
University of Waterloo

CS240E, Winter 2021

Assignment 2

Due Date: Wednesday, February 10, 2021 at 5pm
(Programming Due Date: Wednesday, February 24, 2021 at 5pm)

The integrity of the grade you receive in this course is very important to you and the
University of Waterloo. As part of every assessment in this course you must read and sign
an Academic Integrity Declaration (AID) before you start working on the assessment and
submit it before the deadline of February 10 along with your answers to the assignment;
i.e. read, sign and submit A02-AID.txt now or as soon as possible. The agreement
will indicate what you must do to ensure the integrity of your grade. If you are having
difficulties with the assignment, course staff are there to help (provided it isn’t last minute).

The Academic Integrity Declaration must be signed and submitted on time
or the assessment will not be marked.

Please read http://www.student.cs.uwaterloo.ca/~cs240e/w21/guidelines/guidelines.

pdf for guidelines on submission. Each written question solution must be submit-
ted individually to MarkUs as a PDF with the corresponding file names: a2q1.pdf,
a2q2.pdf, ... , a2q5.pdf .

It is a good idea to submit questions as you go so you aren’t trying to create sev-
eral PDF files at the last minute. Remember, late assignments will not be marked
but can be submitted to MarkUs after the deadline for feedback if you email
cs240e@uwaterloo.ca and let the ISAs know to look for it. (#3).

For all questions, you may use facts from calculus, but review briefly the name of the
fact and exactly what it is stating. (Refer to how the notes review concavity or l’Hôpital’s
rule for examples.)

1. (6 marks) Let A[0..n−1] be an unsorted array that stores integers, where each entry is
in the range [0, n5). Entries in A are not necessarily unique. Show how to test whether
there are indices i and j such that |A[i]− A[j]| = 10. The run-time and the auxiliary
space must be in O(n).

2. (5 marks) Assume that you are given a list L that contains n key-value pairs in sorted
order. Show how to build an AVL-tree that contains the key-value pairs from L. The
run-time and the auxiliary space should be O(n).

3. (3+4 marks) Recall that the Selection problem receives as input a set of n items and
an integer k with 0 ≤ k ≤ n− 1 and it must return the item that would be at A[k] if
the items were put into an array A in sorted order.

a) Argue that any comparison-based algorithm for the Selection problem on n items
must have Ω(log n) worst-case time.

1

http://www.student.cs.uwaterloo.ca/~cs240e/w21/guidelines/guidelines.pdf
http://www.student.cs.uwaterloo.ca/~cs240e/w21/guidelines/guidelines.pdf

b) Let T be a scapegoat tree that stores n items. Argue that Selection(T, k) can
be done in O(log n) time.

4. (2+5 marks) Consider a version of binomial heaps that has the same structure and
order properties, but the following implementation of the operations for a binomial
heap P :

• P .merge(P ′): Append the list of P ′ to the one of P . This takes O(1) time.

• P .insert(x): Create a single-node binomial heap P ′ that stores x and then call
P .merge(P ′). This takes O(1) time.

• P .deleteMax: First, make P proper with the same routine as in class. Then
perform deleteMax as in class, i.e., find the maximum among the roots (in the list
L of flagged trees), remove the tree T that contains the maximum x0 from L, split
T \ {x0} into flagged trees, let P ′ be the binomial heap with these flagged trees
and call P .merge(P ′). This takes O(|L| + log n) time, where n is the number of
items and |L| is the length of the list at the beginning of the operation.

a) Show that deleteMax has worst-case run-time in Θ(n).

b) Argue that with this implementation, the amortized run-time is in O(1) for insert
and inO(log n) for deleteMax. Using a potential function is recommended; coming
up with a suitable one is part of the assignment.

(You do not need to analyze the amortized run-time of merge as a stand-alone
operation, though of course you do need to analyze its effects if it is called within
insert or deleteMax.)

5. (2+2+4 marks) Suppose you implement skip lists with a biased coin flip: the probabil-

ity that the tower-height is increased is 3/4. Put differently, P (Xk ≥ i) =
(
3
4

)i
(where

Xk denotes the tower-height of key k).

a) What is the expected height of the tower of key k? Give a closed-form solution
(no summations) and an exact bound (no asymptotics).

b) What is the expected length of list Si (for 0 < i < h)? Give a closed-form exact
bound.

c) What is the expected height of the skip list? Give a closed-form solution of the
form c · log n + d. Points will be deducted if c is bigger than it needs to be. You
may assume that n is divisible as needed.

6. (21 marks, Programming, due Feb 24)

You work in a software company, and your boss is well-acquainted with binary search
trees. He recently learned that those can be made to perform better with by balancing,
and is now wondering which of the various methods is best. Your job is to implement

2

four versions of binary search trees (AVL-trees, scapegoat trees, binary search-trees
with MTF-heuristic and splay trees) and to compare their performance with each
other as well as with regular binary search trees.

Details:

• We will provide you with classes TreeNode and BST, which implement binary
search trees. We will use our own copies of these classes during auto-testing, so
any changes you make to it should only be for testing-purposes.

• We will provide you with a stub for four classes AVLTree, ScapegoatTree, MTFTree
and Splay that are extension of BST. You need to fill in the details for insert for
all four classes. Submit file BSTExtensions.cpp.

• Submit file experiment.pdf that contains a recommendation to your boss as to
which implementation you would suggest. Give experimental evidence to support
your recommendation, and briefly describe how you conducted your experiments.
(The expected total length is around half a page.)

Evaluation (21 marks total):

• 4 marks each for correctness of implementing insert in the classes AVLTree, Scape-
goatTree, MTFTree and SplayTree. This will be mostly determined by automated
testing of the resulting structure.

• 5 marks for a recommendation that is well-supported by evidence. There is no
one correct answer to this question; your recommendation will be evaluated based
on doing reasonable experiments and drawing reasonable conclusions.

A few notes and hints:

• The stubs were written to make your life easier and do not necessarily follow best
programming practices (e.g. everything is public, no accessor functions, multiple
classes in a file). You are likewise permitted to keep everything public, and all
your submitted classes shouild be in one file.

• Class BST has a helper-method print, which displays a binary search tree in
ASCII—you may find this useful for testing.

• Class BST also has helper-methods inOrder and preOrder, which we will use
during auto-testing. They do not use parent-references. (Put differently, you
need not update parent-references during rotations/rebuilds if you prefer to find
the search-path differently.)

• Class TreeNode has an integer field, which is unused by BST. You can use it to
store height, size, or whatever else you might find useful.

• For all classes except ScapegoatTree the tree for a fixed insertion-order is unique.
To make it unique for ScapegoatTree as well, use α = 2

3
, and use the rule that

when re-building a subtree where np is even, the left subtree receives (np − 2)/2
nodes while the right subtree receives np/2 nodes.

3

• We have not seen details of how to build a perfectly balanced tree in Θ(np) time.
Our testing-scripts only test for structure (as long as the code returns within
a reasonable timeframe), so rebuilding in Θ(np log np) time is acceptable (and
should be easy).

• You are allowed to use std::vector, std::list, std:stack and std:queue in
the insert-routines, but no other external implementations. (You can use whatever
you want in your own main-file where you do the experiments—we do not get that
code.)

• Nearly all your trees require rotations. Implementing rotations only once (i.e.,
having a common superclass for those trees) is strongly recommended.

• The pseudocodes in the textbook were written for easy understanding, but are
not necessarily the easiest for implementation. You are welcome to deviate from
what exactly you update when, as long as the final tree has the same structure.

• Your file will be translated with g++ -std=c++17 -c BSTExtensions.cpp (and
then linked with our own copies of BST and main-routine). Therefore your file
BSTExtensions.cpp is not allowed to have a main routine, or its main routine
should be surrounded by #ifndef TESTING as done in the stub.

• We would suggest that you run your program on randomly built trees of various
sizes. While you could use the run-time as evaluation-factor, this is notoriously
unreliable due to hardware, load, swapping, very small numbers etc. It also does
not take into account how long future searches might take. A better idea is
to consider height, and/or number of rotations, and/or size of rebuilt subtrees,
and/or total access cost, or . . . (this decision is up to you).

4

