
CS240E S25 Tutorial 3 May 23

Overview

• Morris’ counter

• average-case vs expected (hiring
problem)

• partially sorted array

• sorting lower bound

• additional problems

Problems

Q1. Morris’ probabilistic counting. With a deterministic b-bit counter, we can
only count up to 2b − 1. With probabilistic counting we can count to larger values at
the expense of loss of precision.

We let a counter reading of i represent a count of vi, for 0 ≤ i ≤ 2b − 1. Initially the
counter reads 0, indicating the count of v0 = 0.

The operation increment works on a counter with reading i in a probabilistic manner:

- if i < 2b − 1, increase counter reading with probability

1

vi+1 − vi
,

and leave the counter unchanged otherwise.

- if i = 2b − 1, report overflow.

Note that if we select vi = 1, then the counter is an ordinary deterministic counter.
More interesting situations arise if vi = 100i, vi = 2i, or vi = i-th Fibonacci number.

Assume that the probability of an overflow is negligible. Show that the value repre-
sented by the counter after n increment operations is n.

Q2. Average-case vs expected (hiring problem). Suppose we must hire a new
employee. There are n candidates arriving sequentially, one each day.

It takes I time units to interview a candidate, and it takes H units to hire them.

We want to have at all times the best possible person for the job. After interviewing
each applicant, if they are better than our current employee, we hire them immediately
(and fire our current employee).

We can compare two candidates in constant time.

1



hire(cand[1..n]):

curr = dummy candidate // compares worse than anyone

for i = 1..n:

interview cand[i]

if cand[i] is better than curr:

hire cand[i]

curr = cand[i]

Suppose m candidates are hired. Then the worst-case runtime is in Θ(In+Hm).

We can rank each candidate with a unique number between 1 and n and use rank [i] to
denote the rank of candidate i. We adopt the convention that a higher ranked applicant
corresponds to a better qualified applicant.

Note that the ordered list
⟨rank [1], . . . , rank [n]⟩

is a permutation of the list ⟨1, . . . , n⟩.

1. Describe an instance that achieves the runtime Ω(Hn).

2. Show that in the average-case we hire a new candidate O(log n) times.

Q3. Partially Sorted. Let 0 < ϵ < 1. Suppose that we have an array A of n items
such that the first n−nϵ items are sorted. Describe an O(n) time algorithm to sort A.

Q4. Searching lower bound. Show that any comparison-based searching algorithm
uses Ω(log n) comparisons.

1. in the worst case; and

2. in the average case.

2



3


	Overview
	Problems

