
University of Waterloo

CS240E, Winter 2025

Written Assignment 1

Due Date: Tuesday, January 21, 2025 at 5pm

Be sure to read the assignment guideliness (https://student.cs.uwaterloo.ca/~cs240e/
w25/assignments.phtml#guidelines). Submit your solutions electronically to Crowd-
mark. Ensure you have read, signed, and submitted the Academic Integrity Declaration
AID01.

Grace period: submissions made before 11:59PM on Jan. 21 will be accepted without
penalty. Please note that submissions made after 11:59PM will not be graded and may
only be reviewed for feedback.

Question 1 [9 marks]

There are many different definitions of “little-omega” in the literature (to distinguish them,
we will call them ω1, . . . , ω3 here). Fix two functions f(x), g(x) from R+ to R+; in particular
they are never 0. We say that

(i) f(x) ∈ ω1(g(x)) if for all c > 0 there exists n0 > 0 such that f(x) > c · g(x) for all
x ≥ n0,

(ii) f(x) ∈ ω2(g(x)) if for all c > 0 there exists n0 > 0 such that f(x) ≥ c · g(x) for all
x ≥ n0,

(iii) f(x) ∈ ω3(g(x)) if the function f(x)
g(x)

tends to infinity.

Show that these definitions are equivalent, i.e., f(x) ∈ ωi(g(x)) if and only if f(x) ∈
ωj(g(x)) for any i, j. Your proof may use the limit-rule (and related statements) only as far
as their actual proofs are in the course notes; otherwise you need to re-prove the statement
(but you may copy and modify proofs from the course notes).

Recall that the easiest way to prove that a number of statements are equivalent is to
prove a circle of implications among them, e.g. (i)⇒(ii)⇒(iii)⇒(i). Picking the circle to
prove is up to you, but state clearly what you are proving.

Question 2 [3+6=9 marks]

Motvation: In class we often use a sloppy recursion, or assume that “n is divisible as needed”.
The following question illustrates that, with some limitations, this approach is justified.

a) Show that the following statement is true.

“Let f(x) be a positive monotone function with domain R+. Assume that f(x) ≤ x
whenever x is a power of 2, i.e., x = 2k for some integer k ≥ 0. Then f(x) ∈ O(x).”

1

https://student.cs.uwaterloo.ca/~cs240e/w25/assignments.phtml#guidelines
https://student.cs.uwaterloo.ca/~cs240e/w25/assignments.phtml#guidelines


b) Show that the following statement is false.

“Let f(x) be a positive monotone function with domain R+. Assume that f(x) ≤ x for
infinitely many integers, i.e., for any N there exists an integer x ≥ N with f(x) ≤ x.
Then f(x) ∈ O(x).”

Reminder: To show that a statement is false, you need to give an example that satisfies
all assumptions of the statement, but does not satisfy the conclusion.

Question 3 [5 marks]

Conside the following (strange) code-
fragment. Let f(n) be the number of
times that mystery reaches the print-
statement when called with parame-
ter n.

Algorithm 1: mystery(int n)

1 for j ← bn−2
2
c down to 0 do

2 i← j
3 while 2i + 1 ≤ n− 1 do
4 print “*”
5 i← 2i + 1

Give an asymptotically tight bound on f(n). Justify your answer.

Question 4 [2+3+4=9 marks]

a) Let T be a meldable heap and let z be a node of T . Show how to implement a
routine remove-node(z) which removes the node z from the meldable heap. The run-
time should be O(log n) expected time. You may assume that the heap has parent-
references.

b) Let T be a meldable heap and let z be a node of T . Let h be the height of the sub-heap
rooted at z. Show how to implement remove-node(z) in O(h) worst-case time.

c) Let T1 and T2 be two meldable heaps of height h1 and h2. If we merge T1 and T2 as
explained in class, the resulting heap may well have height h1 + h2. (You need not
show this.)

Give an algorithm that merges T1 and T2 into a meldable heap T that has height at most
max{h1, h2}+ 1. Your algorithm should have worst-case run-time O(max{h1, h2}).

Question 5 [3+7+3=13 marks]

How would you implement increase-key(z, k) in a binomial heap? The method is given as
parameter a node z and a key k and it should increase the key of z to k if it was smaller
before.

2



a) Prof. B. Fuddled thinks that
they can implement this us-
ing fix-up as follows:

Algorithm 2: increase-key(z, k)

1 if (k > z.key()) then
2 z.key ← k
3 while p← z.parent is not NULL and

p.key < z.key do // do fix-up

4 swap key-value pairs of z and p
5 z ← p

Show that Prof. Fuddled is incorrect. Thus, give an example of a flagged tree that
satisfies the binomial-heap-order property, indicate a node z and a key k > z.key, and
show that calling increase-key(z,k) results in a flagged tree that does not satisfy the
binomial-heap-order property. (Try to keep your tree small, no more than 16 nodes.)

b) Give a method to implement increase-key in a flagged tree with the binomial-heap-order
property, with worst-case run-time O(log n).

c) Recall that decrease-key(z, k) is given a node z and a key k and should decrease the
key of z to k if it was bigger before. Show that this operation can be reduced to
the other operations. Specifically, show that if a priority queue realization supports
size, find-max , delete-max , increase-key and insert with O(f(n)) run-time, then you
can also realize decrease-key with O(f(n)) run-time.

3


	[9 marks]
	[3+6=9 marks]
	[5 marks]
	[2+3+4=9 marks]
	[3+7+3=13 marks]

