithm arraySum executes 𝑻(𝒏) = 6𝒏 primitive operations

▪ On a real computer, primitive operations will have different runtimes

▪ Let 𝑎 = time taken by fastest primitive operation

 𝑏 = time taken by slowest primitive operation

▪ Actual runtime is bounded by two linear functions
 𝑎 6𝒏  actual runtime(𝒏)  𝑏(6𝒏)

▪ Changing hardware/software affects runtime by a multiplicative factor

▪ 𝑎 and will 𝑏 change, but the runtime is always bounded by 𝑐𝑜𝑛𝑠𝑡 ∙ 𝑛

▪ therefore, multiplicative constants are not essential

▪ Want to ignore constant multiplicative factors and say 𝑻 𝒏 = 𝟔𝒏 is
essentially 𝒏

▪ in a theoretically justified way

Theoretical Analysis of Running time: Multiplicative factors

Theoretical Analysis of Running time: Lower Order Terms

≈ 10,000,000,000

▪ Interested in runtime for large inputs (large 𝑛)
▪ datasets keep increasing in size

▪ Consider 𝑻(𝒏) = 𝒏2 + 𝒏

▪ For large 𝒏, fastest growing factor contributes the most

 𝑻(100,000) = 10,000,000,000 + 100,000

▪ Want to ignore lower order terms in a theoretically justified way

▪ Perform analysis for large 𝑛 (or ‘eventual’ behaviour)

▪ this further simplifies analysis
and algorithm comparison 𝑓 𝑛

do not care what happens here

𝑔 𝑛

Theoretical Analysis of Running time

▪ We want
1) ignore multiplicative constant factors

2) focus on behaviour for large 𝑛 (i.e. ignore lower order terms)

▪ This means focusing on the growth rate of the function

▪ Want to say

 𝒇 𝒏 = 10𝒏2 + 100𝒏 has growth rate of 𝒈 𝒏 = 𝒏𝟐

 𝒇 𝒏 = 10𝒏 + 10 has growth rate of 𝒈 𝒏 = 𝒏

▪ Asymptotic analysis gives tools to formally focus on growth rate

▪ To say that function 𝒇(𝒏) has growth rate expressed by 𝒈 𝒏
1) upper bound: asymptotically bound 𝒇(𝒏) from above by 𝒈(𝒏)

2) lower bound: asymptotically bound 𝒇(𝒏) from below by 𝒈(𝒏)

▪ asymptotically means: for large enough 𝑛, ignoring constant
multiplicative factors

Outline

▪ CS240 overview
▪ Course objectives
▪ Course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design
▪ pseudocode
▪ measuring efficiency
▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms
▪ helpful formulas

Order Notation: big-Oh

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

▪ Upper bound: asymptotically bound 𝒇(𝒏) from above by 𝒈 𝒏
▪ 𝒇(𝒏) is running time, is function expressing growth rate 𝒈 𝒏

𝑓 𝑛

𝑛0

do not care what happens here 𝑓 𝑛 ≤ 𝑐𝑔(𝑛)

▪ Need 𝑐 to get rid of multiplicative constant in growth rate

▪ cannot say 5𝑛2≤ 𝑛2, but can say 5𝑛2 ≤ 𝑐𝑛2 for some constant 𝑐

▪ Absolute value not relevant for run-time, but useful in other applications

▪ Unless say otherwise, assume 𝑛 (and 𝑛0) are real numbers

𝑐𝑔 𝑛

a set of
functions

big-Oh Example

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

15 205 100

3,000

2,500

2,000

1,500

1,000

500

0
25

▪ Take 𝑐 = 1, 𝑛0 = 20

▪ many other choices work, such as 𝑐 = 10, 𝑛0 = 30

▪ Conclusion: 𝑓 𝑛 has same or slower growth rate as 𝑔 𝑛

𝑓 𝑛 = 75𝑛 + 500

𝑔 𝑛 = 5𝑛2

𝑛0

Order Notation: big-Oh

▪ Big-O gives asymptotic upper bound

▪ 𝑓 𝑛 ∈ Ο 𝑔 𝑛 means function 𝑓(𝑛) is “bounded” above by function 𝑔(𝑛)

1. eventually, for large enough 𝑛

2. ignoring multiplicative constant

▪ Growth rate of 𝑓(𝑛) is slower or the same as growth rate of 𝑔(𝑛)

▪ Use big-O to upper bound the growth rate of algorithm
▪ 𝑓(𝑛) for running time

▪ 𝑔(𝑛) for growth rate

▪ should choose 𝑔(𝑛) as simple as possible

▪ Saying 𝑓 𝑛 is Ο 𝑔 𝑛 is equivalent to saying 𝑓 𝑛 ∈ Ο 𝑔 𝑛

▪ Ο 𝑔 𝑛 is a set of functions with the same or smaller growth rate as 𝑔 𝑛

𝑓 𝑛

𝑛0

do not care what happens here
𝑓 𝑛 ≤ 𝑐𝑔(𝑛)

𝑔 𝑛𝑐

Order Notation: big-Oh
𝑓 𝑛 ∈ Ο 𝑔 𝑛

if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

3,000

2,500

2,000

1,500

1,000

500

▪ Choose 𝑔(𝑛) as simple as possible

𝑓(𝑛)

𝑔(𝑛)

▪ Previous example: 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 5𝑛2

▪ Simpler function for growth rate: 𝑔 𝑛 = 𝑛2

▪ Can show 𝑓 𝑛 ∈ Ο 𝑔 𝑛 as follows

▪ set 𝑓 𝑛 = 𝑔(𝑛) and solve quadratic equation

▪ intersection point is 𝑛 = 82

82

▪ take 𝑐 = 1, 𝑛0 = 82

Order Notation: big-Oh

▪ Do not have to solve equations

▪ 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 𝑛2

▪ For all 𝑛 ≥ 1

75𝑛 ≤ 75𝑛 ∙ 𝑛

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

75𝑛 > 75𝑛 ∙ 𝑛
= 75𝑛2

Side note: for 0 < 𝑛 < 1

= 75𝑛2

500 ≤ 500 ∙ 𝑛 ∙ 𝑛 = 500𝑛2

75𝑛 + 500 ≤ 75𝑛2 = 575𝑛2

▪ So take 𝑐 = 575, 𝑛0 = 1

+500𝑛2

▪ Therefore, for all 𝑛 ≥ 1

Order Notation: big-Oh

▪ Better (i.e. “tighter”) bound on growth

▪ can bound 𝑓 𝑛 = 75𝑛 + 500 by slower growth than 𝑛2

▪ 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 𝑛

▪ Show 𝑓 𝑛 ∈ Ο 𝑔 𝑛

75𝑛 + 500 ≤ 75𝑛 + 500𝑛 = 575𝑛

for all 𝑛 ≥ 1

▪ So take 𝑐 = 575, 𝑛0 = 1

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 s. t. 𝑓 𝑛

≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

More big-O Examples

▪ Prove that

2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛2

▪ Need to find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

2𝑛2 + 3𝑛 + 11 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

2𝑛2 + 3𝑛 + 11 ≤ 2𝑛2 = 16𝑛2

for all 𝑛 ≥ 1

▪ Take 𝑐 = 16, 𝑛0 = 1

+3𝑛2 +11𝑛2

More big-O Examples

▪ Prove that

2𝑛2 − 3𝑛 + 11 ∈ 𝑂 𝑛2

▪ Need to find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

2𝑛2 − 3𝑛 + 11 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

2𝑛2 − 3𝑛 + 11 ≤ 2𝑛2 = 13𝑛2

for all 𝑛 ≥ 1

▪ Take 𝑐 = 13, 𝑛0 = 1

+11𝑛2− 3𝑛2+3𝑛2+ 0

More big-O Examples

▪ Be careful with logs

▪ Prove that

2𝑛2 log 𝑛 + 3𝑛 ∈ 𝑂 𝑛2 log 𝑛

▪ Need to find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.
2𝑛2 log 𝑛 + 3𝑛 ≤ 𝑐𝑛2 log 𝑛 for all 𝑛 ≥ 𝑛0

2𝑛2 log 𝑛 + 3𝑛 ≤ 2𝑛2 log 𝑛 ≤ 5𝑛2 log 𝑛
for all 𝑛 ≥ 1

▪ Take 𝑐 = 5, 𝑛0 = 2

+3𝑛2 log 𝑛

for all 𝑛 ≥ 2

Algorithm arraySum(A, n)

 sum  A[0]
 for i  1 to n − 1 do

 sum  sum + A[i]

 { increment counter i }

 return sum

▪ To find running time, count the number of primitive operations 𝑇(𝒏)
▪ function of input size 𝒏

▪ Last step: express the running time using asymptotic notation

Theoretical Analysis of Running time

operations

𝑐1

𝑐2𝑛

𝑐3

Total: 𝑐1+𝑐3 + 𝑐2𝑛 which is 𝑂(𝑛)

Algorithm arraySum(A, n)

 sum  A[0]
 for i  1 to n − 1 do

 sum  sum + A[i]

 { increment counter i }

 return sum

Theoretical Analysis of Running time

operations

𝑐𝑛

Total: 𝑐 + 𝑐𝑛 which is 𝑂(𝑛)

𝑐

▪ Distinguishing between 𝑐1 𝑐2 𝑐3 has no influence on asymptotic
running time

▪ can just use on constant 𝑐 throughout

Need for Asymptotic Tight bound

▪ 2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛2

▪ But also 2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛10

▪ this is a true but hardly a useful statement

▪ if I say I have less than a million $ in my pocket, it is a true, but useless
statement

▪ i.e. this statement does not give a tight upper bound

▪ upper bound is tight if it uses the slowest growing function possible

▪ Want an asymptotic notation that guarantees a tight upper bound

▪ For tight bound, also need asymptotic lower bound

Aymptotic Lower Bound

▪ Ω-notation (asymptotic lower bound)

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

▪ 𝑓 𝑛 ∈ Ω 𝑔 𝑛 means function 𝑓(𝑛) is asymptotically bounded

below by function 𝑔(𝑛)

1. eventually, for large enough 𝑛

2. ignoring multiplicative constant

▪ Growth rate of 𝑓(𝑛) is larger or the same as growth rate of 𝑔(𝑛)

▪ 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 , 𝑓(𝑛) ∈ Ω 𝑔(𝑛) ⇒ 𝑓 𝑛 has same growth as 𝑔(𝑛)

𝑐𝑔 𝑛

𝑛0

do not care what happens here
𝑓 𝑛 ≥ 𝑐𝑔(𝑛)

𝑓 𝑛

Asymptotic Lower Bound

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

▪ Prove that 2𝑛2 + 3𝑛 + 11 ∈ Ω 𝑛2

▪ Find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

 2𝑛2 + 3𝑛 + 11 ≥ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

 2𝑛2 + 3𝑛 + 11

▪ Take 𝑐 = 2, 𝑛0 = 0

≥ 2𝑛2 for all 𝑛 ≥ 0

Asymptotic Lower Bound

▪ Prove that
1

2
𝑛2 − 5𝑛 ∈ Ω 𝑛2

▪ to handle absolute value correctly, need to insure 𝑓 𝑛 ≥ 0 for 𝑛 ≥ 𝑛0

▪ Need to find 𝑐 and 𝑛0 s.t.
1

2
𝑛2 − 5𝑛 ≥ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

▪ Unlike before, cannot just drop lower growing term, as
1

2
𝑛2 − 5𝑛 ≤

1

2
𝑛2

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

1

2
𝑛2 − 5𝑛 =

1

4
𝑛2 +

1

4
𝑛2 − 5𝑛

▪ Take 𝑐 =
1

4
, 𝑛0 = 20

▪ 𝑓 𝑛 ≥
1

4
𝑛2 for 𝑛 ≥ 20 ⇒ 𝑓 𝑛 ≥ 0 for 𝑛 ≥ 20

▪ as needed to handle absolute value correctly

=
1

4
𝑛2 +

1

4
𝑛2 − 5𝑛

≥ 0, if 𝑛 ≥ 20

≥
1

4
𝑛2 if 𝑛 ≥ 20

Tight Asymptotic Bound
▪ Θ-notation

 𝑓(𝑛) ∈ Θ 𝑔(𝑛) if there exist constants 𝑐1, 𝑐2 > 0, 𝑛0 ≥ 0 s.t.

 𝑐1 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

▪ 𝑓 𝑛 ∈ Θ 𝑔 𝑛 means 𝑓 𝑛 , 𝑔(𝑛) have equal growth rates

▪ typically 𝑓 𝑛 is complicated, and 𝑔(𝑛) is chosen to be simple

▪ Easy to prove that

 𝑓(𝑛) ∈ Θ 𝑔(𝑛) ⇔ 𝑓(𝑛) ∈ Ο 𝑔(𝑛) and 𝑓(𝑛) ∈ Ω 𝑔(𝑛)

▪ Therefore, to show that 𝑓(𝑛) ∈ Θ 𝑔(𝑛) , it is enough to show

1. 𝑓(𝑛) ∈ Ο 𝑔(𝑛)

2. 𝑓(𝑛) ∈ Ω 𝑔(𝑛)

Tight Asymptotic Bound

▪ Proved previously that

▪ 2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛2

▪ 2𝑛2 + 3𝑛 + 11 ∈ Ω 𝑛2

▪ Thus 2𝑛2+3𝑛 + 11 ∈ Θ 𝑛2

▪ Ideally, should use Θ to determine growth rate of algorithm

▪ 𝑓 𝑛 for running time

▪ 𝑔 𝑛 for growth rate

▪ Sometimes determining tight bound is hard, so big-O is used

Tight Asymptotic Bound

Prove that log𝑏 𝑛 ∈ Θ log 𝑛 for 𝑏 > 1

▪ Find 𝑐1, 𝑐2 > 0, 𝑛0 ≥ 0 s.t. 𝑐1log 𝑛 ≤ log𝑏 𝑛 ≤ 𝑐2log 𝑛 for all 𝑛 ≥ 𝑛0

▪ log𝑏 𝑛 =
log 𝑛
log 𝑏

=
 1

log 𝑏
log 𝑛

▪
1

log 𝑏
log 𝑛 ≤ log𝑏 𝑛 ≤

1

log 𝑏
 log 𝑛

▪ Since 𝑏 > 1, log 𝑏 > 0

▪ Take 𝑐1 = 𝑐2 =
1

log 𝑏
 and 𝑛0

= 1

▪ rarely 𝑐1 = 𝑐2, normally 𝑐1 < 𝑐2

Common Growth Rates

▪ Θ 1 constant

▪ 1 stands for function 𝑓 𝑛 = 1

▪ Θ log 𝑛 logarithmic

▪ Θ 𝑛 linear

▪ Θ 𝑛log 𝑛 linearithmic

▪ Θ 𝑛log𝑘 𝑛 quasi-linear

▪ 𝑘 is constant, i.e. independent of the problem size

▪ Θ 𝑛2 quadratic

▪ Θ 𝑛3 cubic

▪ Θ 2𝑛 exponential

▪ These are listed in increasing order of growth

▪ how to determine which function has a larger order of growth?

How Growth Rates Affect Running Time

▪ How running time affected when problem size doubles (𝑛 → 2𝑛)

▪ 𝑇 𝑛 = 𝑐

▪ 𝑇 𝑛 = 𝑐 log 𝑛

▪ 𝑇 𝑛 = 𝑐𝑛

▪ 𝑇 𝑛 = 𝑐𝑛 log 𝑛

▪ 𝑇 𝑛 = 𝑐𝑛2

▪ 𝑇 𝑛 = 𝑐𝑛3

▪ 𝑇 𝑛 = 𝑐2𝑛

𝑇 2𝑛 = 𝑐

𝑇 2𝑛 = 𝑇 𝑛 + 𝑐

𝑇 2𝑛 = 2𝑇 𝑛

𝑇 2𝑛 = 2𝑇 𝑛 + 2𝑐n

𝑇 2𝑛 = 4𝑇 𝑛

𝑇 2𝑛 = 8𝑇 𝑛

𝑇 2𝑛 =
1

𝑐
𝑇2 𝑛

Strictly Smaller Asymptotic Bound
▪ 𝑓 𝑛 = 2𝑛2+3𝑛 + 11 ∈ Θ 𝑛2

▪ How to say 𝑓 𝑛 is grows slower than 𝑔 𝑛 = 𝑛3?

▪ o-notation [asymptotically strictly smaller]

 𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a
constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

▪ Think of 𝑐 as being arbitrarily small

▪ No matter how small 𝑐 is, 𝑐 ⋅ 𝑔(𝑛) is eventually larger than 𝑓 𝑛

▪ Meaning: 𝑓 grows slower than 𝑔, or growth rate of 𝑓 is less than growth rage of 𝑔

𝑓 𝑛

𝑔 𝑛 0.1𝑔 𝑛 0.01𝑔 𝑛 0.00000001𝑔 𝑛

▪ Useful for certain statements

▪ there is no general-purpose sorting algorithm with run-time 𝑜(𝑛 log 𝑛)

Big-Oh vs. Little-o

▪ Little-o, means 𝑓 grows slower than 𝑔

 𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a

constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

▪ Big-Oh, means 𝑓 grows at the same rate or slower than 𝑔

 𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

▪ Main difference is the quantifier for 𝑐: exists vs. any
▪ for big-Oh, you can choose any 𝑐 you want

▪ for little-o, you are given 𝑐, it can be arbitrarily small

▪ in proofs for little-o, 𝑛0 will normally depend on 𝑐, so it is really a
function 𝑛0(𝑐)

▪ 𝑛0(𝑐) must be a constant with respect to 𝑛

Big-Oh vs. Little-o

▪ Little-o, means 𝑓 grows slower than 𝑔

 𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a

constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

▪ Big-Oh, means 𝑓 grows at the same rate or slower than 𝑔

 𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 s. t. 𝑓 𝑛

≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

▪ Main difference is the quantifier for 𝑐: exists vs. any
▪ for big-Oh, you can choose any 𝑐 you want

▪ for little-o, you are given 𝑐, it can be arbitrarily small

▪ in proofs for little-o, 𝑛0 will normally depend on 𝑐, so it is really a
function 𝑛0(𝑐)

▪ 𝑛0(𝑐) must be a constant with respect to 𝑛

𝑓 𝑛

𝑔 𝑛 0.1𝑔 𝑛 0.01𝑔 𝑛 0.00000001𝑔 𝑛

Strictly Smaller Proof Example
𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any 𝑐 > 0, there exists 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

Prove that 5𝑛 ∈ 𝑜 𝑛2

▪ Given 𝑐 > 0 need to find 𝑛0 s.t.

5𝑛 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0 ⇔
divide both sides by 𝑛

5 ≤ 𝑐𝑛 for all 𝑛 ≥ 𝑛0

𝑛 ≥
5

𝑐

⇔
solve for 𝑛

▪ Therefore, 5𝑛 ≤ 𝑐𝑛2 for 𝑛 ≥
5

𝑐

▪ Take 𝑛0 =
5

𝑐

▪ 𝑛0
is a function of 𝑐

▪ if you have your proof something like 𝑛0 =
5𝑛

𝑐
, the proof is wrong

▪ 𝑛0
cannot depend on 𝑛

[solve for 𝑛 in terms of 𝑐]

Strictly Smaller Proof Example
𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any 𝑐 > 0, there exists 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

Prove that 5𝑛 + 10𝑛4 ∈ 𝑜 𝑛5

▪ Given 𝑐 > 0 need to find 𝑛0 s.t.

5𝑛 + 10𝑛4 ≤ 𝑐𝑛5 for all 𝑛 ≥ 𝑛0
[difficult to solve for 𝑛 in terms of 𝑐]

▪ First derive simple upper bound

5𝑛 + 10𝑛4 ≤ 15𝑛4 for all 𝑛 ≥ 1

▪ Solve for 𝑛 in terms of 𝑐 for the simple upper bound

15𝑛4 ≤ 𝑐𝑛5 for all 𝑛 ≥ 𝑛0

𝑛 ≥ 15/𝑐

▪ Combine: 5𝑛 + 10𝑛4 ≤ 15𝑛4

▪ Take 𝑛0 =max 15/𝑐, 1

≤ 𝑐𝑛5 for all 𝑛 ≥
15

𝑐
for all 𝑛 ≥ 1

Strictly Larger Asymptotic Bound

▪ ω-notation

𝑓 𝑛 ∈ ω(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a
constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

▪ think of 𝑐 as being arbitrarily large

▪ Meaning: 𝑓 grows much faster than 𝑔

Strictly Larger Asymptotic Bound

▪ 𝑓 𝑛 ∈ ω(𝑔 𝑛) if for any constant 𝑐 > 0, there is constant 𝑛0 ≥ 0
s.t. 𝑓 𝑛 ≥ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

▪ Given 𝑐 > 0 need to find 𝑛0 s.t.

𝑔(𝑛) ≤ 𝑐𝑓(𝑛) for all 𝑛 ≥ 𝑛0

1

𝑐
𝑔 𝑛 ≤ 𝑓 𝑛 for all 𝑛 ≥ 𝑛0

▪ Claim: 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⇒ 𝑔 𝑛 ∈ 𝑜 𝑓 𝑛

Proof:

⇔
divide both sides by 𝑐

▪ Since 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 , for any constant, in particular for

constant
1

𝑐
 there is 𝑚0 s.t.

𝑓 𝑛 ≥
1

𝑐
𝑔(𝑛) for all 𝑛 ≥ 𝑚0𝑓 𝑛 ≥

1

𝑐
𝑔(𝑛)

1

𝑐
𝑔 𝑛 ≤ 𝑓(𝑛)

▪ 𝑛0 = 𝑚0 and we are done!

Limit Theorem for Order Notation
▪ So far had proofs for order notation from the first principles

▪ i.e. from the definition

Limit theorem for order notation

▪ Suppose for all 𝑛 ≥ 𝑛0, 𝑓(𝑛) > 0, 𝑔(𝑛) > 0 and L = lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛

▪ Then 𝑓 𝑛 ∈

𝑜 𝑔 𝑛 𝑖𝑓 𝐿 = 0

Θ 𝑔 𝑛 𝑖𝑓 0 < 𝐿 < ∞

𝜔 𝑔 𝑛 𝑖𝑓 𝐿 = ∞

▪ Limit can often be computed using l’Hopital’s rule

▪ Theorem gives sufficient but not necessary conditions

▪ Can use theorem unless asked to prove from the first principles

Example 1

Let 𝑓 𝑛 be a polynomial of degree 𝑑 ≥ 0 with 𝑐𝑑 > 0

𝑓 𝑛 = 𝑐𝑑𝑛𝑑 +𝑐𝑑−1 𝑛𝑑−1 + ⋯ + 𝑐1 𝑛 + 𝑐0

Then 𝑓 𝑛 ∈ Θ 𝑛𝑑

Proof:

lim
𝑛→∞

𝑓(𝑛)

𝑛𝑑
= lim
𝑛→∞

𝑐𝑑𝑛𝑑

𝑛𝑑
+

𝑐𝑑−1𝑛𝑑−1

𝑛𝑑
+ ⋯ +

𝑐0

𝑛𝑑

= lim
𝑛→∞

𝑐𝑑𝑛𝑑

𝑛𝑑 + lim
𝑛→∞

𝑐𝑑−1𝑛𝑑−1

𝑛𝑑
lim

𝑛→∞

𝑐0

𝑛𝑑+ ⋯ +

= 0 = 0

= 𝑐𝑑 > 0

= 𝑐d

Example 2

▪ Compare growth rates of log 𝑛 and 𝑛

lim
𝑛→∞

log 𝑛

𝑛
= lim

 𝑛→∞

ln 𝑛
ln 2

𝑛
= lim

 𝑛→∞

1
ln 2 ⋅ 𝑛

1

L’Hopital rule

= 0 = lim
 𝑛→∞

1

𝑛 ⋅ ln 2

▪ log 𝑛 ∈ 𝑜(𝑛)

Example 3
▪ Prove log 𝑛 𝑎 ∈ o(𝑛𝑑), for any (big) 𝑎 > 0, (small) 𝑑 > 0

▪ log 𝑛 1000000 ∈ o(𝑛0.0000001)

1) Prove (by induction):

lim
𝑛→∞

lnk 𝑛

𝑛
= 0 for any integer 𝑘

▪ Base case 𝑘 = 1 is proven on previous slide

▪ Inductive step: suppose true for 𝑘 − 1

▪ lim
𝑛→∞

lnk 𝑛

𝑛
= = 𝑘 lim

𝑛→∞

 𝑙𝑛𝑘−1𝑛

𝑛
= 0

L’Hopital rule

lim
𝑛→∞

1
𝑛

𝑘 𝑙𝑛𝑘−1𝑛

1

2) Prove lim
𝑛→∞

lna 𝑛

𝑛𝑑 = 0

▪ lim
𝑛→∞

lna 𝑛

𝑛𝑑 = lim
𝑛→∞

ln𝑎/𝑑 𝑛

𝑛

𝑑

≤ lim
𝑛→∞

ln 𝑎/𝑑 𝑛

𝑛

𝑑

= 0

3) Finally lim
𝑛→∞

log 𝑛 𝑎

𝑛𝑑 = lim
𝑛→∞

ln 𝑛
𝑙𝑛2

𝑎

𝑛𝑑 =
1

𝑙𝑛2

𝑎

lim
𝑛→∞

ln 𝑛 𝑎

𝑛𝑑
= 0

Example 4
▪ Sometimes limit does not exist, but can prove from first principles

▪ Let 𝑓(𝑛) = 𝑛(2 + sin
𝑛𝜋

2
)

▪ Prove that 𝑓(𝑛) is Θ(𝑛)

𝑓(𝑛)

𝑛

3𝑛

Example 4

▪ Let 𝑓(𝑛) = 𝑛(2 + sin
𝑛𝜋

2
), prove that 𝑓(𝑛) is Θ(𝑛)

▪ Proof
−1 ≤ 𝑠𝑖𝑛(any number) ≤ 1

𝑛(2−1) ≤ 𝑓 𝑛

sin
𝑛𝜋

2
)

𝑓(𝑛) ≤ 𝑛(2 + 1) = 3𝑛

sin
𝑛𝜋

2
)

𝑛 = for all 𝑛 ≥ 0

for all 𝑛 ≥ 0

▪ Use 𝑐1 = 1, 𝑐2 = 3, 𝑛0 = 0

Example 5

▪ Let 𝑓(𝑛) = 𝑛(1 + sin
𝑛𝜋

2
), prove that 𝑓(𝑛) is not Ω(𝑛)

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

𝑐𝑛

𝑛0

𝑓(𝑛)

𝑚

▪ Many points do not satisfy 𝑓 𝑛 ≥ 𝑐𝑛 for 𝑛 ≥ 𝑛0, but easiest to use

zero-valued one for the formal proof

Example 5

▪ Let 𝑓(𝑛) = 𝑛(1 + sin
𝑛𝜋

2
)

▪ Prove that 𝑓(𝑛) is not Ω(𝑛)

▪ Proof: (by contradiction)

▪ suppose 𝑓 𝑛 is Ω 𝑛

▪ then ∃ 𝑛0 ≥ 0 and 𝑐 > 0 s.t. 𝑓 𝑛 ≥ 𝑐𝑛 for 𝑛 ≥ 𝑛0

▪ [for contradiction, will find 𝑚 ≥ 𝑛0 s.t. 0 = 𝑓 𝑚]

 𝑛(1 + sin 𝑛𝜋/2)≥ 𝑐𝑛 for all 𝑛 ≥ 𝑛0

 (1 + sin 𝑛𝜋/2)≥ 𝑐 for all 𝑛 ≥ 𝑛0sin 𝑛𝜋/2

𝑚𝑛0

need to make this -1 for contradiction for some 𝑚 ≥ 𝑛0

▪ need
𝑚𝜋

2
=

3𝜋

2
+ 2𝜋𝑖 for some integer 𝑖 and 𝑚 ≥ 𝑛0

▪ need 𝑚 = 3 + 4𝑖 for some integer 𝑖 and 𝑚 ≥ 𝑛0

▪ take 𝑚 = 3 + 4 𝑛0 > 𝑛0

⇔

⇔

Order notation Summary

▪ 𝑓(𝑛) ∈ Θ 𝑔(𝑛) : growth rates of 𝑓 and 𝑔 are the same

▪ 𝑓(𝑛) ∈ o(𝑔 𝑛): growth rate of 𝑓 is less than growth rate of 𝑔

▪ 𝑓(𝑛) ∈ ω 𝑔 𝑛 : growth rate of 𝑓 is greater than growth rate of 𝑔

▪ 𝑓(𝑛) ∈ O 𝑔 𝑛 : growth rate of 𝑓 is the same or less than growth rate of 𝑔

▪ 𝑓(𝑛) ∈ Ω(𝑔 𝑛): growth rate of 𝑓 is the same or greater than growth rate of 𝑔

Relationship between OrderNotations

One can prove the following relationships

▪ 𝑓 𝑛 ∈ Θ 𝑔 𝑛 ⇔ 𝑔 𝑛 ∈ Θ 𝑓 𝑛

▪ 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ⇔ 𝑔 𝑛 ∈ Ω 𝑓 𝑛

▪ 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇔ 𝑔 𝑛 ∈ 𝜔 𝑓 𝑛

▪ 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇒ 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛

▪ 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇒ 𝑓 𝑛 ∉ Ω 𝑔 𝑛

▪ 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⇒ 𝑓 𝑛 ∈ Ω 𝑔 𝑛

▪ 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⇒ 𝑓 𝑛 ∉ 𝑂 𝑔 𝑛

Algebra of Order Notations (1)

▪ The following rules are easy to prove [exercise]

1. Identity rule: 𝑓 𝑛 ∈ Θ 𝑓 𝑛

2. Transitivity

▪ if 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 then 𝑓 𝑛 ∈ 𝑂 ℎ 𝑛

▪ if 𝑓 𝑛 ∈ Ω 𝑔 𝑛 and 𝑔 𝑛 ∈ Ω ℎ 𝑛 then 𝑓 𝑛 ∈ Ω ℎ 𝑛

▪ if 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑜 ℎ 𝑛 then 𝑓 𝑛 ∈ 𝑜 ℎ 𝑛

Algebra of Order Notations (2)

3. Maximum rules

 Suppose that 𝑓 𝑛 > 0 and 𝑔 𝑛 > 0 for all 𝑛 ≥ 𝑛0, then

a) 𝑓 𝑛 + 𝑔 𝑛 ∈ Ω 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

b) 𝑓 𝑛 + 𝑔 𝑛 ∈ 𝑂 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

𝑓 𝑛 + 𝑔 𝑛 =

𝑓 𝑛 + 𝑔 𝑛 ≥a)

𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛 + 𝑚𝑖𝑛 𝑓 𝑛 , 𝑔 𝑛

≤ 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛 + 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

= 2𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

b)

Proof:

𝑚𝑎𝑥 𝑓, 𝑔 (𝑛) = ቊ
𝑓(𝑛) if 𝑓 𝑛 > 𝑔(𝑛)
𝑔(𝑛) otherwise

𝑓 𝑛

𝑔 𝑛
max{𝑓,g} 𝑛

either 𝑓 𝑛 or 𝑔 𝑛 =
function positivity

▪ Usage: 𝑛2 + log 𝑛 ∈ Θ 𝑛2

Abuse of Order Notation
▪ Normally, say 𝑓 𝑛 ∈ Θ 𝑔 𝑛 because Θ 𝑔 𝑛 is a set

▪ Sometimes it is convenient to abuse notation
▪ 𝑓 𝑛 = 200𝑛2 + Θ 𝑛

▪ 𝑓 𝑛 is 200𝑛2 plus a term with linear growth rate

▪ nicer to read than 200𝑛2 + 30𝑛 + log 𝑛

▪ does not hide the constant term 200, unlike if we said 𝑂(𝑛2)

▪ 𝑓 𝑛 = 𝑛2 + 𝑜 1

▪ 𝑓 𝑛 is 𝑛2 plus a vanishing term (term goes to 0)

▪ example: 𝑓 𝑛 = 𝑛2 + 1/𝑛

▪ Use these sparingly, typically only for stating final result

▪ But avoid arithmetic with asymptotic notation, can go very wrong

▪ Instead, replace Θ 𝑔(𝑛) by 𝑐 ∙ 𝑔(𝑛)
▪ still sloppy, but less dangerous

▪ if 𝑓 𝑛 ∈ Θ 𝑔 𝑛 , more accurate statement is 𝑐 ∙ 𝑔 𝑛 ≤ 𝑓(𝑛) ≤ 𝑐′ ∙ 𝑔 𝑛 for

large enough 𝑛

Outline

▪ CS240 overview
▪ Course objectives
▪ Course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design
▪ pseudocode
▪ measuring efficiency

▪ analysis of algorithms

▪ analysis of recursive algorithms
▪ helpful formulas

Techniques for Runtime Analysis

▪ Goal: Use asymptotic notation to simplify run-time analysis

▪ Running time of an algorithm depends on the input size 𝑛

▪ Identify primitive operations: these require constant time

▪ Loop complexity expressed as sum of complexities of each iteration

▪ Nested loops: start with the innermost loop and proceed outwards

▪ This gives nested summations

Techniques for Runtime Analysis

▪ Goal: Use asymptotic notation to simplify run-time analysis

▪ Running time of an algorithm depends on the input size 𝑛

▪ Identify primitive operations: these require constant time

▪ Loop complexity expressed as sum of complexities of each iteration

▪ Nested loops: start with the innermost loop and proceed outwards

▪ This gives nested summations

𝑐

Techniques for Algorithm Analysis

▪ Goal: Use asymptotic notation to simplify run-time analysis

▪ Running time of an algorithm depends on the input size 𝑛

▪ Identify primitive operations: these require constant time

▪ Loop complexity expressed as sum of complexities of each iteration

▪ Nested loops: start with the innermost loop and proceed outwards

▪ This gives nested summations

෍
𝑗=𝑖

𝑛

𝑐

Techniques for Algorithm Analysis

▪ Goal: Use asymptotic notation to simplify run-time analysis

▪ Running time of an algorithm depends on the input size 𝑛

▪ Identify primitive operations: these require constant time

▪ Loop complexity expressed as sum of complexities of each iteration

▪ Nested loops: start with the innermost loop and proceed outwards

▪ This gives nested summations

෍
𝑗=𝑖

𝑛

𝑐 ෍
𝑖=1

𝑛

Techniques for Algorithm Analysis

▪ Goal: Use asymptotic notation to simplify run-time analysis

▪ Running time of an algorithm depends on the input size 𝑛

▪ Identify primitive operations: these require constant time

▪ Loop complexity expressed as sum of complexities of each iteration

▪ Nested loops: start with the innermost loop and proceed outwards

▪ This gives nested summations

෍
𝑗=𝑖

𝑛

𝑐 + 𝑐෍
𝑖=1

𝑛

Techniques for Algorithm Analysis

▪ Derived complexity as

𝑐1 + ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐2▪ Some textbooks will write this as

𝑐 + ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

▪ Or even as 1 + ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

1

▪ Now need to work out the sum

Sums: Review

෍
𝑗=1

𝑛

1 = 1

𝑗 = 1 𝑗 = 2

+1

𝑗 = 3

+1

… 𝑗 = 𝑛

+1… = 𝑛

summand

index of
summation

Sums: Review

෍
𝑗=𝑖

𝑛

1 = 1

𝑗 = 𝑖 𝑗 = 𝑖 + 1

+1

… 𝑗 = 𝑛

+1… = 𝑛 − (𝑖 − 1)

terms from 1 to 𝑖 − 1
are missing

= 𝑛 − 𝑖 + 1

Sums: Review

෍
𝑗=𝑖

𝑛

(𝑛 − 𝑒𝑥) =𝑛 − 𝑒𝑥

𝑗 = 𝑖 𝑗 = 𝑖 + 1

+𝑛 − 𝑒𝑥

… 𝑗 = 𝑛

+𝑛 − 𝑒𝑥… = (𝑛 − 𝑒𝑥)(𝑛 − 𝑖 + 1)

Sums: Review

1 + 2 + 3 + 𝑛…𝑆 = ෍
𝑖=1

𝑛

𝑖 =

𝑛 +(𝑛 − 1) +(𝑛 − 2) + 1𝑆 =
…

𝑛 + 1 𝑛 + 1 𝑛 + 1 𝑛 + 1

2𝑆 = 𝑛 + 1 𝑛

𝑆 =
1

2
𝑛 + 1 𝑛

+

Sums: Review

𝑎 + (𝑎 + 1) + 𝑏…𝑆 = ෍
𝑖=𝑎

𝑏

𝑖 =

𝑏 +(𝑏 − 1) + 𝑎
𝑆 =

…

𝑎 + 𝑏 𝑎 + 𝑏 𝑎 + 𝑏

2𝑆 = 𝑎 + 𝑏 (𝑏 − 𝑎 + 1)

𝑆 =
1

2
𝑎 + 𝑏 (𝑏 − 𝑎 + 1)

+

Techniques for Algorithm Analysis

𝑐 + ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

▪ Complexity of algorithm Test1 is Θ 𝑛2

+𝑐 ෍
𝑖=1

𝑛

𝑛= 𝑐 −𝑐 ෍
𝑖=1

𝑛

𝑖 +𝑐 ෍
𝑖=1

𝑛

1

= 𝑐 +𝑐𝑛2−𝑐
𝑛 + 1 𝑛

2
+𝑐𝑛 = 𝑐

𝑛2

2
+ 𝑐

𝑛

2
+ 𝑐

= 𝑐 + ෍
𝑖=1

𝑛

𝑐(𝑛 − 𝑖 + 1) = 𝑐 + 𝑐 ෍
𝑖=1

𝑛

(𝑛 − 𝑖 + 1)

Techniques for Algorithm Analysis

𝑐 + ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

▪ Using Θ-bounds earlier makes final expressions simpler

▪ Complexity of algorithm Test1 is Θ 𝑛2

▪ Can use Θ-bounds earlier, before working out the sum

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

is Θ ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

▪ Therefore, can drop the lower order term and work on

Techniques for Algorithm Analysis

▪ Two general strategies

1. Use Θ-bounds throughout the analysis and obtain Θ-
bound for the complexity of the algorithm

▪ used this strategy on previous slides for Test1 Θ-bound

2. Prove a O-bound and a matching Ω-bound separately
▪ use upper bounds (for O-bounds) and lower bounds (for Ω-bound)

early and frequently

▪ easier because upper/lower bounds are easier to sum

Techniques for Algorithm Analysis

▪ Second strategy: upper bound for Test1

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

▪ Add more iterations to make sum easier to work out

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐 ≤ ෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

𝑐 = ෍
𝑖=1

𝑛

𝑐𝑛 = 𝑐𝑛2= 𝑐 ෍
𝑖=1

𝑛

𝑛

𝒊

𝒋

1 2 𝑛

1

𝑛

Techniques for Algorithm Analysis

▪ Second strategy: upper bound for Test1

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

▪ Add more iterations to make sum easier to work out

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐 ≤ ෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

𝑐 = ෍
𝑖=1

𝑛

𝑐𝑛 = 𝑐𝑛2= 𝑐 ෍
𝑖=1

𝑛

𝑛

upper bound

𝒊

𝒋

1 2 𝑛

1

𝑛

▪ Test1 is 𝑂(𝑛2)

Techniques for Algorithm Analysis
▪ Second strategy: lower bound for Test1

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

▪ Remove iterations to make sum easier to work out

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐 ≥

▪ Test1 is Ω(𝑛2)
𝒊

𝒋

1 2 𝑛

1

𝑛

෍
𝑖=1

𝑛/2

෍
𝑗=1+𝑛/2

𝑛

𝑐 = ෍
𝑖=1

𝑛/2

𝑐
𝑛

2
= 𝑐

𝑛

2

2

𝑛

2

𝑛

2
+ 1

= 𝑐 ෍
𝑖=1

𝑛/2 𝑛

2

Techniques for Algorithm Analysis
▪ Second strategy: lower bound for Test1

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

▪ Remove iterations to make sum easier to work out

▪ Can get the same result without visualization

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐 ≥ ෍
𝑖=1

𝑛/2

෍
𝑗=𝑖

𝑛

𝑐

▪ Test1 is Ω(𝑛2), previously concluded that Test1 is 𝑂(𝑛2)

▪ Therefore Test1 is Θ 𝑛2

≥ ෍
𝑖=1

𝑛/2

෍
𝑗=1+𝑛/2

𝑛

𝑐 = 𝑐
𝑛

2

2

▪ To remove iterations, increase lower or increase upper range bounds, or both

▪ Examples: ≥ ෍
𝑘=𝟐𝟎

𝟖𝟎

𝑐෍
𝑘=10

100

𝑐 ෍
𝑘=𝑖

𝑗

1 ෍
𝑘=𝒊 + 𝟏

𝒋−𝟏

1≥

▪ In our case:

now 𝑖 ≤ 𝑛/2

Techniques for Algorithm Analysis

▪ And then say running time is 𝑐 times the number of iterations

▪ Annoying to carry constants around ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

▪ Running time is proportional to the number of iterations

▪ Can first compute the number of iterations

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

1 =
𝑛2

2
+

𝑛

2
+ 1

Techniques for Algorithm Analysis
▪ Inner while loop

▪ iteration 1: 𝑗 = 0

▪ iteration 2: 𝑗 = 1 ∙ 𝑖

▪ iteration 𝑘: 𝑗 = (𝑘 − 1) ∙ 𝑖

▪ terminate when 𝑘 − 1 ∙ 𝑖 ≥ 𝑖2

▪ 𝑘 ≥ 1 + 𝑖

▪ inner while loop takes (1 + 𝑖)𝑐 time

▪ Outer while loop

▪ iteration 1: 𝑖 = 𝑛

▪ iteration 2: 𝑖 = 𝑛/22−1

▪ iteration 𝑡: 𝑖 = 𝑛/2𝑡−1

▪ terminates when
𝑛

2𝑡−1 < 2

▪ 𝑡 > log 𝑛

▪ Total time, ignoring multiplicative 𝑐

Algorithm Test2(𝑛)

 sum  0

 𝑖 = 𝑛

 while 𝑖 ≥ 2 do

 𝑗 = 0

 while 𝑗 < 𝑖2 do

 sum  sum + 1

 𝑗 = 𝑗 + 𝑖

 𝑖 = 𝑖/2

 return sum

𝑂(1)

෍

𝑡=1

log 𝑛

(1 + 𝑛/2𝑡−1) +𝑛 ෍

𝑡=1

log 𝑛

1/2𝑡= ෍

𝑡=1

log 𝑛

1 = log 𝑛 +𝑛 ෍

𝑡=1

∞

1/2𝑡<

some constant

∈ 𝑂(𝑛)

(more precisely, last iteration is at 𝑡 = log 𝑛 − 1)

Worst Case Time Complexity
▪ Can have different running times on two instances of equal size

▪ Let 𝑇(𝐼) be running time of an algorithm on instance 𝐼

▪ Let 𝐼𝑛 = 𝐼: 𝑆𝑖𝑧𝑒 𝐼 = 𝑛

▪ Worst-case complexity of an algorithm: take the worst 𝐼

▪ Formal definition: the worst-case running time of algorithm A is a
function f : Z+ → R mapping 𝑛 (the input size) to the longest running
time for any input instance of size 𝑛

𝑇𝑤𝑜𝑟𝑠𝑡 𝑛 = max
𝐼𝜖𝐼𝑛

𝑇 𝐼

Worst Case Time Complexity

▪ Worst-case complexity of an algorithm: take worst instance 𝐼

෍
𝑗=1

𝑖

𝑐෍
𝑖=1

𝑛−1

 = ෍
𝑖=0

𝑛−1

𝑐𝑖

= 𝑐 𝑛 − 1 𝑛/2

▪ 𝑇𝑤𝑜𝑟𝑠𝑡 𝑛 = 𝑐 𝑛 − 1 𝑛/2

▪ this is primitive operation count as a function of input size 𝑛

▪ after primitive operation count, apply asymptotic analysis

▪ Θ 𝑛2 or 𝑂 𝑛2 or Ω 𝑛2 are all valid statements about the

worst case running time of insertion-sort

worst 𝐼 is reverse sorted array

Best Case Time Complexity

▪ Best-case complexity of an algorithm: take the best instance I
▪ Formal definition: the best-case running time of an algorithm A is a

function f : Z+ → R mapping 𝑛 (the input size) to the smallest running
time for any input instance of size 𝑛

෍
𝑖=1

𝑛−1

𝑐 = 𝑐(𝑛 − 1)

𝑇𝑏𝑒𝑠𝑡 𝑛 = min
𝐼𝜖𝐼𝑛

𝑇 𝐼

▪ 𝑇𝑏𝑒𝑠𝑡 𝑛 = 𝑐 𝑛 − 1

▪ this is primitive operation count as a function of input size 𝑛

▪ after primitive operation count, apply asymptotic analysis

▪ Θ 𝑛 or 𝑂 𝑛 or Ω 𝑛 are all valid about best case running time

best instance is sorted array

Best Case Time Complexity

▪ For insertion-sort, best instance is sorted
(non-increasing) array 𝐴 of size 𝑛

▪ Best instance is not an array of size 1

▪ Best-case complexity is Θ(𝑛)

▪ Note that best-case complexity is a function of input size 𝑛

▪ Think of the best instance of size 𝑛

▪ For hasNegative, best instance is array 𝐴
of size 𝑛 where 𝐴[0] < 0

▪ Best instance is not an array of size 1

▪ Best-case complexity is Θ(1)
\\\\\\\\\\\

hasNegative(A, n)

 Input: array A of n integers

 for i  0 to n − 1 do

 if A[i] < 0

 return True

 return False

Best Case Running Time Exercise
Algorithm Mystery(A, n)

 Input: array A of n integers

 if 𝑛= 5

 return 𝐴[0]

 else

 for i  1 to n − 1 do

 print(𝐴[𝑖])

 return

▪ Best case running time?

a) Θ 1

b) Θ(𝑛)

𝑛 = 5

𝑐

𝑐𝑛

▪ 𝑇 𝑛 = ቊ
𝑐 if 𝑛 = 5

𝑐𝑛 otherwise

√

Average Case Time Complexity

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is function f : Z+ → R mapping 𝑛 (input size) to
the average running time of A over all instances of size 𝑛

𝑇𝑎𝑣𝑔 𝑛 =
1

𝐼𝑛
෍

𝐼𝜖𝐼𝑛

𝑇 𝐼

▪ Will assume 𝐼𝑛 is finite

▪ If all instances are used equally often, 𝑇𝑎𝑣𝑔 𝑛 gives a good

estimate of a running time of an algorithm on average in
practice

Average vs. Worst vs. Best Case Time Complexity

▪ Sometimes, best, worst, average time complexities are the same

▪ If there is a difference, then best time complexity could be overly
optimistic, worst time complexity could be overly pessimistic, and
average time complexity is most useful

▪ However, average case time complexity is usually hard to compute

▪ Therefore, most often, we use worst time complexity
▪ worst time complexity is useful as it gives bound on the maximum

amount of time one will have to wait for the algorithm to complete

▪ default in this course

▪ unless stated otherwise, whenever we mention time complexity,
assume we mean worst case time complexity

▪ Goal in CS240: for a problem, find an algorithm that solves it and
whose tight bound on the worst case running time has the smallest
growth rate

O-notation and Running Time of Algorithms

▪ It is important not to try make comparisons between algorithms
using 𝑂-notation

▪ Suppose algorithm A and B both solve the same problem

▪ A has worst-case runtime 𝑂(𝑛3)

▪ B has worst-case runtime 𝑂(𝑛2)

▪ Cannot conclude that B is more efficient that A

▪ 𝑂-notation is only an upper bound

▪ A could have worst case runtime 𝑂(𝑛)

▪ while for B the bound of 𝑂(𝑛2) could be tight

▪ To compare algorithms, it is better to use Θ notation

Θ-notation and Running Time of Algorithms

▪ Have to be careful with Θ-notation

▪ Suppose algorithm A and B both solve the same problem

▪ A has worst-case runtime Θ(𝑛3)

▪ B has worst-case runtime Θ(𝑛2)

▪ Cannot conclude that B is more efficient that A for all inputs
▪ the worst case runtime may be achieved only on some instances

Running Time: Theory and Practice, Multiplicative Constants

▪ Algorithm A has runtime 𝑇 𝑛 = 10000𝑛2

▪ Algorithm B has runtime 𝑇 𝑛 = 10𝑛2

▪ Theoretical efficiency of A and B is the same, Θ 𝑛2

▪ In practice, algorithm B will run faster (for most implementations)
▪ multiplicative constants matter in practice, given two algorithms with

the same growth rate

▪ but we are concerned with theory (mostly), and multiplicative
constants do not matter in asymptotic analysis

Running Time: Theory and Practice, Small Inputs

▪ Algorithm A running time 𝑇 𝑛 = 75𝑛 + 500

▪ Algorithm B running time 𝑇 𝑛 = 5𝑛2

▪ Then B is faster for 𝑛 ≤ 20
▪ use this fact for practical implementation of recursive sorting algorithms

15 205 100

3,000

2,500

2,000

1,500

1,000

500

0
25

Theoretical Analysis of Space

Algorithm arrayMax(A, n)

 currentMax  A[0]

 for i  1 to n − 1 do

 if A[i]  currentMax then

 currentMax  A[i]

 return currentMax

▪ Interested in auxiliary space

▪ space used in addition to the space used by the input data

▪ To find space used by an algorithm, count total number of auxiliary memory cells
ever accessed (for reading or writing or both) by algorithm

▪ as a function of input size 𝒏

▪ space used must always be initialized, although it may not be stated explicitly in
pseudocode

Algorithm arrayMax(A, n)

 currentMax  A[0]

 for i  1 to n − 1 do

 if A[i]  currentMax then

 currentMax  A[i]

 return currentMax

▪ arrayMax uses 2 memory cells

▪ 𝑇 𝑛 = 2

▪ space efficiency is 𝑂(1)

Theoretical Analysis of Space

Algorithm arrayCumSum(A, n)

 Input: array A of n integers

 initialize array B of size n to 0

 B[0]  A[0]

 for i  1 to n − 1 do

 B[i]  B[i - 1] + A[i]

 return B

▪ arrayCumSum uses 1 + 𝑛 memory cells

▪ 𝑇 𝑛 = 1 + 𝑛

▪ space efficiency is 𝑂(𝑛)

Algorithm arrayCumSum(A, n)

 Input: array A of n integers

 initialize array B of size n to 0

 B[0]  A[0]

 for i  1 to n − 1 do

 B[i]  B[i - 1] + A[i]

 return B

Outline

▪ CS240 overview
▪ Course objectives
▪ Course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design
▪ pseudocode
▪ measuring efficiency
▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms
▪ helpful formulas

MergeSort: Overall Idea

Input: Array A of 𝑛 integers

1: split A into two subarrays

▪ AL consists of the first
𝑛

2 elements

▪ AR consists of the last
𝑛

2
 elements

2: Recursively run MergeSort on AL and AR

3: After AL and AR are sorted, use function Merge to merge

them into a single sorted array

AL AR

A=

MergeSort: Pseudo-code

▪ Two tricks to avoid copying/initializing too many arrays
▪ recursion uses parameters that indicate the range of the array that needs

to be sorted

▪ array 𝑆 used for merging is passed along as parameter

Merging Two Sorted Subarrays: Initialization

3 4 5 7 1 1 2 8 9A
l m r

l

3 4 5 7 1 1 2 8 9S
m r

iL iR

Merging Two Sorted Subarrays: Merging Starts

3 4 5 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 4 5 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

m r

1 1 5 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

Merging Two Sorted Subarrays: Merging Cont.
m r

1 1 2 3 4 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 7 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 7 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 7 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

iL > m, done with the first subarray

Merge: Pseudocode

▪ Merge takes Θ(𝑟 – 𝑙 + 1) time

▪ this is Θ(𝑛) time for merging 𝑛 elements

Analysis of MergeSort

▪ Recurrence relation for MergeSort

𝑇 𝑛 = ቐ
𝑇

𝑛

2
+ 𝑇

𝑛

2
+ 𝑐 𝑛 if 𝑛 > 1

𝑐 if 𝑛 = 1

▪ Let 𝑇 𝑛 be time to run MergeSort on an array of length 𝑛

𝑇
𝑛

2

𝑐𝑛

𝑐

𝑐

𝑇
𝑛

2
𝑐𝑛

\\ base case

𝑇 𝑛 = ቐ
𝑇

𝑛

2
+ 𝑇

𝑛

2
+ 𝑐 𝑛 if 𝑛 > 1

𝑐 if 𝑛 = 1

merge-sort(𝐴, 𝑛, 𝑙 ← 0, 𝑟 ← 𝑛 − 1, 𝑆 ← 𝑁𝑈𝐿𝐿)

𝐴: array of size 𝑛, 0 ≤ 𝑙 ≤ 𝑟 ≤ 𝑛 − 1

 if 𝑟 ≤ 𝑙 then

 return

 if 𝑆 is 𝑁𝑈𝐿𝐿 initialize it as array 𝑆[0 … 𝑛 − 1]

 𝑚 = (𝑙 + 𝑟)/2

 merge-sort(𝐴, 𝑛, 𝑙, 𝑚, 𝑆)

 merge-sort 𝐴, 𝑛, 𝑚 + 1, 𝑟, 𝑆

 merge(𝐴, 𝑙, 𝑚, 𝑟, 𝑆)

Analysis of MergeSort

▪ Sloppy recurrence with floors and ceilings removed

▪ Exact and sloppy recurrences are identical when 𝑛 is a power of 2

▪ Recurrence easily solved when 𝑛 = 2𝑗

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ 𝑐𝑛 if 𝑛 > 1

𝑐 if 𝑛 = 1

▪ Recurrence relation for MergeSort

𝑇 𝑛 = ቐ
𝑇

𝑛

2
+ 𝑇

𝑛

2
+ 𝑐 𝑛 if 𝑛 > 1

𝑐 if 𝑛 = 1

Visual proof via Recursion Tree 𝑻 𝒏 = ቐ
𝟐𝑻

𝒏

𝟐
+ 𝒄 𝒏 if 𝒏 > 𝟏

𝒄 if 𝒏 = 𝟏

𝑛𝑛

𝑛
𝑛

2
𝑛
𝑛

2

𝑐 𝑛

𝑛
𝑛

22
𝑛
𝑛

22

𝑐
𝑛

2
𝑐

𝑛

2

𝑛
𝑛

22
𝑛
𝑛

22

𝑐
𝑛

22
𝑐

𝑛

22
𝑐

𝑛

22 𝑐
𝑛

22

tree levels

0

1

2

work per level
𝑐 𝑛

𝑐 𝑛

𝑐 𝑛

…
…

…

#nodes

20

21

22

𝑖 2𝑖

▪ Stop recursion when node size is 1 ⇒ 𝑛 = 2𝑖 ⇒ 𝑖 = log 𝑛⇒
𝑛

2𝑖
= 1

𝑛
𝑛

2𝑖 𝑛
𝑛

2𝑖 𝑛
𝑛

2𝑖
………………

𝑐
𝑛

2𝑖 𝑐
𝑛

2𝑖
𝑐

𝑛

2𝑖
𝑐 𝑛

▪ 𝑐𝑛 operations on each tree level, log 𝑛 levels, total time is 𝑐𝑛 log 𝑛 ∈ Θ 𝑛 log 𝑛

Analysis of MergeSort

▪ Can show 𝑇 𝑛 ∈ Θ 𝑛 log 𝑛 for all 𝑛 by analyzing exact (not
sloppy) recurrence

▪ sloppy recurrence is good enough for this course

Explaining Solution of a Problem

▪ For Merge-sort design, we had four steps

1. describe the overall idea

2. give pseudocode or detailed description

3. argue correctness
▪ key ingredients, no need for a formal proof

▪ sometimes obvious enough from idea-description

4. analyze runtime

▪ Follow these 4 steps when asked to ‘solve a problem’

Some Recurrence Relations

▪ Once you know the result, it is (usually) easy to prove by induction

▪ You can use these facts without a proof, unless asked otherwise

▪ Many more recursions, and some methods to solve, in cs341

Outline

▪ CS240 overview
▪ Course objectives

▪ Course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design

▪ pseudocode

▪ measuring efficiency

▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms

▪ helpful formulas

Useful Sums
▪ Arithmetic

෍
𝑖=1

∞ 1

𝑖2 =
𝜋2

6
∈ Θ 1

෍
𝑖=1

𝑛

𝑖𝑘 ∈ Θ 𝑛𝑘+1 for 𝑘 ≥ 0

෍
𝑖=0

∞

𝑖𝑝(1 − 𝑝)𝑖−1 =
1

𝑝
 for 0 < 𝑝 < 1

▪ You can use these without a proof, unless asked otherwise

෍
𝑖=0

𝑛−1

𝑖 =
𝑛(𝑛 − 1)

2

෍
𝑖=0

𝑛−1

2𝑖 = 2𝑛 − 1

▪ A few more

▪ Harmonic σ𝑖=1
𝑛 1

𝑖
= ln 𝑛 + γ + 𝑜(1) ∈ Θ log 𝑛

▪ Geometric

෍
𝑖=1

∞ 𝑖

2𝑖
=∈ Θ 1

෍
𝑖=0

𝑛−1

𝑎𝑟𝑖 =

𝑎
𝑟𝑛 − 1

𝑟 − 1
∈ Θ 𝑟𝑛−1 if 𝑟 > 1

𝑛𝑎 ∈ Θ 𝑛 if 𝑟 = 1

𝑎
1 − 𝑟𝑛

1 − 𝑟
∈ Θ 1 if 0 < 𝑟 < 1

෍
𝑖=0

𝑛−1

𝑎 + 𝑑𝑖 = 𝑛𝑎 +
𝑑𝑛(𝑛 − 1)

2
∈ Θ 𝑛2 if 𝑑 ≠ 0

Useful Math Facts

	Slide 1: Module 1: Introduction and Asymptotic Analysis
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Course Objectives: What is this course about?
	Slide 5: Course Objectives: What is this course about?
	Slide 6: Course Topics
	Slide 7: CS Background
	Slide 8: Outline
	Slide 9: Algorithm Design Terminology
	Slide 10: Algorithm Design Terminology
	Slide 11: Algorithms and Programs
	Slide 12: Outline
	Slide 13: Pseudocode
	Slide 14: Pseudocode Details
	Slide 15: Outline
	Slide 16: Efficiency of Algorithms/Programs
	Slide 17: Efficiency is a Function of Input
	Slide 18: Running Time, Option 1: Experimental Studies
	Slide 19: Running Time, Option 2: Theoretical Analysis
	Slide 20: Theoretical Analysis: Idealized Computer Model
	Slide 21: Random Access Machine (RAM) Idealized Computer Model
	Slide 22: Theoretical Framework For Algorithm Analysis
	Slide 23: Theoretical Analysis of Running time
	Slide 24: Primitive Operation Exercise
	Slide 25: Primitive Operation Exercise
	Slide 26: Theoretical Analysis of Running time
	Slide 27: Theoretical Analysis of Running time
	Slide 28: Theoretical Analysis of Running time
	Slide 29
	Slide 30: Theoretical Analysis of Running time: Lower Order Terms
	Slide 31: Theoretical Analysis of Running time
	Slide 32: Outline
	Slide 33: Order Notation: big-Oh
	Slide 34: big-Oh Example
	Slide 35: Order Notation: big-Oh
	Slide 36: Order Notation: big-Oh
	Slide 37: Order Notation: big-Oh
	Slide 38: Order Notation: big-Oh
	Slide 39: More big-O Examples
	Slide 40: More big-O Examples
	Slide 41: More big-O Examples
	Slide 42: Theoretical Analysis of Running time
	Slide 43: Theoretical Analysis of Running time
	Slide 44: Need for Asymptotic Tight bound
	Slide 45: Aymptotic Lower Bound
	Slide 46: Asymptotic Lower Bound
	Slide 47: Asymptotic Lower Bound
	Slide 48: Tight Asymptotic Bound
	Slide 49: Tight Asymptotic Bound
	Slide 50: Tight Asymptotic Bound
	Slide 51: Common Growth Rates
	Slide 52: How Growth Rates Affect Running Time
	Slide 53: Strictly Smaller Asymptotic Bound
	Slide 54: Big-Oh vs. Little-o
	Slide 55: Big-Oh vs. Little-o
	Slide 56: Strictly Smaller Proof Example
	Slide 57: Strictly Smaller Proof Example
	Slide 58: Strictly Larger Asymptotic Bound
	Slide 59: Strictly Larger Asymptotic Bound
	Slide 60: Limit Theorem for Order Notation
	Slide 61: Example 1
	Slide 62: Example 2
	Slide 63: Example 3
	Slide 64: Example 4
	Slide 65: Example 4
	Slide 66: Example 5
	Slide 67: Example 5
	Slide 68: Order notation Summary
	Slide 69: Relationship between Order Notations
	Slide 70: Algebra of Order Notations (1)
	Slide 71: Algebra of Order Notations (2)
	Slide 72: Abuse of Order Notation
	Slide 73: Outline
	Slide 74: Techniques for Runtime Analysis
	Slide 75: Techniques for Runtime Analysis
	Slide 76: Techniques for Algorithm Analysis
	Slide 77: Techniques for Algorithm Analysis
	Slide 78: Techniques for Algorithm Analysis
	Slide 79: Techniques for Algorithm Analysis
	Slide 80: Sums: Review
	Slide 81: Sums: Review
	Slide 82: Sums: Review
	Slide 83: Sums: Review
	Slide 84: Sums: Review
	Slide 85: Techniques for Algorithm Analysis
	Slide 86: Techniques for Algorithm Analysis
	Slide 87: Techniques for Algorithm Analysis
	Slide 88: Techniques for Algorithm Analysis
	Slide 89: Techniques for Algorithm Analysis
	Slide 90: Techniques for Algorithm Analysis
	Slide 91: Techniques for Algorithm Analysis
	Slide 92: Techniques for Algorithm Analysis
	Slide 93: Techniques for Algorithm Analysis
	Slide 94: Worst Case Time Complexity
	Slide 95: Worst Case Time Complexity
	Slide 96: Best Case Time Complexity
	Slide 97: Best Case Time Complexity
	Slide 98: Best Case Running Time Exercise
	Slide 99: Average Case Time Complexity
	Slide 100: Average vs. Worst vs. Best Case Time Complexity
	Slide 101: O-notation and Running Time of Algorithms
	Slide 102: cap theta-notation and Running Time of Algorithms
	Slide 103: Running Time: Theory and Practice, Multiplicative Constants
	Slide 104: Running Time: Theory and Practice, Small Inputs
	Slide 105: Theoretical Analysis of Space
	Slide 106: Theoretical Analysis of Space
	Slide 107: Outline
	Slide 108: MergeSort: Overall Idea
	Slide 109: MergeSort: Pseudo-code
	Slide 110: Merging Two Sorted Subarrays: Initialization
	Slide 111: Merging Two Sorted Subarrays: Merging Starts
	Slide 112: Merging Two Sorted Subarrays: Merging Cont.
	Slide 113: Merge: Pseudocode
	Slide 114: Analysis of MergeSort
	Slide 115: Analysis of MergeSort
	Slide 116: Visual proof via Recursion Tree
	Slide 117: Analysis of MergeSort
	Slide 118: Explaining Solution of a Problem
	Slide 119: Some Recurrence Relations
	Slide 120: Outline
	Slide 121: Useful Sums
	Slide 122: Useful Math Facts

