
University of Waterloo

CS240E, Winter 2025

Assignment 2

Due Date: Tuesday, February 4, 2024 at 5pm

Be sure to read the assignment guidelines (https://student.cs.uwaterloo.ca/~cs240e/
w25/assignments.phtml#guidelines). Submit your solutions electronically to Crowd-
mark.

Grace period: Submissions made before 11:59PM on Feb. 4 will be accepted without
penalty. Please note that submissions made after 11:59PM will not be graded and may
only be reviewed for feedback.

Remark: For all questions on this assignment you cannot compute logarithms or
exponentiations in constant time. If you need these, then your algorithm must compute
them from scratch, and the time to do so must be counted when analyzing run-time.

Question 1 [1+1+7=9 marks]

Let T (w) be the number of times that we print a ‘*’ when calling Algorithm 1 with a bitstring
w of length n. Now let T best(n), Tworst(n), and T avg(n) be the best, worst, and average of
this (over all bitstrings of length n).

a) Prove an O-bound on T best(n).

b) Prove an Ω-bound on Tworst(n).

c) Show that T avg(n) ∈ O(T best(n)).

Algorithm 1: silly-algo(w, n)

Input: bitstring w of length n
1 i← 0, while w[i] == 0 do i← i+ 1
// w[i] is leftmost non-zero, possibly $

2 for k = 1 to (i+1)2 do print “*”

Hint: If you find part (c) difficult, then for partial credit state a summation-formula for
T avg(n), simplify it as much as possible, and give as tight an upper bound for it as you can
manage. You may use without proof that x ≥ 4 log x for x ≥ 16. The course-notes have
bounds for some summations that you may use without proof (but state the page-number).

1

https://student.cs.uwaterloo.ca/~cs240e/w25/assignments.phtml#guidelines
https://student.cs.uwaterloo.ca/~cs240e/w25/assignments.phtml#guidelines

Question 2 [2+5=7 marks]

Consider Algorithm 2, which is a
variant of quick-sort.

Here, subroutine use-one-key-
comparisons is unknown but uses
exactly one key-comparison, and
partition is as in class (and uses
exactly n key-comparisons). Now
let T best(n) and Tworst(n) be the
best and worst number of key-
comparisons for an array of size n.

Algorithm 2: mysteryQS(A, n← A.size)

1 if n > 1 then
2 i← partition(A, n−1)
3 mysteryQS(A[0, 1, . . . , i−1])
4 mysteryQS(A[i+1, . . . , n−1])
5 for j = 1 to i do
6 for k = i+ 1 to n− 1 do
7 use-one-key-comparison()

a) Show that Tworst(n) ∈ Ω(n2).

b) Show that T best(n) ∈ O(n2 log n).

Remark: Obviously (a) and (b) cannot both be tight. To keep the assignment shorter
we did not ask you to get the tight bounds here.

Question 3 [6+3=9 marks]

a) Assume that you are given a non-empty list L that contains n key-value pairs in
sorted order. Design an algorithm to build a binary search tree that contains exactly
the items of L and that is perfectly size-balanced, i.e., for every vertex z we have
|size(z.left)− size(z.right)| ≤ 1. The run-time must be O(n) and the algorithm should
use O(log n) auxiliary space (i.e., space other than the input-list L and the output-tree
T that you are building).

b) Prof. Quirky thinks that he can do the above with a comparison-based algorithm even
if L is in unsorted order. Show that this is not possible.

Question 4 [3+3+3+6(+5)=15(+5) marks]

A list-of-stacks data structure consists of a (doubly-linked) list L of stacks S0, S1, S2, . . . , Sℓ

where stack Si is stored as an array of capacity exactly 3i. Initially L contains just S0.
The user always pushes and pops elements from the leftmost stack S0. However, before any
element can be pushed onto a stack Si, we first check whether Si is full (its size equals its
capacity), and if so, move all its elements to Si+1. (If Si+1 is full then we move its elements
in turn, and so on.) Similarly, before any element can be popped from a stack Si, we first
check whether Si is empty, and if so, fill it with 3i items from Si+1. (If Si+1 is empty, then
we recursively fill it from Si+2, and so on.) See Algorithms 3 and 4 for the pseudocodes.

2

Algorithm 3: Mpush(x)

1 S ← leftmost stack on L
2 i← 0, c← 1 //idx/capacity of S

3 while S is full do
4 i← i+1, c← 3∗c
5 if S ̸= rightmost stack on L then
6 S ← stack after S on L
7 else S ← L.append(new stack)

// S is leftmost non-full stack

8 while i > 0 do
9 Snext = S, i← i−1, c← c/3

10 S ← stack before S on L
11 for j = 1 to c do
12 Snext.push(S.pop())

13 S.push(x)

Algorithm 4: Mpop()

1 S ← leftmost stack on L
2 i← 0, c← 1 //idx/capacity of S

3 while S is empty do
4 i← i+1, c← 3∗c
5 if S ̸= rightmost stack on L then
6 S ← stack after S on L
7 else return “error: No items”

// S is leftmost non-empty stack

8 while i > 0 do
9 Snext = S, i← i−1, c← c/3

10 S ← stack before S on L
11 for j = 1 to c do
12 S.push(Snext.pop())

13 return S.pop

a) Argue that these algorithms do not crash in lines 11-12. In particular, why do we have
always room to push c = 3i items onto Snext for Mpush? Why are there always at least
3i items in Snext for Mpop? (Hint: What can you say about the size of stack Si at any
given time?)

b) Assume that you only push items onto the stack, you never pop. Show that the list-
of-stacks uses Θ(n) space, where n is the current number of items that are stored.

c) Briefly say why the space is not Θ(n) in the worst case if we also pop items. Then
describe how you would modify the algorithm so that the space is always Θ(n) even
when we pop items. Only state the idea and analyze the space-requirement.

d) For a list-of-stacks {S0, . . . , Sℓ}, define Φ =
∑ℓ

i=0 size(Si) · (ℓ − i). Assume that at
least one of the stacks is not full. Argue that using Φ as potential function (and with
a suitable choice of time units) the amortized run-time for Mpush is O(log n).

e) (Bonus) Argue that the amortized run-time of Mpush is O(log n) even when all stacks
are full. (Hint: You will need to define a different potential function—finding it is part
of the problem.)

While a correct answer to e) likely contains a correct answer to d), for ease of grading
please write a separate answer to d) and reuse it here as needed.

Question 5 [2+3+2+3=10 marks]

Motivation: Scapegoat trees as defined in class store at each node z the size of the subtree
rooted at z. This is not actually required; this assignment will guide you towards a variation
that operates without storing the size of the subtree.

3

Define a light scapegoat tree to be a binary search tree that is height-balanced, by which we
mean that the height is at most ⌊log4/3 n⌋ (or equivalently, every node has depth at most
⌊log4/3 n⌋). You may assume that a light scapegoat tree has a field size with its number of
items. However, a light scapegoat tree does not store its height, and a node knows nothing
except its key and left and right subtree. (In particular it knows neither its depth, nor its
parent, nor the size of its subtree, nor the height of its subtree.)

Algorithm 5 gives (incomplete) pseudo-code to insert in such a tree:

Algorithm 5: LightScapegoatTree::insert(k, v)

// Current tree is height-balanced

1 z ← BST::insert(k, v)
2 if height-unbalanced(z) then
3 p← lowest-small-ancestor(z)
4 completely rebuild the subtree at p as a perfectly size-balanced tree

a) Show that (after inserting the new leaf z) the tree can be height-unbalanced only if
the depth of z is too big.

b) Design algorithm height-unbalanced(z) to test whether the tree is now no longer height-
balanced. The run-time must be O(log n), where n is the current size of the tree.

c) Show that if the tree is not height-balanced after BST::insert, then there exists an
ancestor x of leaf z such that

size(x) <
(
4
3

)d(x,z)
.

Here size(x) denotes the number of items in the subtree rooted at x, and d(x, z) denotes
the distance from z to x, i.e., the number of levels that x is above z. (So d(z, z) = 0,
d(parent(z), z) = 1, etc.).

d) Sub-routine lowest-small-ancestor(z) does the following: Find an ancestor x of z with

size(x) <
(
4
3

)d(x,z)
, and among all those, return the one that minimizes d(x, z). You

need not say how to implement this (it is not easy to do efficiently).

Argue that the rest of the insertion-routine is correct. Thus, show that after rebuilding
the subtree (at the node p returned by lowest-small-ancestor) to be perfectly size-
balanced, the resulting binary search tree is height-balanced.

For all parts, you may use results of previous parts even if you did not prove them.

Continuing the “motivation”: We are not asking you to show that LightScapegoatTree::insert
has Θ(log n) amortized time, but with the above results it would be very easy to do so using
the potential function from class.

4

	[1+1+7=9 marks]
	[2+5=7 marks]
	[6+3=9 marks]
	[3+3+3+6(+5)=15(+5) marks]
	[2+3+2+3=10 marks]

