University of Waterloo
CS240E, Winter 2021

Assignment 5
Due Date: Wednesday, Apr 7, 2021 at 5pm

The integrity of the grade you receive in this course is very important to you and the
University of Waterloo. As part of every assessment in this course you must read and sign
an Academic Integrity Declaration (AID) before you start working on the assessment and
submit it before the deadline of April 7th along with your answers to the assignment;
i.e. read, sign and submit A05-AID.txt now or as soon as possible. The agreement
will indicate what you must do to ensure the integrity of your grade. If you are having
difficulties with the assignment, course staff are there to help (provided it isn’t last minute).

The Academic Integrity Declaration must be signed and submitted on time
or the assessment will not be marked.

Please read http://www.student.cs.uwaterloo.ca/~cs240e/w21/guidelines/guidelines.
pdf for guidelines on submission. Each written question solution must be submit-
ted individually to MarkUs as a PDF with the corresponding file names: a5ql.pdf,
abq2.pdf, ... , abgb.pdf.

It is a good idea to submit questions as you go so you aren’t trying to create sev-
eral PDF files at the last minute. Remember, late assignments will not be marked
but can be submitted to MarkUs after the deadline for feedback if you email
cs240e@uwaterloo.ca and let the ISAs know to look for it.

1. (4 marks)

We have shown that the Knuth-Morris-Pratt algorithm (Algorithm 9.5) runs in O(m+
n) time. This is non-trivial since the while-loop may execute repeatedly without in-
creasing ¢. Show an example where this happens. More precisely, give a text T and a
pattern P and argue that when searching for P in T, there exists some value of i for
which line 5 (of Algorithm 9.5) is reached Q(m) times without changing the value of
i. Your construction should be in terms of m = |P| and n = |T'|, and work for any
sufficienly large values m,n with m < n.

2. (34+3+3=9 marks) We are searching for pattern P in text 7" where |T| = n, |P| = m,
and n > m > 1.

(a) Show that any pattern matching algorithm must look at > [n/m] characters of
T in the worst case.

(b) Consider pattern P = 0™ and let text 7" be a string of n > m bits that were
randomly chosen to be 0 or 1 with equal probability. Let X be the number of
comparisons done by Boyer-Moore until it mismatches for the first time or returns
with success. Show that E[X] < 2.

1

http://www.student.cs.uwaterloo.ca/~cs240e/w21/guidelines/guidelines.pdf
http://www.student.cs.uwaterloo.ca/~cs240e/w21/guidelines/guidelines.pdf

(c) Consider the same setup as in the previous part. Assume you just had a mismatch.
Show that expected amount by which you shift the guess forward is at least m—1.

Motivation: For the special string P = 0™, the expected number of comparisons is
hence ~ 2" (i.e., roughly within a factor 2 of the lower bound) because you do 2
comparisons until a mismatch and then shift forward by m — 1 characters.

. (13 marks) Assume that you have bitstrings and you know that all runs in each bitstring
have odd length. Give a lossless compression scheme for such bitstrings that always
achieves compression ratio smaller than 1.

Formally, if the source text S has length n, and consists of runs of length k1, ko, ..., kg
for some d > 1, then all k;’s are odd. Explain how to find an encoding C of S that
has length less than n and show that you can uniquely recover S, given C. You do not
need to discuss the run-time of encoding/decoding (but it must be doable in polynomial
time).

You may assume that n is sufficiently large. You should make no assumptions about
ki,...,kq (other than that they are odd), but part-marks may be given if you do.

. (24442=8 marks) This question concerns Lempel-Ziv encoding of the word A", which
is the word consisting of n copies of the character A. In the following, use as alphabet
the 128 ASCII characters, stored with code-words 0 up to 127. In particular, ‘A’ has
code-word 65, and the first code-word you can use for strings added to the dictionary
is 128.

(a) Give the encoding (as list of numbers, not as a bit-string) of A'®. Show your work.

(b) Recall that traditional Lempel-Ziv-Welch converts integers into 12-bit strings.
This means that when we add codeword 4096 to the dictionary, this would result
in an overflow-error.

When encoding A", what is the smallest n for which we get this overflow-error?
Justify your answer theoretically (i.e., the answer “I implemented LZW and it
used code 4096 at n = X7 will not give you credit.)

(c¢) Let X be the answer that you got in part (b). Prove that for any ASCII-string
of length X or more, using Lempel-Ziv-Welch leads to a dictionary-overflow.

. (2(+5)4+18=20(+5) marks) Recall that the Huffman-trie uses a binary encoding, i.e.,
the encoding-alphabet is o = {0,1}. But we can easily generalize it to a d-way
encoding where Y¥¢ = {0,...,d—1} for some integer d > 2. One would build the trie
for this with a natural greedy-algorithm shown in Algorithm [I}

The d-way Huffman-encoding of a text S is obtained by building this trie 7' (using
the frequencies in S) and then encoding as with any prefix-free code. The cost of this
encoding is (logd)) . f(c) - dr(c), where f(-) and dp(-) denote the frequency and
the depth as before, and the log-factor is added to compensate for the larger coding-
alphabet. For example, text BANANABREAD could have the following encoding-trie:

2

Algorithm 1: dWayHuffman::build Trie(Xs, f, d)

=

() <+ min-oriented priority queue
forall ¢ € g with flc] > 0 do
L Q.insert(single-node trie for ¢ with weight f[c])

w N

while (@.size > 1 do // build encoding trie
k < min{d, Q.size}
for i =1,...,k do T; < Q.deleteMin(), f; < weight of T;
T < d-way trie with 17, ..., T} as sub-tries and weight fi+...+f
Q.insert(T)

return Q.deleteMin()

® N O ok

©

This gives encoding 100110110101221210120 with length 21 and cost 21 log 3 ~ 33.28.

(a) Find a text S such that the cost of the 3-way Huffman encoding of S is better than
the cost of the 2-way Huffman encoding (i.e., the standard Huffman-encoding from
class). Justify your answer by showing intermediate steps of how you obtained
the costs for your chosen string.

(b) (Bonus) Assume you have a text S of length n that uses characters ¥ = {c1, ..., ¢},
and character ¢; has frequency f; = n/d% times, for some integer £; > 0. (A differ-
ent way to think of it is that each character ¢; has probability p; = 1/d%.) Show
that the d-way Huffman encoding has cost

n Z pi(—logpi).

1<i<s

Motivation: The strange sum is called the entropy of these probabilities, and the
bound can be shown to be a lower-bound for any encoding of texts that have
these frequencies.

(¢) (Programming, due April 14) Implement d-way encoding and experiment with

resulting eempression—+ratios costs. Specifications are given below.

Programming assignment details

e The provided stub HuffmanEncoding.cpp contains methods that you must im-
plement without changing the signatures:

3

— dWayEncoding(S,d) returns the encoding of text S with d-way Huffman en-
coding. Here S has ASCII-characters between 32 and 126, and d is an integer
with 2 < d < 10. You may assume that S has at least two distinct characters.

You can break ties arbltrarlly, but your encodmg must be the theshertest-peossible

: % g no longer
than the d Wd} encodlng you would get from Algorlthm [You should not
assign code-words to characters that do not occur in S.

— getCodeWord (c) returns the code-word of one ASCII-character ¢ (between 32
and 126). This method will only be called if dWwayEncoding has been called
previously, and should return the same code-word for ¢ as has been used
during that encoding.

Submit an updated file HuffmanEncoding.cpp. If you need additional classes,
then (contrary to good programming practices) include them in this file as well.

Run experiments on some texts and compare the costs of doing d-way encoding
(for d between 3 and 10) to the cost of doing 2-way encoding. Submit a file
experiments.pdf where you report average ratios of these costs, and explain briefly
what texts you used.

You should not be using randomly generated text; it does not compress well since
the character-frequencies would likely all be the same. Instead, use some human-
generated texts (e.g. English or some programming or markup code). You are
specifically allowed to download such texts from the internet, but acknowledge
your sources. Also, make sure that your texts are long enough that the character-
frequencies are uneven.

You may use the following std classes/methods: min, pair, list, stack,
queue, priority_queue, vector as well as the ones used in the stub. No other
external libraries are allowed in your submitted code.

