
University of Waterloo

CS240E, Winter 2025

Assignment 3

Due Date: Tuesday, March 4, 2025 at 5pm

Be sure to read the assignment guideliness (https://student.cs.uwaterloo.ca/~cs240e/
w25/assignments.phtml#guidelines). Submit your solutions electronically to Crowd-
mark.

Grace period: submissions made before 11:59PM on Mar. 4 will be accepted without
penalty. Please note that submissions made after 11:59PM will not be graded and may
only be reviewed for feedback.

Question 1 [5+7=12 marks]

A Cartesian tree is a treap except that the priorities can be arbitrary values (so are not
necessarily a permutation of {0, . . . , n−1}). This means that we no longer have the array P
that we had for treaps, i.e., we cannot look up the node that has a given priority.

Let T be a Cartesian tree that has height h and n nodes.

a) Describe an algorithm that is given T and a key k, and that prints all items in T for
which the key is at least k. (There is no restriction on the order in which to print
them.) Note that k need not exist as a key in T .

To state the desired run-time, we need a small detour. Let the output-size s be the
number of items in T for which the key is at least k, and note that s could be anywhere
between 0 and n. Your algorithm will have to spend Ω(s) time to print the items, and
for this reason we include s in the desired run-time bound: Your algorithm should have
O(h+ s) worst-case run-time.

b) Describe an algorithm that is given T and a priority p, and that prints all items in
T for which the priority is at least p. (There is no restriction on the order in which
to print them.) Note that p need not exist as priority in T . Your algorithm should
have O(1+s) worst-case run-time, where s is the output-size, i.e., the number of items
where the priority is at least p.

Question 2 [5 marks]

Let S be a skip list that stores n ≥ 4 non-sentinel keys. Assume that the lists L0, L1, . . . , Lh

of L have the following property for all 0 ≤ i < h:

If |Li| = 1 then |Li+1| = 0. If |Li| > 1, then |Li+1| ≤
√
|Li|.

1

https://student.cs.uwaterloo.ca/~cs240e/w25/assignments.phtml#guidelines
https://student.cs.uwaterloo.ca/~cs240e/w25/assignments.phtml#guidelines

(As in class, |Li| denotes the number of non-sentinels in list Li.) What is the maximum
possible value of h, relative to n? For full marks, you should give an exact bound (no
asymptotics), make no assumptions on the divisibility of n, and show that your bound is
tight for infinitely many values of n. (But part-marks may be given otherwise.) Justify your
answer.

Hint: You might want to draw yourself a skip-list for n = 4 that satisfies the properties
and verify that your bound is tight for this n. Part-marks for this.

Question 3 [3 marks]

Let L be an unordered list with n distinct items k1, . . . , kn. Give a Θ-bound on the expected
access-cost if you put L in the optimal static order for the following frequencies:

fi =
n!

i
for 1 ≤ i ≤ n

For example, for n = 4 we have n! = 24 and the access-frequencies would be 24, 12, 8 and
6. Your bound must be in closed-form, simplify as much as possible.

Question 4 [2+2+2+5+4+2(+5)=17(+5) marks]

Consider the following algorithm to build a binary search tree:

Algorithm 1: build-path-BST(w, n)

Input: w is a bit-string of length n
1 T ← empty binary search tree; ℓ← 0, r ← n− 1
2 for (i = 0; i < n; i++) do
3 if w[i] = 0 then k ← ℓ; ℓ++ else k ← r; r−−
4 insert k into T using BST::insert (no rotations)

5 return (T)

a) Let T (w) be the tree constructed for bitstring w of length n. Show that T has height
n− 1, i.e., it is a path from the root to a unique leaf.

Let TA(w) (for A ∈ {MTF, splay}) be the binary search tree obtained as follows: First
build T (w), and let z be its unique leaf. Now apply rotations at z until it becomes the
root. Here we use either the MTF-heuristic (i.e., single rotations) or the splay-heuristic (i.e.,
zig-zig and zig-zag rotations), and A indicates the applied heuristic.

2

b) (Warm-up) Assume that we have done rotations until z is the grandchild of the root,
so up to symmetry the current tree is in one of the following formations:

g

p

z

A B

(i) g

p

z

A B

(ii)

Show what the final tree looks like, for both formations and both heuristics. (So there
are four trees to show in total.) No justification needed.

The following questions relate the height of TA(w) to the height of T (w) (which we know
to be h := n−1 from part (a)). Let HA(w) be the height of TA(w) and as usual let Hworst

A (n),
Hbest

A (n) be the maximum/minimum of HA(w) over all bitstrings of length n.

c) Show that Hworst
MTF (n) = h, by giving a suitable string w and showing T (w), TMTF(w),

and some intermediate steps of the transformation. Your construction should work for
any n (give it for a small n of your choice and then explain how to generalize).

d) Show that Hworst
splay (n) ≤ h/2 + 1 if n is odd (so h is even).

Hint: Bound the height of the subtree at z after i (zig-zig or zig-zag) rotations.

e) Show that Hbest
MTF(n) ≥ ⌈h/2⌉.

Hint: Consider the structure of the two subtrees of z after we have done some rotations.

f) Show that Hbest
splay(n) < h/2, by giving a suitable string w and showing T (w), Tsplay(w),

and some intermediate steps of the transformation. If suffices to do this for one odd
n (and try to keep it small, say n ≤ 17).

g) (Bonus) Give an exact bound on Hbest
splay(n) that depends only on n and uses no asymp-

totics. In other words, state a function f(n), and show that for all n that are divisible
as needed, you have: (i) Tsplay(w) ≥ f(n) for all bitstrings w of length n, and (ii) there
exists a bitstring w of length n with Tsplay(w) ≤ f(n).

Part-marks will be given if you show only one of the inequalities, as long as your f(n)
is close to the correct answer.

3

Question 5 [2+6=8 marks]

a) Consider the following arrayA of size 10:
10

0

20

1

30

2

40

3

50

4

60

5

70

6

80

7

90

8

100

9

Show the result of performing interpolation-search(A,10,55) in this array, by indicating
for each round the current values of ℓ, r and the values used for the computation of m.

For your convenience, the pseudo-code of interpolation-search is given below.

Algorithm 2: interpolation-search(A, n, k)

1 ℓ← 0, r ← n− 1
2 while (ℓ ≤ r) do
3 if (k < A[ℓ]) then return “not found, would be between indices ℓ− 1 and ℓ”
4 if (k > A[r]) then return “not found, would be between indices r and r + 1”
5 if (k = A[r]) then return “found at index r”

6 m← ℓ+ ⌈ k−A[ℓ]
A[r]−A[ℓ] · (r − ℓ− 1)⌉

7 if (A[m] = k) then return “found at index m”
8 else if (A[m] < k) then ℓ← m+ 1
9 else r ← m− 1

b) Consider a sorted array A[0..n−1] where A[i] = ai+ b for 0 ≤ i ≤ n− 1 (for some con-
stants a > 0 and b that are arbitrary real numbers). Show that interpolation-search(A, n, k)
always takes O(1) time, regardless of whether key k is in A or not.

Question 6 [5 marks]

This question involves a set S = {x0, . . . , xn−1} of infinite-precision numbers. Specifically,
each xi is in [0, 1) and is written in base-2. It is given to you implicitly, via an accessor-
function get-decimal-place(i, d) which returns the bit in the dth decimal place of xi. For
example, if xi = 0.001001... then get-decimal-place(i, 3) = 1 and get-decimal-place(i, 4) = 0.
Function get-decimal-place takes Θ(1) time. The numbers in S have been randomly and
uniformly chosen from the interval [0, 1) and are all distinct.

Give an algorithm that finds a longest common prefix among the numbers in S, i.e., a
number y = 0.y1y2y3 . . . ys such that there are at least two numbers in S that begin with y,
and for which s is as large as possible. (Note that y is not necessarily unique, but s is.) The
worst-case run-time should be O(sn), though significant partial credit will be given for an
expected run-time of O(n(s+ log n)).

4

	[5+7=12 marks]
	[5 marks]
	[3 marks]
	[2+2+2+5+4+2(+5)=17(+5) marks]
	[2+6=8 marks]
	[5 marks]

