CS 240E S25

Tutorial 2
May 16
« Heapity « Merging Binary Heaps
« Amortized analysis o Increase-key

 Potential method « Application of heaps

Q1: Heapity

Execute heapify on the following array (displayed here in tree form
with array indices as subscripts):

Q2: Amortized analysis - Successor in BST

We have a binary search tree storing n distinct keys. The operation successor(x)
returns the in-order successor of x, which is the node z with z.key < z.key and
no other keys are stored in between (null if such z does not exist), in ©(height)
time. Consider the algorithm to print all keys in the tree 7' in increasing order:

X = T.get min()

print(x.key)

while(T.successor(x) is not null):
X = T.successor(x)
print(x.key)

(a) Give an asymptotic bound on the worst-case runtime of this algorithm,
if the height of T is in O (logn).

Q2: Amortized analysis - Successor in BST

x = T.get_min() (b) Show that the amortized

print(x.key) . .

while(T.successor(x) 1is not null): runtime of successor is 0(1)
x = T.successor(x) (and therefore the runtime of

print(x.key) the algorithm is @(’n))

Q3: Potential Method for Amortized Analysis

You are implementing a n-bit binary counter. It is an array of n bits, with the
leftmost bit being the least significant bit. The counter starts at 0 and increments

by 1 each time you call the operation increment():

increment (A[O..n-1]):

i=0 The run-time for increment is ©(k),
while(A[i] != 0): where k is the final value of variable i,
Al1] =0 which is ©(n) in the worst case.
++1
Ali] =1

Show the amortized cost per increment is ©(1) by choosing a proper potential

function.

Q4: Merging Binary Heaps

Let H, and H, be two binary heaps that both store exactly 2" — 1 items
for some h € N.

Show how to merge these two heaps in O(h) run-time.

 presuming both heaps are stored as trees (not arrays)
o the output must again be a binary heap (satisty the structural

property)

Q5: increase-key

Here is a binary heap. Show the intermediate steps when performing
increase-key(id: 8, new-key: 12) using fix-up.

* increase-key increases the specified node’s key to a larger new key, while keeping
the heap order property after the operation.

Additional problems

Q6: Minimum function values

You have n functions fy, f,, ..., f,, defined as:
fi(x) = a;x + b,
where a, and b, are constants. All a, > 0.

Design an algorithm to find the m minimum values of f,(x) for all x €
N (including x = 0) efficiently.

Input:

n, All a; and b, for? =1, ..., n, and m.

Q7: Median of first : numbers

You have an array of integers ali] of length n. For all even 0 < i < n,
output the median of a[0], a[1], ..., ali].

	CS 240E S25
	Q1: Heapify
	Q2: Amortized analysis - Successor in BST
	Q2: Amortized analysis - Successor in BST
	Q3: Potential Method for Amortized Analysis
	Q4: Merging Binary Heaps
	Q5: increase-key

	Additional problems
	Q6: Minimum function values
	Q7: Median of first i numbers

