
University of Waterloo

CS240E, Winter 2025

Programming Question 1

Due Date: Tuesday, February 11, 2025 at 5pm
Grace period: Submissions made before 11:59PM on Feb. 11 will be accepted without

penalty.

a) [20+8+8=36 marks]

Implement three realizations of a priority queue that supports insert, delete-max and
merge:

1. Realization 1 is a meldable heap, as seen in class. For testing purposes, your
implementation should not use a random coin toss; instead each of our operations
will pass you a bitstring, and you should read the bits to use from it.

2. Realization 2 is a deterministic version of a meldable heap that determines the
place to merge by height.

3. Realization 3 is a deterministic version of a meldable heap that determines the
place to merge by size.

See further explanations on the deterministic versions below. You should maintain six
heaps at all times: Two with realization 1, two with realization 2, and two with real-
ization 3. The operations listed below will specify to which heaps in which realizations
they apply.

Submit: A C++ program mergeHeaps.cpp that provides a main function that ac-
cepts the following commands from stdin:

– i k h r w, where k, h, r are integers (with 1 ≤ h ≤ 2 and 1 ≤ r ≤ 3) and w is a
bitstring. This should insert the key with ID-number k into heap h of realization
r. (You will store keys using the class Key; more on this below.)

For realization 1, the insertion-routine should use bitstring w to determine “ran-
dom” bits, i.e., the first call to random(2) should be replaced by w[0], the next
one should use w[1], etc. For realizations 2 and 3, bitstring w has no influence
on the resulting structure and should be ignored entirely.

– d h r w should remove the maximum key that is currently in heap h of realization
r. The restrictions and meaning of h, r and w are as for i.

– m r w should merge heap 1 and heap 2 of realization r. The result of the merge
should be in heap 1, while heap 2 becomes an empty heap. The restrictions and
meaning of r and w are as for i.

1



– p h r should go to heap h of realization r, and print the stored ID-numbers in
pre-order, i.e., first the ID-number at the root, then (recursively) all ID-numbers
in the left subtree, then all ID-numbers in the right subtree. The restrictions on
h and r are as for i.

Print the ID-numbers on one line, space-separated (or print an empty line if the
heap is empty). The operation should not change the structure of the heaps.

– n h r does the same as the previous command, except now the ID-numbers stored
in the heap are printed in in-order, i.e., first (recursively) all ID-numbers in the
left subtree, then the ID-number at the root, then the ID-numbers in the right
subtree.

– x terminates the program.

Accessing and comparing keys: You will not store keys as ints or any other
integer type. Instead, you will store instances of the class Key, initialized by an ID-
number that identifies the key uniquely (and this is what you should construct the
Key with). The class definition is given in key.h, which should be #included by
mergeHeaps.cpp.

In order to merge two heaps, you need to do key-comparisons. You must do this via
the overloaded < operator for class Key that is provided for you. You can retrieve a
Key’s ID number to print for commands p and n by using Key::get id.

There is no particular relationship between the ID-number of a key and the actual
key itself (e.g. while 3 < 4, we do not necessarily have Key(3) < Key(4)). To aid
debugging, for the public tests the ID-number behaves the same as the Key itself. This
is not the case for secret tests.

Note also that Key has a function to count the total number comparisons performed
so far. You may find this useful when doing experiments for parts (b) and (c), but you
do not need to use it.

Deterministic meldable heap: To make a meldable heap deterministic, one stores
extra information at each node, and uses it to determine where to merge. Two natural
ideas come to mind.

In the first one (used by Realization 2) each node z of the heap has a field height that
equals the height of the subtree rooted at z. (You will need to update this field when
merging another heap M into the subtree rooted at z; details are for you to figure out.)
The choice of where to merge M is then done by the height at the children: If one child
of z has strictly smaller height then the other, then merge M with the sub-heap at this
child. If both children of z have the same height, then merge M with the sub-heap at
the left child.

The second idea (used by Realization 3) is exactly the same, except that each node z
stores size, i.e., the number of nodes (including z) in the subtree rooted at z. You then

2



merge with the sub-heap at the child that has strictly smaller size, or if the sizes are
equal, use the left child.

Further specifications and assumptions:

– There is no length-limit on bitstringw—use the standard library class std::string
to store it. We promise that it will always be long enough to have enough bits for
the operation (but it may well be longer).

– We will do no illegal operations, i.e., parameters will be as specified above. We
will never ask to remove the maximum from an empty heap. Also, ID-numbers
will be distinct, but the (unknown) keys that they correspond to need not be
distinct.

– “Printing on one line” means that the line must end with a newline. Trailing
whitespace at the end of your output lines will be ignored by our test scripts.

– Note that the trees in your heaps are unique if the keys are unique. We will
verify their structure using commands p and n, so it is important that you follow
the pseudo-code from class (as well as the instructions for Realization 2 and 3)
exactly.

– Partial marks can be obtained if you only implement some of the realizations
correctly. The realization that passes the most tests will receive up to 20 marks,
the other two realizations will receive up to 8 marks each.

– You are allowed to use std::vector, std::list, std::string and std::string-
stream from the standard library, as well as any classes not relevant to CS240
material (see the assignment guidelines).

b) [4 marks]

Let the x-insertion-cost of a meldable heap T by the number of key-comparisons that
are used during insert(x). (This depends on the structure of T , the value of key x, and
the strategy for where to merge.) For the following question, let Th be a deterministic
meldable heap with realization 2 (i.e., it decides where to merge by height), while Ts

is a deterministic meldable heap with realization 3. Which of the (mutually exclusive)
following statements is true?

1. The insertion-costs of Th and Ts are the same. Formally, for any sequence of
operations insert and merge, followed by insert(x) for some key x, trees Th and
Ts have the same x-insertion-cost.

2. The insertion-costs are better for Th than for Ts. Formally, for any sequence of
operations insert and merge, followed by insert(x) for some key x, the x-insertion
cost for tree Th is never worse than the one of Ts, and for some sequences and/or
keys it is strictly better.

3. The insertion-costs are better for Ts than for Th. Formally, for any sequence of
operations insert and merge, followed by insert(x) for some key x, the x-insertion

3



cost for tree Ts is never worse than the one of Th, and for some sequences and/or
keys it is strictly better.

4. The insertion-costs of Th and Ts are incomparable. Formally, there exists a se-
quence of operations insert and merge, followed by insert(x) for some key x, such
that the x-insertion cost for tree Ts is strictly better than the one of Th. There
also exists such a sequence of operations such that the x-insertion cost for tree Ts

is strictly worse than the one of Th.

You need not justify your answer. You are strongly encouraged to determine via
experiments with your own implementation what the correct answer is (or at least to
rule out some incorrect ones).

To give us the answer, please add one more option to your main-routine:

– b—this keeps the heaps unchanged, and writes a single line to the output that
contains exactly one of the numbers 1, 2, 3, 4, corresponding to the above answer.

c) (Bonus, up to 10 marks)

Create your own meldable-heap realization (call it “realization 4”) with the goal of
keeping the x-insertion-cost as small as possible. The 10 bonus-marks will be awarded
as a competition; the submission that has the smallest insertion-cost on average over
our test set will receive 10 bonus-marks, the next-best will receive 9 bonus-marks, etc.
We will publish no details of our test set; you will need to design your own experimental
set and hope for the best.

There is no specific “correct” approach for this; the main question is the choice of strat-
egy when deciding where to merge. You are strongly encouraged to use experiments
with your own implementation to see what works best. Your realization must sup-
port all operations listed in (a) (allowing r = 4 as parameter), and it must follow the
general idea of a meldable heap; in particular during a merge you should only change
links at nodes along two downward walks from the root, and the run-time should be
proportional to the length of these walks.

The leaderboard will be updated regularly at: https://student.cs.uwaterloo.ca/

~cs240e/w25/leaderboard.phtml Your most recent correct submission made before
the due date is your entry on the leaderboard.

4

https://student.cs.uwaterloo.ca/~cs240e/w25/leaderboard.phtml
https://student.cs.uwaterloo.ca/~cs240e/w25/leaderboard.phtml

