
CS 240E S25

Tutorial 5

June 13

• Skip List
• Splay Trees
• Enrich: Segment Trees

• Optimal Static Ordering
• Counting Trees

CS 240E S25

Q1: Skip List

Insert the numbers 12, 11, 13, 10, and 20 into an empty skip-list
using the sequence of coin flips HHTHTHTTHHHT (i.e., every time we go to
do a coin flip we take the first item out of this list). Then delete the
keys 13 and 20. Show the resulting skip-list.

𝑆0 −∞ +∞

2 / 25

CS 240E S25

Q2: Splay Trees

Given the following splay tree 𝑆 and
the potential function

Φ(𝑖) ≔ ∑
𝑣∈𝑆

log 𝑛(𝑖)
𝑣

20

10

5 15

12 17

16 19

25

where 𝑛(𝑖)
𝑣 is the number of nodes in the subtree rooted at 𝑣 after 𝑖 operations,

including 𝑣 itself.
• Calculate its potential using the given potential function.
• Insert the key 18. Calculate the new potential.
• Verify that the potential difference is less than 4 log 𝑛 − 2𝑅 + 2, where 𝑅 is

the number of rotations.
3 / 25

CS 240E S25

Q3: Static Ordering

Let 𝐴 be an unordered array with 𝑛 distinct items 𝑘0,…, 𝑘𝑛−1. Give an
asymptotically tight (Θ) bound on the expected access cost if you put 𝐴
in the optimal static order for the following probability distributions:

a) 𝑝𝑖 = 1
𝑛 for 0 ≤ 𝑖 ≤ 𝑛 − 1

b) 𝑝𝑖 = 1
2𝑖+1 , for 0 ≤ 𝑖 ≤ 𝑛 − 2. 𝑝𝑛−1 = 1 −∑𝑛−2

𝑖=0 𝑝𝑖 = 1
2𝑛−1

4 / 25

CS 240E S25

Q4: Counting Trees

How many binary trees with 𝑛 nodes are there, as a formula in terms of
𝑛? Find a recurrence relation.

(There is also a closed-form for this recurrence relation, but deriving it
is outside the scope of this course.)

5 / 25

Enrich Content

Enrich Content

Motivation

Question: You have an array of 𝑛 integers, and you want to perform the
following operations:
• Update the value of an element at index 𝑖.
• Add a value 𝑥 to all elements in a index range [𝑙, 𝑟].
• Query the sum/min/max of elements in a index range [𝑙, 𝑟].

How would you implement this efficiently?

Introducing: Segment Tree!
7 / 25

Enrich Content

Segment Tree

Segment tree is a powerful data structure that efficiently supports both
point and range queries/updates on a sequence (an array).

It’s a binary tree where each node represents a range of the array.

𝑎0-9=54

𝑎0-4=30

𝑎0-2=14

𝑎0-1=10

𝑎0=7 𝑎1=3

𝑎2=4

𝑎3-4=16

𝑎3=10 𝑎4=6

𝑎5-9=24

𝑎5-7=12

𝑎5-6=10

𝑎5=1 𝑎6=9

𝑎7=2

𝑎8-9=12

𝑎8=3 𝑎9=9

8 / 25

Enrich Content

Store the tree
We can store the tree like a heap: for node with index 𝑖, the left child is
at index 2𝑖 + 1 and the right child is at index 2𝑖 + 2. The root has index
0. This requires approximately 4𝑛 space for 𝑛 elements, therefore, the
space complexity is 𝑂(𝑛).

𝑖=0

𝑖=1

𝑖=3

𝑖=7

𝑖=15 𝑖=16

𝑖=8

𝑖=4

𝑖=9 𝑖=10

𝑖=2

𝑖=5

𝑖=11

𝑖=23 𝑖=24

𝑖=12

𝑖=6

𝑖=13 𝑖=14

9 / 25

Enrich Content

Build the tree
Given an initial array 𝑎[𝑛], we can build the tree recursively from top to
bottom, and update the info of each node based on its children.

int n, a[MAXN], t[MAXN * 4]; // t is the segment tree
int build(int i, int l, int r) { // i - index, l/r - range
 if (l == r) t[i] = a[l], return t[i];
 int mid = (l + r) / 2; // divide the range into two halves
 t[i] = build(i * 2 + 1, l, mid) + build(i * 2 + 2, mid + 1,
r); // build chilren first then update current node
 // here we maintain the sum, but it can also be max/min/...
}
build(0, 0, n - 1); // build the tree for our array a

10 / 25

Enrich Content

Query a Range
Query is very similar to Build: to query the sum of a range [𝑞𝑙, 𝑞𝑟], we
still recursively traverse the tree, but only count the range that is within
the query range. It takes 𝑂(log 𝑛) time.

int query(int i, int l, int r, int ql, int qr) {
 if (ql > r || qr < l) return 0; // no overlap
 if (ql <= l && qr >= r) return t[i]; // is a subrange
 int mid = (l + r) / 2;
 return query(i * 2 + 1, l, mid, ql, qr) + query(i * 2 + 2,
mid + 1, r, ql, qr); // partial overlap, we break it down to
two subranges, query each recursively then sum up
}
cout << query(0, 0, n - 1, 7, 27); // query the range [7, 27]11 / 25

Enrich Content

Query a Range: Example
Here is an example of querying the sum of range [1, 8]:

𝑎0-9=54

𝑎0-4=30

𝑎0-2=14

𝑎0-1=10

𝑎0=7 𝑎1=3

𝑎2=4

𝑎3-4=16

𝑎3=10 𝑎4=6

𝑎5-9=24

𝑎5-7=12

𝑎5-6=10

𝑎5=1 𝑎6=9

𝑎7=2

𝑎8-9=12

𝑎8=3 𝑎9=9

Therefore, the sum is 3 + 4 + 16 + 12 + 3 = 38.

12 / 25

Enrich Content

Update: Point Update
To update a value at index 𝑖𝑑𝑥, we use similar recursive traversal, but
only update the node at 𝑖𝑑𝑥 and its ancestors. It takes 𝑂(log 𝑛) time.

void update_point(int i, int l, int r, int idx, int val) {
 if (l == r) t[i] = val, return; // found the target, update
 int mid = (l + r) / 2;
 if (idx <= mid){ // target is in the left half
 update_point(i * 2 + 1, l, mid, idx, val);
 } else { // target is in the right half
 update_point(i * 2 + 2, mid + 1, r, idx, val);
 }
 t[i] = t[i * 2 + 1] + t[i * 2 + 2]; // update current node
}

13 / 25

Enrich Content

Point Update: Example
Here is an example of updating the value at index 6, from 9 to 5:

update_point(0, 0, n - 1, 6, 5);

𝑎0−9=5450

𝑎0−4=30

…… ……

𝑎5−9=2420

𝑎5−7=128

𝑎5−6=106

𝑎5=1 𝑎6=95

𝑎7=2

𝑎8−9=12

𝑎8=3 𝑎9=9

14 / 25

Enrich Content

Update: Range Update
How to add a value 𝑥 to all elements in a range [𝑙, 𝑟]?

Idea: use the similar recursive traversal to update each index in the
range. However, this is inefficient, as it takes 𝑂(𝑛) time for each update
since we need to traverse every leaf in the range.

Better idea: use a lazy tag to mark the range that needs to be updated,
say, the number to be added to this range, and only update the range
when it is accessed later. This prevents unnecessary lower-level updates
and perform the range update efficiently.

15 / 25

Enrich Content

Segment Tree with Lazy Tags

Similar as the tree array 𝑡 that stores the sum, we make another array
lazy to store the lazy tags for each node:

int lazy[MAXN * 4];

Lazy tags are initialized to 0, meaning no lazy update. When we add a
value 𝑥 to a range [𝑙, 𝑟], we simply add 𝑥 to the lazy tags of nodes that
represents this range, which means there is a pending addition 𝑥 for this
range.

16 / 25

Enrich Content

Pushdown for Lazy Tags
If a node we want to access has a lazy tag, we need to update the info on
this node first, then propagate the tag down. This is called pushdown.

void pushdown(int i, int l, int r) {
 if (lazy[i] == 0) return; // no lazy tag, do nothing
 t[i] += lazy[i] * (r - l + 1); // update the current sum
 if (l != r) { // not a leaf node, push down to children
 lazy[i * 2 + 1] += lazy[i];
 lazy[i * 2 + 2] += lazy[i];
 }
 lazy[i] = 0; // after pushing down, clear the lazy tag
}

17 / 25

Enrich Content

Update: Range Update
void update_range(int i, int l, int r, int tl, int tr, int val) {
 pushdown(i, l, r); // push down any pending updates
 if (tl > r || tr < l) return; // no overlap
 if (tl <= l && tr >= r) { // is a subrange
 lazy[i] += val; // add val to lazy tag
 pushdown(i, l, r); // update current node immediately
 return;
 }
 int mid = (l + r) / 2; // partial overlap, break it down
 update_range(i * 2 + 1, l, mid, tl, tr, val);
 update_range(i * 2 + 2, mid + 1, r, tl, tr, val);
 t[i] = t[i * 2 + 1] + t[i * 2 + 2]; // update current node
}

↑ Because when its parent is updating,
it needs to know the current sum of the node.

18 / 25

Enrich Content

Range Update: Example
Here is an example of adding 3 to the range [5, 8]:

update_range(0, 0, n - 1, 2, 6, 3);

𝑎0−9=5463

𝑎0−4=30

…… ……

𝑎5−9=2433
𝑎5−7=12+3 × 3⏟

7−5+1

= 21

𝑎5−6=10 ◾ 3

𝑎5=1 𝑎6=9

𝑎7=2 ◾ 3

𝑎8−9=12

𝑎8=3 𝑎9=9

* ◾ 𝑥 means a lazy tag of 𝑥 is pending for this node. 19 / 25

Enrich Content

Query Revisited with Lazy Tags
When we do a query now, we need to pushdown the lazy tags first to
ensure the sum at this node is up-to-date. Then we can query as before.

int query(int i, int l, int r, int ql, int qr) {
 pushdown(i, l, r) // The only line we added!
 // other code same as before
 if (ql > r || qr < l) return 0;
 if (ql <= l && qr >= r) return t[i];
 int mid = (l + r) / 2;
 return query(i * 2 + 1, l, mid, ql, qr) + query(i * 2 + 2,
mid + 1, r, ql, qr);
}

20 / 25

Enrich Content

Query with Lazy Tags: Example 1
Here is an example of querying the range [5, 8] on the previous tree:

𝑎0−9=63

𝑎0−4=30

…… ……

𝑎5−9=33

𝑎5−7=21

𝑎5−6=10 ◾ 3

𝑎5=1 𝑎6=9

𝑎7=2 ◾ 3

𝑎8−9=12

𝑎8=3 𝑎9=9

Lazy tags are untouched because we only need their parents to calculate
the sum: 21 + 3 = 24.

21 / 25

Enrich Content

Query with Lazy Tags: Example 2
Here is an example of querying the range [5, 6] on the previous tree:

𝑎0−9=63

𝑎0−4=30

…… ……

𝑎5−9=33

𝑎5−7=21

𝑎5−6=10+3 × 2 = 16

𝑎5=1 ◾ 3 𝑎6=9 ◾ 3

𝑎7=2 ◾ 3

𝑎8−9=12

𝑎8=3 𝑎9=9

We updated the value for 𝑎5−6 by performing pushdown, because we
need the updated sum of 𝑎5−6. Lazy tags are propagated down.

22 / 25

Enrich Content

Query with Lazy Tags: Example 3
Here is an example of querying the range [6, 8] on the previous tree:

𝑎0−9=63

𝑎0−4=30

…… ……

𝑎5−9=33

𝑎5−7=21

𝑎5−6=16

𝑎5=1 ◾ 3 𝑎6=9+3=12

𝑎7=2+3=5

𝑎8−9=12

𝑎8=3 𝑎9=9

We performed pushdown on 𝑎6 and 𝑎7 to update their values, then the
lazy tags on them are cleared because they are leaves. 12 + 5 + 3 = 20.

23 / 25

Enrich Content

Segment Tree Summary
Segment tree takes 𝑂(𝑛) to build, and each query/update takes 𝑂(log 𝑛)
time. It takes 𝑂(𝑛) space. Therefore, it’s very efficient and useful for many
problems. It’s also the foundation of many other algorithms such as the
Heavy-light Decomposition for trees.

Thinking
• How would you maintain the min/max of a range?
• How would you support range-set operation, i.e., set all elements in a

range [𝑙, 𝑟] to a value 𝑥?
• If we want to add a new operation, multiply a value 𝑥 to all elements in a

range [𝑙, 𝑟], how would you implement it?
• How would you implement a segment tree for a 2D array? 24 / 25

Enrich Content

Extension Reading
Segment tree uses approx. 4𝑛 space, but is it possible to achieve 𝑛 space?

Fenwick Tree
Fenwick tree is an elegant data structure that supports point updates and
range sum queries in 𝑂(log 𝑛) time, and uses only 𝑛 (not 4𝑛) space. It
utilizes the binary representation of indices to achieve this.

With some tricks, it is even possible to support range updates with two
Fenwick trees.

It can only maintain invertible properties (sum), but cannot maintain min/
max. However, with some tricks, it is possible to maintain min/max as well
with 𝑂(log2 𝑛) time complexity.

25 / 25

	CS 240E S25
	Q1: Skip List
	Q2: Splay Trees
	Q3: Static Ordering
	Q4: Counting Trees

	Enrich Content
	Motivation
	Segment Tree
	Store the tree
	Build the tree
	Query a Range
	Query a Range: Example
	Update: Point Update
	Point Update: Example
	Update: Range Update

	Segment Tree with Lazy Tags
	Pushdown for Lazy Tags
	Update: Range Update
	Range Update: Example
	Query Revisited with Lazy Tags
	Query with Lazy Tags: Example 1
	Query with Lazy Tags: Example 2
	Query with Lazy Tags: Example 3
	Segment Tree Summary
	Thinking
	Extension Reading
	Fenwick Tree

