
CS 240E S25

Tutorial 2

May 16

• Heapify
• Amortized analysis
• Potential method

• Merging Binary Heaps
• Increase-key
• Application of heaps

CS 240E S25

Q1: Heapify

Execute heapify on the following array (displayed here in tree form
with array indices as subscripts):

30

51

73 104

82

25 146

2 / 10

CS 240E S25

Q2: Amortized analysis - Successor in BST

We have a binary search tree storing 𝑛 distinct keys. The operation successor(x)
returns the in-order successor of 𝑥, which is the node z with 𝑥.key < 𝑧.key and
no other keys are stored in between (null if such 𝑧 does not exist), in Θ(height)
time. Consider the algorithm to print all keys in the tree 𝑇 in increasing order:

x = T.get_min()
print(x.key)
while(T.successor(x) is not null):
 x = T.successor(x)
 print(x.key)

(a) Give an asymptotic bound on the worst-case runtime of this algorithm,
if the height of 𝑇 is in Θ(log 𝑛).

3 / 10

CS 240E S25

Q2: Amortized analysis - Successor in BST

x = T.get_min()
print(x.key)
while(T.successor(x) is not null):
 x = T.successor(x)
 print(x.key)

(b) Show that the amortized
runtime of successor is 𝑂(1)
(and therefore the runtime of
the algorithm is Θ(𝑛)).

4 / 10

CS 240E S25

Q3: Potential Method for Amortized Analysis

You are implementing a 𝑛-bit binary counter. It is an array of 𝑛 bits, with the
leftmost bit being the least significant bit. The counter starts at 0 and increments
by 1 each time you call the operation increment():

increment(A[0..n-1]):
 i = 0
 while(A[i] != 0):
 A[i] = 0
 ++i
 A[i] = 1

The run-time for increment is Θ(𝑘),
where 𝑘 is the final value of variable 𝑖,
which is Θ(𝑛) in the worst case.

Show the amortized cost per increment is Θ(1) by choosing a proper potential
function.

5 / 10

CS 240E S25

Q4: Merging Binary Heaps

Let 𝐻1 and 𝐻2 be two binary heaps that both store exactly 2ℎ − 1 items
for some ℎ ∈ ℕ.

Show how to merge these two heaps in 𝑂(ℎ) run-time.

• presuming both heaps are stored as trees (not arrays)
• the output must again be a binary heap (satisfy the structural

property)

6 / 10

CS 240E S25

Q5: increase-key

100

81

73

37 58

54

92

15 66

Here is a binary heap. Show the intermediate steps when performing
increase-key(id: 8, new-key: 12) using fix-up.
* increase-key increases the specified node’s key to a larger new key, while keeping
the heap order property after the operation. 7 / 10

Additional problems

Additional problems

Q6: Minimum function values

You have 𝑛 functions 𝑓1, 𝑓2,…, 𝑓𝑛 defined as:

𝑓𝑖(𝑥) = 𝑎𝑖𝑥 + 𝑏𝑖

where 𝑎𝑖 and 𝑏𝑖 are constants. All 𝑎𝑖 > 0.

Design an algorithm to find the 𝑚 minimum values of 𝑓𝑖(𝑥) for all 𝑥 ∈
ℕ (including 𝑥 = 0) efficiently.

Input:

𝑛, All 𝑎𝑖 and 𝑏𝑖 for 𝑖 = 1,…, 𝑛, and 𝑚.

9 / 10

Additional problems

Q7: Median of first 𝑖 numbers

You have an array of integers 𝑎[𝑖] of length 𝑛. For all even 0 ≤ 𝑖 ≤ 𝑛,
output the median of 𝑎[0], 𝑎[1],…, 𝑎[𝑖].

10 / 10

	CS 240E S25
	Q1: Heapify
	Q2: Amortized analysis - Successor in BST
	Q2: Amortized analysis - Successor in BST
	Q3: Potential Method for Amortized Analysis
	Q4: Merging Binary Heaps
	Q5: increase-key

	Additional problems
	Q6: Minimum function values
	Q7: Median of first i numbers

