CS240E S25 Tutorial 4 June 5

Q1. AVL-tree height. Define a 2-AVL tree to be a binary search tree where for
every node, the difference of heights of its left and right subtree is at most 2. Prove
that a 2-AVL tree has height at most 3 logn where n is the number of nodes in the tree.

Q2. AVL-tree operations. Consider the AVL Tree shown below and perform
insert(61), then delete(73).

Q3. Scapegoat tree operations. Insert the key 11 in the following scapegoat (2/3)-
tree. The numbers in the brackets are the number of nodes in that subtree.



Q4. Stars (amortized analysis). We have a data structure to maintain collection
of stars (height-1 trees).

Every child knows its parent. It supports three operations:

e new-star(x) : creates a new star whose only member is z
e find-star(zx) : returns a handle to the root of the star containing x

e merge(x,y) : merges the stars that contain x and y

new-star(zx) is implemented in constant worst-case time by simply creating a new star
with x as its only element. Similarly, find-star(x) is implemented in constant worst-case
time by returning x’s parent pointer.

The operation merge(x,y), however, can be slow: it sets the parent pointer of all
elements of y’s star to find-star(z), in time proportional to the size of y’s star (i.e. the
number of element’s in y’s star).

Let n be the number of objects currently stored.

(a) Construct a sequence of ©(n) operations that requires ©(n?) time.
Hence, conclude that the amortized cost of all operations using the aggregate
method is O(n).

(b) We may augment this data structure with a size field at the root: now every root
knows the size of its star. Now rather than breaking ties arbitrarily during merge,
we always set the parent pointers of a smaller star.

Show using the aggregate method that the amortized runtime of all operations is
O(logn).

Hint: argue that any sequence of m new-star, find-star, and merge operations, n
of which are new-star operations take O(m + nlogn) time.

Q5. van Emde Boas tree tutorial. See veb_note.pdf.



