CS 240E S25

Tutorial 2

May 16

- Heapify
- Amortized analysis
- Potential method

- Merging Binary Heaps
- Increase-key
- Application of heaps

CS 240E S25

Q1: Heapify

Execute heapify on the following array (displayed here in tree form with array indices as subscripts):

Q2: Amortized analysis - Successor in BST

We have a binary search tree storing *n* distinct keys. The operation successor(x) returns the in-order successor of *x*, which is the node z with x.key < z.key and no other keys are stored in between (null if such z does not exist), in $\Theta(\text{height})$ time. Consider the algorithm to print all keys in the tree *T* in increasing order:

```
x = T.get_min()
print(x.key)
while(T.successor(x) is not null):
    x = T.successor(x)
    print(x.key)
```

(a) Give an asymptotic bound on the worst-case runtime of this algorithm, if the height of T is in $\Theta(\log n)$.

Q2: Amortized analysis - Successor in BST

```
x = T.get_min()
print(x.key)
while(T.successor(x) is not null):
    x = T.successor(x)
    print(x.key)
```

(b) Show that the amortized runtime of successor is O(1)(and therefore the runtime of the algorithm is $\Theta(n)$).

Q3: Potential Method for Amortized Analysis

You are implementing a n-bit binary counter. It is an array of n bits, with the leftmost bit being the least significant bit. The counter starts at 0 and increments by 1 each time you call the operation increment():

```
increment(A[0..n-1]):
```

```
i = 0
while(A[i] != 0):
    A[i] = 0
    ++i
A[i] = 1
```

The run-time for increment is $\Theta(k)$, where k is the final value of variable i, which is $\Theta(n)$ in the worst case.

Show the amortized cost per increment is $\Theta(1)$ by choosing a proper potential function.

Q4: Merging Binary Heaps

Let H_1 and H_2 be two binary heaps that both store exactly $2^h - 1$ items for some $h \in \mathbb{N}$.

Show how to merge these two heaps in O(h) run-time.

- presuming both heaps are stored as trees (not arrays)
- the output must again be a binary heap (satisfy the structural property)

CS 240E S25

Q5: increase-key

Here is a binary heap. Show the intermediate steps when performing increase-key(id: 8, new-key: 12) using fix-up.

* increase-key increases the specified node's key to a larger new key, while keeping the heap order property after the operation. $^{7/10}$

Additional problems

Q6: Minimum function values

You have n functions $f_1, f_2, ..., f_n$ defined as:

$$f_i(x) = a_i x + b_i$$

where a_i and b_i are constants. All $a_i > 0$.

Design an algorithm to find the m minimum values of $f_i(x)$ for all $x \in \mathbb{N}$ (including x = 0) efficiently.

Input:

$$n$$
, All a_i and b_i for $i = 1, ..., n$, and m .

Additional problems

Q7: Median of first *i* numbers

You have an array of integers a[i] of length n. For all even $0 \le i \le n$, output the median of a[0], a[1], ..., a[i].