
University of Waterloo

CS240E, Winter 2025

Assignment 5

Due Date: Tuesday, April 1, 2025 at 5pm

Be sure to read the assignment guidelines (https://student.cs.uwaterloo.ca/~cs240e/
w25/assignments.phtml#guidelines). Submit your solutions electronically to Crowd-
mark.

Grace period: submissions made before 11:59PM on Apr. 1 will be accepted without
penalty. Please note that submissions made after 11:59PM will not be graded and may
only be reviewed for feedback.

Question 1 [3+3=6 marks]

We are searching for pattern P in text T where |T | = n, |P | = m, and n ≥ m ≥ 1.

a) Consider pattern P = 0m and let text T be a string of n ≥ m bits that were randomly
chosen to be 0 or 1 with equal probability. Let X be the number of checks done by
Boyer-Moore until it mismatches for the first time or returns with success. (The check
that leads to a mismatch is included in this count.) Show that E[X] ≤ 2.

b) Consider the same setup as in the previous part. Assume that you just had a mismatch.
Show that the expected amount by which you shift the guess forward is at least m− 1.

Motivation: For the special string P = 0m, the expected number of checks is hence
≈ 2 n

m−1 , because you expect to do at most 2 checks until a mismatch and then shift forward
by m− 1 characters. We clearly need to check at least ≈ n

m
characters, otherwise we might

miss an occurrence of P . Therefore Boyer-Moore is within a factor of 2 of the minimum
number of checks, at least for this special string on randomly chosen texts.

Question 2 [4 marks]

Let T be a text of length n. Recall that the suffix tree of T has O(n) nodes and height O(n),
and the trie of suffixes of T has O(n2) nodes and height O(n).

Show that these bounds are tight for some text T , even if the alphabet is small. To
do so, give (for all n that are divisible as needed) a bitstring T of length n such that its
trie of suffixes has Ω(n2) nodes and its suffix tree has height Ω(n). Justify your answer by
explaining the structure of both tries.

1

https://student.cs.uwaterloo.ca/~cs240e/w25/assignments.phtml#guidelines
https://student.cs.uwaterloo.ca/~cs240e/w25/assignments.phtml#guidelines

Question 3 [2+2+6=10 marks]

a) (Warm-up.) Consider the text AC AGAT AT AC AC AAC G over alphabet Σ =
{A,C,G, T}.
What is the cost of the corresponding Huffman-encoding? Show how you obtained your
answer, and also write the length of the code-word for each character.

b) Given some probabilities p1, . . . , ps (with 0 < pi < 1 and
∑s

i=1 pi = 1), the entropy is
defined to be

H(p1, . . . , ps) = −
s∑

i=1

pi log2(pi).

For a text S over alphabet Σ = {x1, . . . , xs}, we define the entropy H(S) to be

|S| ·H(p1, . . . , ps),

where pi = 1
|S|(frequency of xi) is used as “probability” of character xi for i = 1, . . . , s.

Compute H(S) for the text from part (a). Show how you obtained the answer (in
particular, list the probabilities).

c) Let S be a text such that the length of S and the frequency of the characters x1, . . . , xk

in S are powers of 2. In other words, there exist integers `0, . . . , `k such that |S| = 2`0

and xi has frequency fi = 2`i for i = 1, . . . , k. Show that the Huffman-encoding of S has
cost H(S).

Hint: The text from (a) satisfies the assumption. Study its Huffman-trie: what can you
say about the length of the encoding of xi? (For ease of description, assume that the
naming is such that `1 ≥ · · · ≥ `k.)

Motivation: Based on Shannon’s information-theoretic lower bound, one can argue that any
encoding of S as bitstring (whether obtained via prefix-free binary encoding or otherwise)
has length at least H(S). So in the special case where the frequencies are powers of 2,
Huffman-encoding gives the minimum-length encoding that is possible.

Detour: Set-up for Questions 4-6

The next three questions all have the same motivation and setup, explained here. They
are otherwise entirely unrelated, so you should try each of them even if you do not know
how to solve the others.

Professor E. Responsible converted a text T into a code-text C with some method. The
professor now wants to do pattern matching on the text T with a pattern P , but they have
accidentally run the command sudo rm -rf /* and deleted their operating system. This
means that the text T is lost, but fortunately they still have the code-text C saved on a
backup device. They also have the suffix-array of C, so they can efficiently search for patterns
in C. But does this help for doing pattern matching in T?

2

Formally, you have a code-text C (obtained with the method specified in each question
below). C is given to you as an array C[0..N−1], and as usual there is an end-sentinel at
C[N]. You also have the suffix-array S[0..N] of C. You are given a pattern P = P [0..m−1]
over alphabet Σ = {A, C, G, T}. Also assume that m > 1, so P is not just a single character.

Question 4 [3 marks]

This question has been removed from the assignment.

Question 5 [2+2+3+2+2+5+2=18 marks]

In class we did Lempel-Ziv-Welch compression with alphabet ASCII and stopped adding to
the dictionary once code-number 4095 has been assigned. For this question, use Lempel-
Ziv-Welch where the initial dictionary only stores Σ = {A, C, G, T} and we stop adding to the
dictionary once code-number 15 has been assigned.

a) Show the result of Lempel-Ziv-Welch compression applied to the string T given below.
You should both show the output-string C (as a list of integers in ΣC := {0, . . . , 15})
and the dictionary D at the end. The first step was done for you already.

C:

A

0

4:AA

A G A A T G A G G G C A A T C G G T C G

0 4A

A
1

C

2
G

3

T

D:

b) Consider the setup of the detour. Assume that code-text C was obtained from T us-
ing Lempel-Ziv-Welch compression. Give an algorithm to test whether P exists in the
(unknown) T , with run-time O(m logN).

The following steps guide you towards the algorithm.1 You can use steps for later part-
questions even if you did not solve them.

i) The LZW encoding algorithm can be viewed as having two phases. In the first
phase, we still add to dictionary D, while in the second phase dictionary D no
longer changed. In particular, we can write T = T1 T2 where Ti is the part of T
that was encoded during Phase i, for i = 1, 2.

Show how compute T1 in constant time. If T1 6= T (i.e., LZW encoding reached
Phase 2), then your algorithm should also return the encoding dictionary D as it
was at the end of Phase 1.

1If you can find algorithm that solves the problem, but does not follow these steps, then this is also an
acceptable solution (and will be graded out of 16 marks). But state clearly if that is what you are doing.

3

ii) Show how to test in O(m) time whether there is an occurrence of P in T that
overlaps at least one character of the string T1 that was encoded in Phase 1.

iii) Assume that P has no occurrence that overlaps a character of T1. LetW be the set
of words stored by dictionary D. Show that P is not a substring of a word in W .

iv) Assume that P occurs in T , but has no occurrence that overlaps T1 and P is not a
substring of a word in W . Then P must be split o across code-numbers, i.e., we can
write P1 . . . Pk for some k ≥ 2 such that P1 is a suffix of a word w1 ∈ W , Pk is a
prefix of a word in wk ∈ W , and Pi = wi for some word wi ∈ W for i = 2, . . . , k− 1.
(You need not prove this.)

Show how to compute in constant time all pairs (w1, P1) that could possibly fit such
a split of P .

v) Show that there are O(1) many tuples (P1, . . . , Pk, w1, . . . , wk) that could fit a split
of P , and give an algorithm to compute them all in O(m) time.

vi) Explain how to combine the above steps to test whether P occurs in the (unknown)
T in O(m logN) time.

Question 6 [2+2+5=9 marks]

Assume that code-text C was obtained doing the Burrows-Wheeler transform. In particular,
one of the characters in C[0..N−1] is the end-sentinel of T (we use # for this), while C[N] =$

(the end-sentinel of C). The alphabet-order is $ < # < A < C < G < T.

a) Consider C =AT#CGGAA$ (so N = 8). Show the suffix array S of C and the auxiliary
array A that we create as part of BWT decoding and that stores character-index pairs.
No justification needed.

Recall that each entry in S is normally just an integer k, but you may find it helpful for
later parts to write, with each entry S[i], also the corresponding suffix of C, or at least
its leftmost character.

b) Show that for all 0 ≤ i < N , the character stored at A[i] equals the character C[S[i+ 1]].

c) Assume that (in addition to C and S) you have access to the auxiliary A of C. Give an
algorithm to test whether P exists in the (unknown) T that has run-time O(m logN).

4

