Module 1: Introduction and Asymptotic Analysis

CS 240 — Data Structures and Data Management

M. Petrick and O. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science,
University of Waterloo

Winter 2026

Outline

" CS240 overview

= course objectives
= course topics

" |Introduction and Asymptotic Analysis
= algorithm design
= pseudocode
" measuring efficiency
= asymptotic analysis
= analysis of algorithms
= analysis of recursive algorithms
= helpful formulas

Outline

= (5240 overview
= course objectives
= course topics

Course Objectives: What is this course about?

= Computer Science is mostly about problem solving
= write program that converts given input to expected output
= When first learn to program, emphasize correctness
= does program output the expected results?

" This course is also concerned with efficiency

= does program use computer resources efficiently?
= processor time, memory space
= strong emphasis on mathematical analysis of efficiency

= Study efficient methods of storing, accessing, and
organizing large collections of data

= typical operations: inserting new data items, deleting data
items, searching for specific data items, sorting

Course Objectives: What is this course about?

* New abstract data types (ADTs)

= how to implement ADT efficiently using appropriate
data structures

= New algorithms solving problems in data management
= sorting, pattern matching, compression
= Algorithms

" presented in pseudocode
* analyzed using order notation (big-Oh, etc.)

Course Topics

asymptotic (big-Oh) analysis
priority queues and heaps
sorting, selection

binary search trees, AVL trees
skip lists

tries
hashing

guadtrees, kd-trees, range search
string matching
data compression

external memory

mathematical tool
for efficiency

Data Structures and
Algorithms

CS Background

= Topics covered in previous courses with relevant sections [Sedgewick]
= arrays, linked lists (Sec. 3.2-3.4)
= strings (Sec. 3.6)
= stacks, queues (Sec. 4.2—4.6)
= abstract data types (Sec. 4-intro, 4.1, 4.8—4.9)

" recursive algorithms (5.1)

" binary trees (5.4-5.7)
" basic sorting (6.1-6.4)

" binary search (12.4)

" binary search trees (12.5)

= probability and expectation (Goodrich & Tamassia, Section 1.3.4)

Outline

" Introduction and Asymptotic Analysis
= algorithm design

Algorithm Design Terminology

= Problem: description of input and required output

= for example, given an input array, rearrange elements in non-
decreasing order

= Problem Instance: one possible input for specified problem
= [=]5,2,1,8, 2]
= Size of a problem instance size(/)
" non-negative integer measuring size of instance /
" size([5,2,1,8,2]) =5
= size([]) =0

= Often inputis array, and instance size is usually array size

Algorithm Design Terminology

Algorithm: step-by-step process (can be described in finite
length) for carrying out a series of computations, given an
arbitrary instance |

Solving a problem: algorithm A solves problem II if for every
instance [of [I, A computes a valid output for instance I in finite
time

Program: implementation of an algorithm using a

specified computer language

In this course, the emphasis is on algorithms

= 3s opposed to programs or programming

Algorithms and Programs

" From problem II to program that solves it

1. Algorithm Design: design algorithm(s) that solves Il
2. Algorithm Analysis: assess correctness and efficiency of algorithm(s)

3. Implementation: if acceptable (correct and efficient), implement
algorithms(s)

for each algorithm, multiple implementations are possible

4. If multiple acceptable algorithms/implementations, run experiments to
determine a better solution

= (S240 focuses on the first two steps

the main point is to avoid implementing obviously bad algorithms

Outline

" Introduction and Asymptotic Analysis

= pseudocode

Pseudocode

= Pseudocode is a method of communicating algorithm to a human
= whereas program is a method of communicating algorithm to a computer

insertion-sort(A, n)
A: array of size n
fori<1ton—1do
Jj—i
while j > 0 and A[j] < A[j — 1] do
swap A[j] and A[j — 1]
JA=I—1

e

= preferred language for describing algorithms

= omits obvious details, e.g. variable declarations

= sometimes uses English descriptions (swap)

= has limited if any error detection, e.g. assumes A is initialized
= sometimes uses mathematical notation

= should use good variable names

Pseudocode Details

Algorithm arrayMax(A, n)
Input: array A of n integers

= Control flow Output: maximum element of A
if ... then ... [else ...] currentMax < A[0]
while ... do ... fori<—1ton—1do
repeat ... until ... if A[i] > currentMax then
for..do ...

indentation replaces braces currentMax < A[i]

= Expressions return currentMax

< assignment
== equality testing
n? superscripts and other mathematical formatting allowed
= Method declaration
Algorithm method (arg, arg...)
Input ...
Output ...

Outline

" Introduction and Asymptotic Analysis

" measuring efficiency

Efficiency of Algorithms/Programs
= Efficiency
= Running Time: amount of time program takes to run

= Auxiliary Space: amount of additional memory program
requires
= additional to the memory needed for the input instance
" Primarily concerned with time efficiency in this course

= but also look at space efficiency sometimes

= same techniques as for time apply to space efficiency

= When we say efficiency, assume time efficiency

= unless we explicitly say space efficiency
= Running time is sometimes called time complexity

= Auxiliary space sometimes is called space complexity

Efficiency is a Function of Input

" jnstance size

Time (and space) efficiency a program usually depends on the given instance

= instance composition (what is stored in the instance)

Algorithm hasNegative(A, n)
Input: array A of n integers
fori< 0Oton—-1do

if A[i] <O
return True

return False

T([3, 4]) < TI([3,1,4,7,0])
T([3,-1,4,7,10]) < T ([3,1,4])

So we express time or memory efficiency as a function of instances, i.e. T (1)

= Deriving T(I) for each specific instance I is impractical
= Group all instances of size ninto setI,, = {1 |size(I) = n}

= [, isall arrays of size 4

= Measure efficiency over the set I,: T(n) = “time for instances in I,”

= averageover[,?

= smallest time instancein [, ?

= |argest time instancein [, ?

Running Time, Option 1: Experimental Studies

Write program implementing the algorithm ::zz
Run program with inputs of varying size and 2000 _
composition x
~ 6000 - o
Algorithm hasNegative(A, n) ésooo _ :
Input: array A of n integers é’ 4000 - . -
fori< Oton—1do F 3000 - - "
if A[i] <O 2000 - o g
return True 1000 - i
return False o+—E .
Shortcomings 0 >0 _
Input Size
= implementation may be complicated/costly
" timings are affected by many factors
= hardware (processor, memory)
= software environment (OS, compiler, programming language)
= human factors (programmer)

= cannot test all inputs, hard to select good sample inputs

100

Running Time, Option 2: Theoretical Analysis

Does not require implementing the algorithm
Independent of hardware/software environment
Considers all possible input instances

Side note: experimental studies are still useful

= especially when theoretical analysis yields no useful results for
deciding between multiple algorithms

Theoretical Analysis: Idealized Computer Model

" For theoretical analysis, need an idealized computer model

= “run” algorithms on idealized computer model

= states explicitly all the assumptions

u this allows to understand how to compute running
time and space theoretically

= Many possible theoretical models, we use RAM
= random access model

Random Access Machine (RAM) Idealized Computer Model

memory cells (unbounded number)

random access (equally fast to all cells)

CPU

= Has a set of memory cells, each cell stores one data item
= number, character, reference
= memory cells are big enough to hold stored items
= Any access to a memory location takes the same constant time
= j.e.timeis independent of the input size n
= Memory access is an example of a primitive operations
= Can run other primitive operations (arithmetic, etc.)
= primitive operations take the same constant time
= These assumptions may be invalid for a real computer
= but makes algorithm analysis easier

Theoretical Framework For Algorithm Analysis

Write algorithms in pseudo-code
Run algorithms on idealized computer model

Time efficiency: count # primitive operations

= asa function of problem size n

- running time is proportional to number of primitive operations
= since all primitive operations take the same constant time

= can get complex functions like 99n3 + 8n? + 43421
= hard to compare complex functions

" measure time efficiency in terms of growth rate
= behaviour of the algorithm as the input gets larger

= avoids complex functions and isolates the factor that effects the
efficiency the most (for large inputs)

Space efficiency: count maximum # of memory cells ever in use

This framework makes many simplifying assumptions
= makes algorithm analysis easier

Theoretical Analysis of Running time

= Pseudocode is a sequence of primitive operations

= A primitive operation is
= independent of input size

= Examples of Primitive Operations
= arithmetic: -, +, %, *, mod, round
= assigning a value to a variable

= indexing into an array

= comparisons, calling subroutine,
entering a loop, breaking, etc.

Algorithm arrayMax(A, n)
Input: array A of n integers
Output: maximum element of A
currentMax < A[0O]
fori—1ton—1do
if A[i] > currentMax then
currentMax < Ali]

= To find running time, count the number of primitive operations

= as a function of input sizen

Primitive Operation Exercise

" nistheinputsize

= x™is a primitive operation
a) True

b) False

Primitive Operation Exercise

" nistheinputsize

- xlOOOOOOOOOOO

IS @ primitive operation
a) True

b) False

Theoretical Analysis of Running time

* To find running time, count the number of primitive operations T (n)
= function of input size n

Algorithm arraySum(A, n) # operations

sum < A[0] 2
fori<—1ton—1do

sum < sum + Ali]
{ increment counteri }

return sum

Theoretical Analysis of Running time

* To find running time, count the number of primitive operations T (n)
= function of input size n

Algorithm arraySum(A, n) # operations
sum < A[0] 2
fori<1ton—-1do

sum <« sum+A[i] /<1

:) n—1
{increment counter i } i =1, checki <n—1(goinside loop)
return sum [= 2,checki <n —1(goinside loop)

I =n—1,checki <n — 1(go inside loop)
I = n,checki <n —1(do not go inside loop)

Total: 2+n

Theoretical Analysis of Running time

* To find running time, count the number of primitive operations T (n)
= function of input size n

Algorithm arraySum(A, n) # operations
sum <« A[0] 2
fori<1ton—-1do 2 +n

sum <« sum + A[i] 3(n—1)
{ increment counteri } 2(n —1)
return sum 1

Total: 6n

Theoretical Analysis of Running time: Multiplicative factors

Algorithm arraySum executes T(n) = 6n primitive operations
On a real computer, primitive operations will have different runtimes
Let a = time taken by fastest primitive operation

b = time taken by slowest primitive operation

Actual runtime is bounded by two linear functions
a (bn)< actual runtime(n) < b(6n)
Changing hardware/software affects runtime by a multiplicative factor
= a and will b change, but the runtime is always bounded by const - n

= therefore, multiplicative constants are not essential

Want to ignore constant multiplicative factors and say T(n) = 6n is
essentially n

" in atheoretically justified way

Theoretical Analysis of Running time: Lower Order Terms
- Interested in runtime for large inputs (large n)

= datasets keep increasing in size
= Consider T(n) = n”> + n
. For large n, fastest growing factor contributes the most
T(100,000) = 10,000,000,000 + 100,000 =~ 10,000,000,000
. Want to ignore lower order terms in a theoretically justified way

/ (n)

g
do not care what happens here

. Perform analysis for large n (or ‘eventual’ behaviour)

= this further simplifies analysis
and algorithm comparison

Theoretical Analysis of Running time
o We want

1) ignore multiplicative constant factors
2) focus on behaviour for large n (i.e. ignore lower order terms)

= This means focusing on the growth rate of the function
- Want to say

f(n) =10n? + 100n has growth rate of g(n) = n?
f(n) =10n + 10 has growth rateof g(n) =n

= Asymptotic analysis gives tools to formally focus on growth rate

= To say that function f(n) has growth rate expressed by g(n)
1) upper bound: asymptotically bound f(n) from above by g(n)

2) lower bound: asymptotically bound f(n) from below by g(n)

= asymptotically means: for large enough n, ignoring constant
multiplicative factors

Outline

" Introduction and Asymptotic Analysis

= asymptotic analysis

Order Notation: big-Oh

= Upper bound: asymptotically bound f(n) from above by g(n)

u f(n) is running time, is function expressing growth rate g(n)

f(n) € O(g(n)) if there exist constants ¢ > 0 and n, = 0 s.t.
If(n)| <clg(n)| forall n>n,

a set of
functions

do not care what happens here

Cg(y
An)

f(n) <cg(n)

:r""I""I""I""I""

ng

= Need c to get rid of multiplicative constant in growth rate

» cannot say 5n°< n?, but can say 5n?

< CTl for some constant ¢

= Absolute value not relevant for run-time, but useful in other applications

* Unless say otherwise, assume n (and n,) are real numbers

big-Oh Example

f(n) € O(g(n)) if there exist constants ¢ > 0 and n, = 0 s.t.
If(n)| < clg(n)| forall n > n,

3,000 g(n) — 5712
2,000 f(n) = 75n 4+ 500

1,500

1,000

u
o
o

T T T T [T T T T [T T T T [T T T T[T T 7TT]
5 10 15 20 25

o

o b b b b

* Takec =1,n,= 20
" many other choices work, such as c = 10,n, = 30

= Conclusion: f(n) has same or slower growth rate as g(n)

Order Notation: big-Oh E cg(n
E fn)
édo not care what happens here fln) < cg(nz
= Big-O gives asymptotic upperbound_ R Iﬁol o

= f(n) € 0(g(n)) means function f(n) is “bounded” above by function g(n)
1. eventually, for large enoughn
2. ignoring multiplicative constant

= Growth rate of f(n) is slower or the same as growth rate of g(n)

= Use big-O to upper bound the growth rate of algorithm
= f(n) for running time

= g(n) for growth rate
» should choose g(n) as simple as possible

= Saying f(n)is O(g(n)) is equivalent to saying f(n) € O(g(n))

. O(g(n)) is a set of functions with the same or smaller growth rate as g(n)

Order Notation: big-Oh

2,500

.
f (Tl) € O(g (n)) 2,000 - f (n)
if there exist constants ¢ > 0andn; =0 w0 -
s.t. [f(n)] <clgn)| forall n = n, 1000 =

500

* Choose g(n) as simple as possible
= Previous example: f(n) = 75n + 500, g(n) = 5n?
= Simpler function for growth rate: g(n) = n?

» Canshow f(n) € O(g(n)) as follows

» set f(n) = g(n) and solve quadratic equation

" intersection pointisn = 82
" takec = 1,n, = 82

Order Notation: big-Oh

f(n) € 0(g(n)) if there exist constants ¢ > 0 andn, > 0
s.t. [f(n)| < clg(n)| forall n = n,

= Do not have to solve equations
» f(n) =75n+ 500, g(n) =n?
" Foralln>1
75n < 75n-n = 75n?
500<500:-n-n =500n?
= Therefore, foralln > 1

Sidenote:for 0 <n<1
75n >75n - n = 75n2

75n + 500 < 75n? 4500n? = 575n2

* Sotakec =575,n,=1

Order Notation: big-Oh

f(n) € O(g(n)) if there exist constants ¢ > 0andn, = 0 s.t. |f(n)|
< c|g(n)| forall n = n,

= Better (i.e. “tighter”) bound on growth
= can bound f(n) = 75n + 500 by slower growth than n?

» f(n) =75n+4+500, g(n) =n
= Show f(n) € O(g(n))
75n + 500 < 75n 4+ 500n = 575n

foralln > 1

* Sotake c = 575,n, =1

More big-O Examples

" Prove that
2n% 4+ 3n + 11 € 0(n?)
" Need tofind ¢ > 0and ng =0 s.t.
2n% + 3n + 11 < cn? foralln = n,

2n°+3n+11 < 2n* +3n%+11n?¢= 16n?
foralln =1

* Takec =16,n, =1

More big-O Examples

" Prove that
2n? —3n + 11 € 0(n?)
" Need tofind ¢ >0and nyg =0 s.t.
2n* —3n + 11 < cn? foralln = n,

2n“—=3n+11< 2n* 40 +11n°* = 13n?
foralln > 1

" Takec =13,n, =1

More big-O Examples

" Be careful with logs
" Prove that
2n%logn + 3n € 0(n?logn)
" Need tofind ¢ > 0and ng =0 s.t.
2n%logn + 3n < cn?logn foralln > n,

2n”logn + 3n < 2n”logn +3n”logn < 5n2logn
“toralln=>1-

foralln = 2

" Takec = 5,n, =2

Theoretical Analysis of Running time

= To find running time, count the number of primitive operations T'(n)
= function of input size n

= Last step: express the running time using asymptotic notation

Algorithm arraySum(A, n) # operations

sum < A[0] C1
foric—1ton—1do
sum < sum +A[il - c,n

{increment counteri} |

return sum C3

Total: ¢;+c3 + c,n whichis O(n)

Theoretical Analysis of Running time

" Distinguishing between ¢; ¢, c¢3 has no influence on asymptotic
running time

= canjust use on constant ¢ throughout

Algorithm arraySum(A, n) # operations

sum < A[0]
for i « 1tom
o

sum < sum + Ali]
{increment counteri }
return sum

Total: ¢ + cn whichis O(n)

Need for Asymptotic Tight bound

* 2n% +3n+ 11 € 0(n?)
= Butalso2n? + 3n + 11 € 0(n?)

= thisis a true but hardly a useful statement

= if | say | have less than a million S in my pocket, it is a true, but useless
statement

= j.e.this statement does not give a tight upper bound
= upper bound is tight if it uses the slowest growing function possible

= Want an asymptotic notation that guarantees a tight upper bound

= For tight bound, also need asymptotic lower bound

Aymptotic Lower Bound cg(n)

do not care what happens here f(n) =z cg(n) R

jllllwlllwllwllll

= ()-notation (asymptotic lower bound) ny

f(n) € Q(g(n)) if there exist constants ¢ > 0 andn, = 0

s.t. |[f(n)| = clg(n)| forall n = n,

» f(n)€ Q(g(n)) means function f(n) is asymptotically bounded
below by function g(n)

1. eventually, for large enough n

2. ignoring multiplicative constant
* Growth rate of f(n) islarger or the same as growth rate of g(n)
= f(n) € 0(g(n)), f(n) € Q(g(n)) = f(n) has same growth as g(n)

Asymptotic Lower Bound

f(n) € Q(g(n))if Jconstants ¢ >0, ny, =0 s.t. |[f(n)| = clg(n)| for n =n,

= Provethat 2n% + 3n+ 11 € Q(n?)
" Find ¢ >0and nyg =0 s.t.

2n% +3n+ 11 = cn? foralln = n,
m2 +3n 4+ 11 = 2n? foralln >0

" Takec=2,n,=0

Asymptotic Lower Bound

f(n) € Q(g(n))if Jconstants ¢ >0, ny, =0 s.t. |[f(n)| = clg(n)| for n =n,

= Provethat =n2—5n € Q(nz)
2

to handle absolute value correctly, need to insure f(n) = 0 for n = n,

. 1
Need to find cand ny s.t. Enz - 5n > cn? foralln > n,

: : : 1 1
Unlike before, cannot just drop lower growing term, as Enz -5in< Enz

n?% if n>20

N

1 1 1 1 1
_ 2_5 — 2 2 _) 2 _
Zn n 4n +4n 5n —4n +<4n 5n>2

\ J

) >0 if n> 20
. Takeczz,n():ZO

. f(n) zinz forn =20 = f(n) = 0forn = 20

= as needed to handle absolute value correctly

Tight Asymptotic Bound

=" (-notation

f(n) € ©(g(n)) if there exist constants ¢;,c, > 0,n, >0 s.t.

cilgm)| < [f()]| < cxlg(m)| forall n = n,

» f(n) € @(g(n)) means f(n), g(n) have equal growth rates
= typically f(n) is complicated, and g(n) is chosen to be simple
= Easy to prove that
f(n) eB(g(n)) & f(n) € 0(g(n)) and f(n) € Q(g(n))
* Therefore, to show that f(n) € 0(g(n)), it is enough to show
1. f(n) € 0(g(n))
2. f(m) € Qg(n))

Tight Asymptotic Bound

Proved previously that
= 2n% +3n+ 11 € 0(n?)
= 2n? +3n+ 11 € Q(n?)

Thus 2n?43n+ 11 € @(nz)

Ideally, should use © to determine growth rate of algorithm
= f(n) for running time

= g(n) for growth rate
Sometimes determining tight bound is hard, so big-O is used

Tight Asymptotic Bound

Prove that log, n € O(logn) for b > 1

* Find ¢q,¢c5 > 0,n, = 0 st ¢c1logn <log,n < cylogn forall n = n,

. _logn 1
logbn_ logb _logblogn
1
lOgblogn < logbnslogblogn
= Sinceb >1,logb >0
* Takecy =c¢y, = - andn, =1

log b

" rarelyc; = c¢,, normally ¢; < ¢,

Common Growth Rates

= 0(1) constant
= 1 stands for function f(n) = 1
* O(logn) logarithmic
= O(n) linear
» O(nlogn) linearithmic
= O(nloghkn) quasi-linear

= ks constant, i.e. independent of the problem size

= 0(n?) quadratic
= 0(n?) cubic
= Q(2") exponential

= These are listed in increasing order of growth

= how to determine which function has a larger order of growth?

How Growth Rates Affect Running Time

= How running time affected when problem size doubles (n — 2n)

= T(n) =c T(2n) =c

= T(n) =clogn T(2n) =T(n) +c

= T(n) =cn T(2n) = 2T(n)

= T(n) =cnlogn T(2n) = 2T (n) + 2¢n
» T(n) = cn? T(2n) = 4T(n)

» T(n) =cn3 T(2n) = 8T(n)

1
= T(n) =c2" T(2n) = ETZ(n)

Strictly Smaller Asymptotic Bound
f(n) = 2n?+3n+ 11 € 6(n?)
How to say f(n) is grows slower than g(n) = n3?

., 9 01g(m) 0.01g9(n) 0.00000001g(n)

M (n)
o >

= o-notation [asymptotically strictly smaller]

f(n) € o(g(n)) if for any constant ¢ > 0, there exists a
constantn, = 0 s.t. |[f(n)| < c|lg(n)|foralln =n,

= Think of ¢ as being arbitrarily small
= No matter how small cis, ¢ - g(n) is eventually larger than f(n)
= Meaning: f grows slower than g, or growth rate of f is less than growth rage of g
= Useful for certain statements
= there is no general-purpose sorting algorithm with run-time o(n logn)

Big-Oh vs. Little-o

" Big-Oh, means f grows at the same rate or slower than g

f(n) € O(g(n)) if there exist constants ¢ > 0andn, = 0
s.t. [f(n)| < clg(n)| forall n = n,

= Little-o, means f grows slower than g

f(n) € o(g(n)) if for any constant ¢ > 0, there exists a
constantn, = 0 s.t. |[f(n)| < c|g(n)|foralln =n,

= Main difference is the quantifier for c: exists vs. any
= for big-Oh, you can choose any ¢ you want
= for little-o, you are given c, it can be arbitrarily small

= in proofs for little-o, n, will normally depend on ¢, so it is really a
function ny(c)

= n,(c) must be a constant with respect ton

= Big-Oh, m
fn) €

Big-Oh vs. Little-o

Little-o, m

Main diffe

f(n

con

for /

for IMtre—oy—— e arbitrarily small

in proofs for little-o, n, will normally depend on ¢, so it is really a
function ny(c)

= n,(c) must be a constant with respect ton

Strictly Smaller Proof Example

f(n) € o(g(n)) if for any ¢ > 0, there exists ny, = 0 s.t. |f(n)| < c|g(n)| foralln = n,

Prove that 5n € o(nz)

= Givenc > Oneedtofind ny st. [solvefornintermsofc]

divide both_sides by n
2
5n < cn” foralln = ny

5<cn foralln = n, SOlVefén
5

nz=-—
c

5
c

» Therefore, 5n < cn? for n >

5
" Taken, =-

" n,is afunction of ¢

= if you have your proof something like n, = 5711, the proof is wrong

" n,cannot depend onn

Strictly Smaller Proof Example

f(n) € o(g(n)) if for any ¢ > 0, there exists ny, = 0 s.t. |f(n)| < c|g(n)| foralln = n,

Prove that 5n + 10n* € o(n°)
" Givenc¢ > 0 needtofind ny s.t.

5n + 10n* < cn® foralln > n,
[difficult to solve for n in terms of c]

" First derive simple upper bound

5n+ 10n* < 15n* foralln>1
= Solve for n in terms of ¢ for the simple upper bound

15n* < cn® foralln = n,
n=15/c

= Combine: 5n+ 10n* < 15n* < cn® foralln>1 foralln > 1_05
» Take n, =max{15/c, 1}

Strictly Larger Asymptotic Bound

= w-notation

f(n) € w(g(n)) if for any constant ¢ > 0, there exists a
constantn, = 0 s.t. |f(n)| = c|g(n)| foralln = n,

= think of ¢ as being arbitrarily large

= Meaning: f grows much faster than g

Strictly Larger Asymptotic Bound

* f(n) € w(g(n)) if for any constant ¢ > 0, there is constant n, = 0
s.t. |[f(n)]| = c|lg(n)| foralln = n,

= Claim: f(n) € a)(g(n)) = g(n) € o(f(n))

Proof:
" Givenc > 0 needtofind ny s.t.

g(’n) < Cf(’l’l) foralln > ng divide b&hsides by ¢
%g(n) < f(n) foralln = n,
= Since f(n) € w(g(n)), for any constant, in particular for

1 .
constant - thereis my s.t.

f(n) = %g(n) foralln = my

" Ny = mgy and we are done!

Limit Theorem for Order Notation

= So far had proofs for order notation from the first principles

= j.e.from the definition

Limit theorem for order notation

= Suppose forall n =np, f(n) >0, g(n) >0and L = lim £

n-oo g(n
fo(g(n)) if L=20
= Thenf(n) €4 0(g(n)) if0<L<om
ka)(g(n)) if L =o0

" Limit can often be computed using I'Hopital’s rule
= Theorem gives sufficient but not necessary conditions
= Can use theorem unless asked to prove from the first principles

Example 1
Let f(n) be a polynomial of degree d = 0 withc; > 0

fm) =cyn®+cy,_ n% 4+, n+c

Then f(n) € 6(n%)

Proof:
d—1
n c n C
lim £ hm(— +---+—‘C’l)
n—oo nd n—oo n
d—1
Cqn Cq—1N
= lim + -
-0 ()+Aggo < e) n-00

= Cq4 >0

Example 2

= Compare growth rates of logn and n

| Inn 1 1

ogen)

lim 5 — lim In2 _ lim In2-n _ lim

n-oco "N n—-o N l n—oo 1 n-oon - ln 2
L'Hopital rule

* logn € o(n)

Example 3

= Prove (logn)® € o(n?), forany (big)a > 0, (small)d > 0
= (lOng)lo()OOOO = O(nO.OOOOOOI)

1) Prove (by induction):

In¥n

lim
n—-oo N
= Basecase k = 1is proven on previous slide
* [Inductive step: suppose true for k — 1

1

= 0 for any integer k

k-1 —
. In*n , ﬁkln n _ Inf~1n
= lim = lim =k lim =0
n-oo N n—oo 1 N— 00 n
L'Hopital rule
In®n

2) Prove lim =0

e _In%4n Infe/dl 5\
. lim 27 = | lim <\ lim

Nn—oo nd

3) Finally lim (loi:) = lim e
n—>0o n—ooo

Example 4
= Sometimes limit does not exist, but can prove from first principles
" Let f(n) =n(2 + sin nz—n)
" Prove that f(n)is ®(n)

80 3n

60

| f

40

20

Example 4

= Let f(n) = n(2 +sinn7n) ,prove that f(n) is ©(n)

* Proof
—1 < sin(any number) < 1

f(n) < n(2+1)=3n foralln=>0
n=n(2-1) < f(n) foralln = 0

= Usec; = 1,¢, = 3,n, =0

Example 5

f(n) € Q(g(n))if I constants ¢ >0, ny, =0 s.t. |[f(n)| = clg(n)| for n >n,

» Let f(n) = n(1+ sin>), prove that f(n) is not Q(n)
2

50 I

f(n)

/\u/\ u/\\/[\v/\\/ a

n&

N
* Many points do not satisfy f(n) = cn for n = n,, but easiest to use
zero-valued one for the formal proof

Example 5] /\/\ |
" let f(n) = n(1+ sin%n) = /\,/\\/\V. -
" Provethat f(n) is not Q(n) o

= Proof: (by contradiction)

= suppose f(n)is Q(n)
» then3d ny=0andc > 0s.t f(n) =cn for n = n,
= [for contradiction, will findm = n, st. 0 = f(m)]

n(1 + sinnw/2)=cn for alln = n, &
(1 + sinnn/2)=c for alln = n,
Y

need to make this -1 for contradiction for some m = n,

mrm 31T . . .
" need — =51 27l for some integer i and m = n,

—

* needm = 3 + 4i for some integer i and m = n,
» takem =3 + 4 [ny| > n,

Order notation Summary

f(n) € ©(g(n)): growth rates of f and g are the same
f(n) € o(g(n)): growth rate of f isless than growth rate of g

f(n) € w(g(n)): growth rate of f is greater than growth rate of g
f(n) € O(g(n)): growth rate of f is the same or less than growth rate of g
f(n) € Q(g(n)): growth rate of f is the same or greater than growth rate of g

Relationship between Order Notations

One can prove the following relationships
 f(m e 6(g(n) < gm) e 6(f(n))
" f(m e 0(gn) & gm) e Q(f(n))
 f(m e o(g(m) & gn) € w(f(n))
" f(n) € o(g(n)) =fMm) e 0(g(n))
 f(m e o(g(m) =fn) ¢ lgn)

fm) ew(g) =fn) e (gn))

fm) ew(g) =fn) ¢0o(gn)

Algebra of Order Notations (1)

= The following rules are easy to prove [exercise]

1. Identity rule: f(n) € G)(f(n))

2. Transitivity
= iff(n)€ O(g(n)) and g(n) € O(h(n)) then f(n) € O(h(n))
= iff(n) € Q(g(n)) and g(n) € Q(h(n)) then f(n) € Q(h(n))
= iff(n)€ O(g(n)) and g(n) € o(h(n)) then f(n) € o(h(n))

. 4‘
Algebra of Order Notations (2) max(f.g(0) I
F) iff(n) > g(n) T
B n) iff(n)>gn X
max{f, g}n) = {g(n) otherwise -
3. Maximum rules
Suppose that f(n) > 0 and g(n) > 0 for all n = n,, then

a) f(n) +g(n) € Q(max{f(n),g(n)})
b) f(n) +g(n) € O(maxif(n),g(n)})

function positivity

a) f(n) +g(n) = either f(n) or g(n) =max{f(n), g(n)}

b) f(n) +g(n) = max{f(n),g(n)} + min{f(n), g(n)j
< max{f (n), g(n)} + max{f(n), g(n)j
= 2max{f(n), g(n)}
= Usage: n?+logn € 0(n?)

Proof:

Abuse of Order Notation

Normally, say f(n) € @(g(n)) because @(g(n)) is a set

Sometimes it is convenient to abuse notation
= f(n) =200n*+ 0(n)
= f(n)is 200n? plus a term with linear growth rate
= nicer to read than 200n? + 30n + logn
= does not hide the constant term 200, unlike if we said 0(n?)
= f(n) =n?+0(1)
= f(n)isn? plus a vanishing term (term goes to 0)
= example: f(n) =n?+1/n

Use these sparingly, typically only for stating final result
But avoid arithmetic with asymptotic notation, can go very wrong
Instead, replace @(g(n)) by c - g(n)

= still sloppy, but less dangerous

= if f(n) € ©(g(n)), more accurate statementisc- g(n) < f(n) < ¢’ - g(n) for
large enough n

Outline

" Introduction and Asymptotic Analysis

= analysis of algorithms

Techniques for Runtime Analysis

= Goal: Use asymptotic notation to simplify run-time analysis

= Running time of an algorithm depends on the input size n

Test1(n)

1 sum + 0

2 for i < 1 to ndo

3. for j « /i to ndo

4 sum < sum + (i — j)?
o) return sum

Identify primitive operations: these require constant time
Loop complexity expressed as sum of complexities of each iteration
Nested loops: start with the innermost loop and proceed outwards

This gives nested summations

Techniques for Runtime Analysis

= Goal: Use asymptotic notation to simplify run-time analysis

= Running time of an algorithm depends on the input size n

Test1(n)

1 sum + 0

2 for i < 1 to ndo

3. for j «— /i to n do

4 sum < sum+ (i —j)?’| ¢
o) return sum

Identify primitive operations: these require constant time
Loop complexity expressed as sum of complexities of each iteration
Nested loops: start with the innermost loop and proceed outwards

This gives nested summations

Techniques for Algorithm Analysis

= Goal: Use asymptotic notation to simplify run-time analysis

= Running time of an algorithm depends on the input size n

Test1(n)

1 sum + 0

2 for i <1 to ndo

3. for j « /i to ndo

4 sum < sum + (i — j)?
o) return sum

2.

n

C
j=i

Identify primitive operations: these require constant time

Loop complexity expressed as sum of complexities of each iteration

Nested loops: start with the innermost loop and proceed outwards

This gives nested summations

Techniques for Algorithm Analysis

= Goal: Use asymptotic notation to simplify run-time analysis

= Running time of an algorithm depends on the input size n

Test1(n)

1 sum <+ 0

2. for i < 1 to ndo

3. for j « /i to ndo

4 sum < sum + (i — j)?
o) return sum

n n
=14 j=|

Identify primitive operations: these require constant time

Loop complexity expressed as sum of complexities of each iteration

Nested loops: start with the innermost loop and proceed outwards

This gives nested summations

Techniques for Algorithm Analysis

= Goal: Use asymptotic notation to simplify run-time analysis

= Running time of an algorithm depends on the input size n

Test1(n)

1. sum + 0

2. for i < 1 to ndo

3. for j « /i to ndo

4. sum < sum + (i — j)?
b. return sum

n n
MRS
=14 j=j

Identify primitive operations: these require constant time

Loop complexity expressed as sum of complexities of each iteration

Nested loops: start with the innermost loop and proceed outwards

This gives nested summations

Techniques for Algorithm Analysis

Test1(n)

1 sum <+ 0

2 for i+ 1 to ndo

3. for j < /i to ndo

4 sum < sum + (i — j)?
o) return sum

n n
Derived complexity as c + z z c
(=1 leed j =i

n n
Some textbooks will write thisas ¢, + z z Cy
(=1 4= j=i

n n
Or even as 1+ z 2 1
(=1 b j=i

Now need to work out the sum

Sums: Review

summand

n |
> ie
j=1

!

index of
summation

Sums: Review

termsfrom1toi—1
are missing

j=i j=i+1

n
z 1= 1 +1 +1 =n—i+1
j=i

—.
I
~

Sums: Review

j=i j=i+1 .. j=n

n
z. (n—e¥)=n—e* +n—e* .. tn—e’=(n-e)(n—-i+1)
j=i

- =~

+n
+1

——
-

1|

R

4

SN
/
S
/
e

/
\
\
\
\
\\
\\

n+1
3
(n—2)

~
S~ —

+
+

1y

-

\
’
4
e\
4

1
7
7

-

n+1
+(n

-
e

—

—
+ = s
<

~

Seeo -

"~

IEW

i
I

"~

Revi
n

Sums
S =
S =

2S5 =(n+1)n

S=E(Tl+1)7’l

Sums: Review

a_+b a—+b

- ~
~
"

b '.
+ =a
S — b ,’:: +\\\(b - 1)

N -
————————

~~~~~~
-~ Ss

N, ’
________

2S5 =(a+b)(b—a+1)

S=%(a+b)(b—a+1)



Techniques for Algorithm Analysis

Test1(n)

1 sum <0

2 for i+ 1 to ndo

3. for j <+ / to ndo

4 sum < sum + (i — j)?
5 return sum

C+Zl 12} zC —c+z c(n—i+1)—c+c27.1 n—i+1)
=C +C2= —C2=l+cz=

= ¢ +cn? (n+1)n+cn—c—+cn+c
T 2 "2

= Complexity of algorithm Test1 is (E)(nz)



Techniques for Algorithm Analysis

Test1(n)

1 sum <0

2 for i+ 1 to ndo

3. for j <+ / to ndo

4 sum < sum + (i — j)?
5 return sum

= Can use O-bounds earlier, before working out the sum

n n n n
c+2 Z C s @ 2 2 C
i=14j=1 i=14—j=i

= Therefore, can drop the lower order term and work on

n n
i=1 4= j=i

= Using ©-bounds earlier makes final expressions simpler

= Complexity of algorithm Test1 is @(nz)



Techniques for Algorithm Analysis

= Two general strategies

1. Use O-bounds throughout the analysis and obtain ©-
bound for the complexity of the algorithm
= used this strategy on previous slides for Test1 ®-bound

2. Prove a O-bound and a matching Q-bound separately

= use upper bounds (for O-bounds) and lower bounds (for Q-bound)
early and frequently

= easier because upper/lower bounds are easier to sum



Techniques for Algorithm Analysis e

for i+ 1 to ndo
for j « i to n do

= Second strategy: upper bound for Test1 cum < sum 4+ (i — J)?

n n . return sum
=14 j=i

=  Add more iterations to make sum easier to work out

n n n n n n
=14 j=i =14 j=1 i=1 i=1
j a

oW

n

0000000



Techniques for Algorithm Analysis

= Second strategy: upper bound for Test1

n n
Dui 2
=14 j=i

=  Add more iterations to make sum easier to work out

n n n n n n
=14 j=i =1 4=d j=1 i=1 i=1
j a

n

upper bound %

SEC0000
* * +o0ee
* >t oo
% *9®
= [SH 6 @

- 9000000
~ 90000 ®

= Testlis O(n?)



Techniques for Algorithm Analysis

= Second strategy: lower bound for Test1

n n
DI
=14 j=i

= Remove iterations to make sum easier to work out

n n n/2 n n/2 n
DTS N T e
i=14—j=i Jj=1 L= j=1+n/2 i=1 2
ju
n 90000 0e
00000

 [eeeele
§+1 ““
900
L
1@ »
1 2 n U

NS

= Testlis Q(n?)



Techniques for Algorithm Analysis

= Second strategy: lower bound for Test1

n n
DI
=14 j=i

= Remove iterations to make sum easier to work out
= (Can get the same result without visualization

= Toremove iterations, increase lower or increase upper range bounds, or both

100 80
= Examples: E c = E C E 1 > E
k=10 k=20 k=i k= l+1

" |n our case:

n n n/2 n/2 n\ 2
D IEIED I WIS W M I
lj=14dj={ j=i =1 & j= 1+n/2 2

nowi <n/2

= Testl is Q(n?), previously concluded that Test1 is O(n?)
= Therefore Test1 is O(n?)



Techniques for Algorithm Analysis

Test1(n)

1 sum <0

2 for i+ 1 to ndo

3. for j <+ / to ndo

4 sum < sum + (i — j)?
5 return sum

n n
= Annoying to carry constants around E E C
=1 4= j=i

" Running time is proportional to the number of iterations

= (Can first compute the number of iterations

zn Zn n2 n
l=—+=-+1
=1 b j=i 2 2

= And then say running time is ¢ times the number of iterations



Techniques for Algorithm Analysis |Algorithm Test2(n)

= Inner while loop >um <0
= jteration1:j =10 t=n
= jteration2:j =1-i while [ = 2 do
= jterationk:j=(k—1)-1i j=0
= terminate when (k — 1) -i > i? while j < i” do

n k>141i sum < sum + 1

= inner while loop takes (1 + i)c time J=J+i

= Quter while loop L =1i/2
= jterationl:i=n return sum

= jteration 2:i =n/2%71
= jteration t: i = n/2t1
— <2

2t—1

= terminates when
= t>logn (more precisely, last iterationis att = [logn] — 1)
= Total time, ignoring multiplicative ¢ come constant

logn logn logn oo

; (1+n/20H = z 1+n z 1/2t < logn +n2 € 0(n)

0(1)



Worst Case Time Complexity

= Can have different running times on two instances of equal size

insertion-sort(A, n)
A: array of size n

1 fori<— 1ton—1do

2, J—i

3. while j > 0 and A[j] < A[j — 1] do
4 swap A[j] and A[j — 1]

5 j+—j—1

= Let T(/) be running time of an algorithm on instance [
= letl, ={I:Size(]) = n}
= Worst-case complexity of an algorithm: take the worst |

*" Formal definition: the worst-case running time of algorithm A is a
function f: Z+ - R mapping n (the input size) to the longest running
time for any input instance of size n

Tworst(n) = rIr}E?Z({T(I )}



Worst Case Time Complexity

= Worst-case complexity of an algorithm: take worst instance [

insertion-sort(A, n) worst [ is reverse sorted array
A: array of size n

1. fori+— 1ton—1do

o n—1 [ n-1

whit 2 Z ¢ =z ct
hile j > 0 and A|j| < A[j - 1] d )

while and A[j] [[ —1] do i1 =1 =0

swap A[j] and A[j — 1]
jj-1 =c(n—1)n/2

O Wb

Tworst(n) = c(n — 1)n/2
= thisis primitive operation count as a function of input size n
= after primitive operation count, apply asymptotic analysis

. @(nz) or O(nz) or Q(nz) are all valid statements about the
worst case running time of insertion-sort



Best Case Time Complexity

insertion-sort(A, n) best instance is sorted array
A: array of size n n—1

1 fori+ 1ton—1do z C=C(Tl—1)

2. IR i=1

3. while j > 0 and A[j] < A[j — 1] do

4 swap A[j] and A[j — 1]

5 IR

Best-case complexity of an algorithm: take the best instance |/
Formal definition: the best-case running time of an algorithm A is a
function f: Z* - R mapping n (the input size) to the smallest running
time for any input instance of size n

Tpest(n) = min{T (1)}

lely,
Tpest(n) = c(n—1)
= this is primitive operation count as a function of input size n
= after primitive operation count, apply asymptotic analysis
= O(n)or0(n)orQ(n) are all valid about best case running time



Best Case Time Complexity

Note that best-case complexity is a function of input size n

Think of the best instance of size n

For insertion-sort, best instance is sorted
(non-increasing) array A of size n

Best instance is not an array of size 1
Best-case complexity is @(n)

For hasNegative, best instance is array A
of size n where A[0] < O

Best instance is not an array of size 1
Best-case complexity is ©(1)

insertion-sort( A, n)
A: array of size n

1. fori+<1lton—-1do

2. J—i

3. while j > 0 and A[j] < A[j — 1] do
4. swap A[j] and A[j — 1]

5. j+—j—1
hasNegative(A, n)

Input: array A of n integers
fori<Oton—-1do
if Ali] <O
return True
return False




Best Case Running Time Exercise
Algorithm Mystery(A, n)

) Input: array A of n integers
ifn=>5 P Y 8

C
= T(n) = . ifn=>5
cn otherwise
return A[0]
else
fori<—1ton—1do
print(A[i])
return

= Best case running time?

a) 0(1)
b) ©(n)



Average Case Time Complexity

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is function f: Z* - R mapping n (input size) to
the average running time of A over all instances of size n

1
Tavg (n) = mE T{)
" Ien,
= Will assume |I,,| is finite

= If all instances are used equally often, T, (n) gives a good

estimate of a running time of an algorithm on average in
practice



Average vs. Worst vs. Best Case Time Complexity

Sometimes, best, worst, average time complexities are the same

If there is a difference, then best time complexity could be overly
optimistic, worst time complexity could be overly pessimistic, and
average time complexity is most useful

However, average case time complexity is usually hard to compute
Therefore, most often, we use worst time complexity

= worst time complexity is useful as it gives bound on the maximum
amount of time one will have to wait for the algorithm to complete

= default in this course

= unless stated otherwise, whenever we mention time complexity,
assume we mean worst case time complexity

Goal in CS240: for a problem, find an algorithm that solves it and
whose tight bound on the worst case running time has the smallest
growth rate



O-notation and Running Time of Algorithms

" [tisimportant not to try make comparisons between algorithms
using O-notation

= Suppose algorithm A and B both solve the same problem
= A has worst-case runtime 0(n3)
= B has worst-case runtime 0 (n?)
= Cannot conclude that B is more efficient that A
= ()-notation is only an upper bound
= A could have worst case runtime 0(n)
* while for B the bound of 0 (n?) could be tight
" To compare algorithms, it is better to use ® notation



®-notation and Running Time of Algorithms

= Have to be careful with ®-notation

= Suppose algorithm A and B both solve the same problem
= A has worst-case runtime 0(n3)
= B has worst-case runtime 0(n?)

= Cannot conclude that B is more efficient that A for all inputs
= the worst case runtime may be achieved only on some instances



Running Time: Theory and Practice, Multiplicative Constants

Algorithm A has runtime T(n) = 10000n?2
= Algorithm B has runtime T(n) = 10n?

* Theoretical efficiency of A and B is the same, @(nz)

" |n practice, algorithm B will run faster (for most implementations)

= multiplicative constants matter in practice, given two algorithms with
the same growth rate

= but we are concerned with theory (mostly), and multiplicative
constants do not matter in asymptotic analysis



Running Time: Theory and Practice, Small Inputs

3,000

2,500

2,000

1,500

1,000

500

09 5 10 15 20 25

= Algorithm A4 running time T'(n) = 75n + 500
= Algorithm /' running time
" Then /7 is faster forn < 20

= use this fact for practical implementation of recursive sorting algorithms



Theoretical Analysis of Space

" |nterested in auxiliary space
= space used in addition to the space used by the input data
= To find space used by an algorithm, count total number of auxiliary memory cells
ever accessed (for reading or writing or both) by algorithm
= 3sa function of input sizen
= space used must always be initialized, although it may not be stated explicitly in

pseudocode
* arrayMax uses 2 memory cells Algorithm arrayMax(A, n)
" T(n) =2 currentMax < A[O]
= space efficiency is O(1) fori<—1ton—1do
if A[i] > currentMax then
currentMax <« Ali]

return currentMax




Theoretical Analysis of Space

Algorithm arrayCumSum(A, n)
=  agrrayCumSum uses 1 + n memory cells

= T(n)=14+n
= space efficiency is O(n)

Input: array A of n integers

initialize array B of size n to 0
B[0] < A[0]
fori<1ton—-1do

B[i]l « B[i- 1] + A[/]
return B




Outline

" Introduction and Asymptotic Analysis

= analysis of recursive algorithms



MergeSort: Overall Idea

A=

Input: Array A of n integers ,I\ , Y

1: split A into two subarrays
= A, consists of the first g elements
n

= A, consists of the last » elements

2: Recursively run MergeSort on A, and Ag

3: After A and Ag are sorted, use function Merge to merge

them into a single sorted array



MergeSort: Pseudo-code

merge-sort(A,n, £ + 0,r < n—1,5 < NIL)
A: arrayofsize n, 0 <{<r<n-1
if Sis NIL initialize it as array S[0..n — 1]
if (r < /) then
return
else
m=|(r+0)/2]
merge-sort(A, n, £, m, S)
merge-sort(A,n,m+1,r,5)
merge(A, ¢, m, r,5S)

XN RWh -

Two tricks to avoid copying/initializing too many arrays

= recursion uses parameters that indicate the range of the array that needs
to be sorted

= array S used for merging is passed along as parameter



Merging Two Sorted Subarrays

. Initialization

A 3/4|5|7|1]1]|2|8]9
/ m r
I in

S 3/14|5/711/11|21819




Merging Two Sorted Subarrays: Merging Starts

m
Al3|4|5|7|1|1]12]|8]9 S|13|4|5|711|1(2]8]9
k i i
Al1la|5|7|1|1]12]|8]9 S|13|4|5|7|1|1(2]8]9
k i In
Al1l1|5]|711|1]12]|8]9 S|3|4|5|7|1|1|2]8]9
k i In
Al1l1l2]|711|1]12]|8]9 S|3|4|5|711|1(2]8]9
k i In
Al1l1l2]|3|1|1]2]|8]9 S|3|a|5|711|1(2]8]9
k i In




Merging Two Sorted Subarrays: Merging Cont.

A

8

i, >m, done with the first subarray

k

5

7

8

S

S

S

S

m
314|571 8|9
iy Ip
314|571 8|9
iy Ip
314151711 8|9
iy ip
314|571 819
iy ip
314|571 8|19




Merge: Pseudocode

Merge(A, ¢, m,r,S)
A[0..n — 1] is an array, A[{..m] is sorted, A[m + 1..r] is sorted
S[0..n — 1] is an array
copy A[l..r] into S[/..r]
(I'L, fR) < (f, m -+ 1);
for (k < (; k < r;k++) do
if (ip > m) Alk] < S[ir++]
else if (ir > r) Alk] < S[ip++]
else if (S[ir] < Slir]|) Alk] < S|iL++]
else Alk| < S[ir++]

No ok whdHE

= Merge takes O(7r -1+ 1) time
= thisis ®(n) time for merging n elements



Analysis of MergeSort

Let T'(n) be time to run MergeSort on an array of length n

merge-sort(A,n,l < 0,71 «<n—1,5 «< NULL)

A: arrayofsizen, 0 <[ <r<n-1
if r < [ then \\ base case

return
if Sis NULL initialize it as array S[0...n — 1]

m=|(+71)/2]
merge-sort(A,n,l,m,S)
merge-sort(A,n,m+ 1,7,5)

merge(A,l,m,7r,S)

Recurrence relation for MergeSort

ra =17 ([z1)+ 7 ([3]) + e ';" > !

tn

SIENE

tn




Analysis of MergeSort

= Recurrence relation for MergeSort

T(n) = {T ()7 (G)+ en itn>1

C ifn =1

= Sloppy recurrence with floors and ceilings removed

( n
T(n) = 4 2T(§)+cn if n>1

C ifn=1

= Exact and sloppy recurrences are identical when n is a power of 2
= Recurrence easily solved whenn = 2/



Visual proof via Recursion Tree T(n)={2T )+ cnitn>1

C if n=1

tree levels #nodes work per level
0 20 cn
1 21 cn
2 22 cn

= Stop recursion when nodesizeis1 = —=1=sn=2'2|= logn

= cn operations on each tree level, logn levels, total time is cnlogn € ©(nlogn)



Analysis of MergeSort

= Canshow T(n) € ©(nlogn) for all n by analyzing exact (not
sloppy) recurrence

= sloppy recurrence is good enough for this course



Explaining Solution of a Problem

= For Merge-sort design, we had four steps
1. describe the overall idea
2. give pseudocode or detailed description

3. argue correctness
= key ingredients, no need for a formal proof
= sometimes obvious enough from idea-description

4. analyze runtime
= Follow these 4 steps when asked to ‘solve a problem’



Some Recurrence Relations

Recursion

resolves to

for some c < 1

example
T(n) < T(n/2)+ O(1) T(n) € O(logn) binary-search
T(n) <2T(n/2)+ O(n) T(n) € O(nlogn) merge-sort
T(n) <2T(n/2)+ O(logn) | T(n) e O(n) heapify (*)
T(n) <cT(n-1)+ O(1) T(n) e O(1) avg-case analysis (*)

T(n)<2T(n/4)+ O(1)

range-search (*)

T(n) < T(vn)+ O(Vn)

interpol. search (*)

T(n) < T(vn)+ 0O(1)

interpol. search (*)

"= Once you know the result, it is (usually) easy to prove by induction

" You can use these facts without a proof, unless asked otherwise

= Many more recursions, and some methods to solve, in cs341




Outline

" Introduction and Asymptotic Analysis

= helpful formulas



Useful Sums

= Arithmetic
n-— — n-1 dn(n — 1
z 1i=n(n 1) z (a + di) = na + ( )EG)(nz)ifd;tO
i=0 2 i=0 2
= Geometric (g
n-—1 .
ar_lee)(r ) ifr>1

n—1 n-1
Z 2L =2"—1 E art = na € 0(n) ifr=1
i=0 i=0

n

a € 0(1) ifo<r<i1
\ 1—r
= Harmonic 11 =Inn+vy+o0(1) € 0(logn)
= A few more
n
1 2 Z ik e @(n**1) fork >0
z ~ =" co) =1 ()
i:1l2 6 o 1
® in(1—p)1== for0<p<1
1=

= You can use these without a proof, unless asked otherwise



Useful Math Facts

Logarithms:

o y = log,(x) means b’ = x. e.g. n= 28"

@ log(x) (in this course) means log,(x)

o log(x - y) = log(x)+log(y), log(x") =y|og(><),
log.

e log,(a) = |§§CZ — Iog:(b): qlog,c _ log, a

@ In(x) = natural log = log,(x), % Inx = %

Factorial:
e nl:=n(n—1)(n—2)----2-1= F ways to permute n elements

@ log(n!) =logn+log(n—1)+---+log2+logl € ©(nlogn)

Probability:
@ E[X] is the expected value of X.
o E[aX] = aE[X], E[X + Y] = E[X] + E[Y] (linearity of expectation)



	Slide 1: Module 1: Introduction and Asymptotic Analysis
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Course Objectives: What is this course about?
	Slide 5: Course Objectives: What is this course about?
	Slide 6: Course Topics
	Slide 7: CS Background
	Slide 8: Outline
	Slide 9: Algorithm Design Terminology
	Slide 10: Algorithm Design Terminology
	Slide 11: Algorithms and Programs
	Slide 12: Outline
	Slide 13: Pseudocode
	Slide 14: Pseudocode Details
	Slide 15: Outline
	Slide 16: Efficiency of Algorithms/Programs
	Slide 17: Efficiency is a Function of Input
	Slide 18: Running Time, Option 1: Experimental Studies
	Slide 19: Running Time, Option 2: Theoretical Analysis
	Slide 20: Theoretical Analysis: Idealized Computer Model
	Slide 21: Random Access Machine (RAM) Idealized Computer Model
	Slide 22: Theoretical Framework For Algorithm Analysis
	Slide 23: Theoretical Analysis of Running time
	Slide 24: Primitive Operation Exercise
	Slide 25: Primitive Operation Exercise
	Slide 26: Theoretical Analysis of Running time
	Slide 27: Theoretical Analysis of Running time
	Slide 28: Theoretical Analysis of Running time
	Slide 29
	Slide 30: Theoretical Analysis of Running time: Lower Order Terms
	Slide 31: Theoretical Analysis of Running time
	Slide 32: Outline
	Slide 33: Order Notation: big-Oh
	Slide 34: big-Oh Example
	Slide 35: Order Notation: big-Oh
	Slide 36: Order Notation: big-Oh
	Slide 37: Order Notation: big-Oh
	Slide 38: Order Notation: big-Oh
	Slide 39: More big-O Examples
	Slide 40: More big-O Examples
	Slide 41: More big-O Examples
	Slide 42: Theoretical Analysis of Running time
	Slide 43: Theoretical Analysis of Running time
	Slide 44: Need for Asymptotic Tight bound
	Slide 45: Aymptotic Lower Bound
	Slide 46: Asymptotic Lower Bound
	Slide 47: Asymptotic Lower Bound
	Slide 48: Tight Asymptotic Bound
	Slide 49: Tight Asymptotic Bound
	Slide 50: Tight Asymptotic Bound
	Slide 51: Common Growth Rates
	Slide 52: How Growth Rates Affect Running Time
	Slide 53: Strictly Smaller Asymptotic Bound
	Slide 54: Big-Oh vs. Little-o
	Slide 55: Big-Oh vs. Little-o
	Slide 56: Strictly Smaller Proof Example
	Slide 57: Strictly Smaller Proof Example
	Slide 58: Strictly Larger Asymptotic Bound
	Slide 59: Strictly Larger Asymptotic Bound
	Slide 60: Limit Theorem for Order Notation
	Slide 61: Example 1
	Slide 62: Example 2
	Slide 63: Example 3
	Slide 64: Example 4
	Slide 65: Example 4
	Slide 66: Example 5
	Slide 67: Example 5
	Slide 68: Order notation Summary
	Slide 69: Relationship between Order Notations
	Slide 70: Algebra of Order Notations (1)
	Slide 71: Algebra of Order Notations (2)
	Slide 72: Abuse of Order Notation
	Slide 73: Outline
	Slide 74: Techniques for Runtime Analysis
	Slide 75: Techniques for Runtime Analysis
	Slide 76: Techniques for Algorithm Analysis
	Slide 77: Techniques for Algorithm Analysis
	Slide 78: Techniques for Algorithm Analysis
	Slide 79: Techniques for Algorithm Analysis
	Slide 80: Sums:  Review
	Slide 81: Sums:  Review
	Slide 82: Sums:  Review
	Slide 83: Sums: Review
	Slide 84: Sums: Review
	Slide 85: Techniques for Algorithm Analysis
	Slide 86: Techniques for Algorithm Analysis
	Slide 87: Techniques for Algorithm Analysis
	Slide 88: Techniques for Algorithm Analysis
	Slide 89: Techniques for Algorithm Analysis
	Slide 90: Techniques for Algorithm Analysis
	Slide 91: Techniques for Algorithm Analysis
	Slide 92: Techniques for Algorithm Analysis
	Slide 93: Techniques for Algorithm Analysis
	Slide 94: Worst Case Time Complexity
	Slide 95: Worst Case Time Complexity
	Slide 96: Best Case Time Complexity
	Slide 97: Best Case Time Complexity
	Slide 98: Best Case Running Time Exercise
	Slide 99: Average Case Time Complexity
	Slide 100: Average vs. Worst vs. Best Case Time Complexity
	Slide 101: O-notation and Running Time of Algorithms
	Slide 102: cap theta-notation and Running Time of Algorithms
	Slide 103: Running Time:  Theory and Practice, Multiplicative Constants
	Slide 104: Running Time: Theory and Practice, Small Inputs
	Slide 105: Theoretical Analysis of Space
	Slide 106: Theoretical Analysis of Space
	Slide 107: Outline
	Slide 108: MergeSort: Overall Idea
	Slide 109: MergeSort: Pseudo-code
	Slide 110: Merging Two Sorted Subarrays: Initialization
	Slide 111: Merging Two Sorted Subarrays: Merging Starts
	Slide 112: Merging Two Sorted Subarrays: Merging Cont.
	Slide 113: Merge: Pseudocode
	Slide 114: Analysis of MergeSort
	Slide 115: Analysis of MergeSort
	Slide 116: Visual proof via Recursion Tree
	Slide 117: Analysis of MergeSort
	Slide 118: Explaining Solution of a Problem
	Slide 119: Some Recurrence Relations
	Slide 120: Outline
	Slide 121: Useful Sums
	Slide 122: Useful Math Facts

