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Algorithms and Problems (review)
Problem: Description of possible input and desired output.
Example: Sorting problem.

Algorithm: Step-by-step process, works on any instance I.
Example: insertion-sort

1) Describe the overall idea
“Keep part of array sorted, and repeatedly add more to sorted part.”

2) Give pseudo-code or detailed description.

insertion-sort(A, n)
A: array of size n
1. for (i ← 1; i < n; i++) do
2. for (j ← i ; j > 0 and A[j−1] > A[j]; j--) do
3. swap A[j] and A[j − 1]

Pseudo-code: designed for a person, not for a computer.
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Algorithms and Problems (review)

3) Argue correctness.
Typically state loop-invariants, or other key-ingredients, but no need
for a formal (CS245-style) proof by induction.
Sometimes obvious enough from idea-description and comments.

4) Analyze the algorithm.
We want to bound the number of primitive operations
We want to bound the auxiliary space
We need a computer model: Random Access Model (RAM)

I unlimited set of memory cells
I any number fits into a cell (but do not abuse)
I standard arithmetic operations, but no

√
·, sin, . . .

I all operations take the same amount of time
We do not count exactly, instead use asymptotic analysis (big-O)
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Order Notation overview

Symbol and acronyms picture / definition Typical use

O big-O asymptotic
upper bound

merge-sort takes
O(n log n) time.

Ω big-
Omega

asymptotic
lower bound

insertion-sort may
take Ω(n2) time.

Θ Theta asymptotically
the same/tight

insertion-sort has
worst-case run-time
Θ(n2)

o little-o asymptotically
strictly smaller

merge-sort asymp.
faster than insertion-
sort in worst case.

ω
little-
omega

asymptotically
strictly bigger

merge-sort uses
asymp. more space
than insertion-sort.

T.Biedl (CS-UW) CS240E – Module 1 Winter 2025 4 / 23



Order Notation
Study relationships between functions.

Example: f (x) = 75x + 500 and g(x) = 5x2 (e.g. c = 1, n0 = 20)

x

y

1000
2000
3000

5 10 15 20 25 30n0

g(x) = 5x2

f (x) = 75x + 500

O-notation: f (x) ∈ O(g(x)) (f is asymptotically upper-bounded by g) if
there exist constants c > 0 and n0 ≥ 0 s.t. |f (x)| ≤ c |g(x)| for all x ≥ n0.

In CS240: Parameter is usually an integer (write n rather than x).
f (n), g(n) usually positive for sufficiently big n (omit absolute value signs).
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Asymptotic Lower Bound
We have 2n2 + 3n + 11 ∈ O(n2).
But we also have 2n2 + 3n + 11 ∈ O(n10).
We want a tight asymptotic bound.

Ω-notation: f (x) ∈ Ω(g(x)) (f is asymptotically lower-bounded by g) if
there exist constants c > 0 and n0 ≥ 0 s.t. c |g(x)| ≤ |f (x)| for all x ≥ n0.
Example: Prove that f (n) = 2n2 + 3n + 11 ∈ Ω(n2) from first principles.

Example: Prove that 1
2n

2 − 5n ∈ Ω(n2) from first principles.
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Asymptotic Tight Bound

Θ-notation: f (x) ∈ Θ(g(x)) (f is asymptotically tightly-bounded by g) if
there exist constants c1, c2 > 0 and n0 ≥ 0 such that

c1 |g(x)| ≤ |f (x)| ≤ c2 |g(x)| for all x ≥ n0.

Equivalently: f (n) ∈ Θ(g(n))⇔ f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))

We also say that the growth rates of f and g are the same. Typically, f (x)
may be “complicated” and g(x) is chosen to be a very simple function.

Example: Prove that logb(n) ∈ Θ(log n) for all b > 1 from first principles.
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Common Growth Rates

Commonly encountered growth rates in analysis of algorithms include the
following:

Θ(1) (constant),
Θ(log n) (logarithmic),
Θ(n) (linear),
Θ(n log n) (linearithmic),
Θ(n logk n), for some constant k (quasi-linear),
Θ(n2) (quadratic),
Θ(n3) (cubic),
Θ(2n) (exponential).

These are sorted in increasing order of growth rate.

How do we define ‘increasing order of growth rate’?
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Strictly smaller asymptotic bounds
We have f (n) = n ∈ Θ(n).
How to express that f (n) grows slower than n2?

x

y g(x) = x2 1
2 · g(x) 1

4 · g(x)

f (x) = x

o-notation: f (x) ∈ o(g(x)) (f is asymptotically strictly smaller than g) if
for all constants c > 0, there exists a constant n0 ≥ 0 such that
|f (x)| ≤ c |g(x)| for all x ≥ n0.
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Strictly smaller/larger asymptotic bounds
Example: Prove that n ∈ o(n2) from first principles.

Main difference between o and O is the quantifier for c.
n0 will depend on c, so it is really a function n0(c).
We also say ‘the growth rate of f is less than the growth rate of g ’.
Rarely proved from first principles (instead use limit-rule  later).

ω-notation: f (x) ∈ ω(g(x)) (f is asymptotically strictly larger than g) if
for all constants c > 0, there exists a constant n0 ≥ 0 such that
|f (x)| ≥ c |g(x)| for all x ≥ n0.

Symmetric, the growth rate of f is more than the growth rate of g .
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The Limit Rule

Suppose that f (n) > 0 and g(n) > 0 for all n ≥ n0. Suppose that

L = lim
n→∞

f (n)
g(n) (in particular, the limit exists).

Then

f (n) ∈
{
o(g(n)) if L = 0
Θ(g(n)) if 0 < L <∞

If the fraction tends to infinity then f (n) ∈ ω(g(n)).

The required limit can often be computed using l’Hôpital’s rule. Note that
this result gives sufficient (but not necessary) conditions for the stated
conclusion to hold.
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Application 1: Logarithms vs. polynomials

Compare the growth rates of f (n) = log n and g(n) = n.

Now compare the growth rates of f (n) = (log n)c and g(n) = nd (where
c > 0 and d > 0 are arbitrary numbers).

T.Biedl (CS-UW) CS240E – Module 1 Winter 2025 12 / 23



Application 2: Polynomials
Let f (n) be a polynomial of degree d ≥ 0:

f (n) = cdnd + cd−1nd−1 + · · ·+ c1n + c0

for some cd > 0.

Then f (n) ∈ Θ(nd ):
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Example: Oscillating functions
Consider two oscillating functions f1, f2 for which limn→∞

fi (n)
n does not

exist. Are they in Θ(n)?

n

y f1(n) = n(1 + sin xπ/2)

2n

n

y f2(n) = n(2 + sin nπ/2)
3n

n

So no limit  must use other methods to prove asymptotic bounds.
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Relationships between Order Notations

f (n) ∈ Θ(g(n))⇔ g(n) ∈ Θ(f (n))
f (n) ∈ O(g(n))⇔ g(n) ∈ Ω(f (n))
f (n) ∈ o(g(n))⇔ g(n) ∈ ω(f (n))

f (n) ∈ Θ(g(n))⇔ f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))
f (n) ∈ o(g(n))⇒ f (n) ∈ O(g(n))
f (n) ∈ o(g(n))⇒ f (n) 6∈ Ω(g(n))
f (n) ∈ ω(g(n))⇒ f (n) ∈ Ω(g(n))
f (n) ∈ ω(g(n))⇒ f (n) 6∈ O(g(n))

Example: Fill the following table with TRUE or FALSE:
Is f (n) ∈ . . . (g(n))?

f (n) g(n) o O Ω ω

log n
√
n
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Asymptotic Notation and Arithmetic

Normally, we say f (n) ∈ Θ(g(n)) because Θ(g(n)) is a set.

Avoid doing arithmetic with asymptotic notations.
Do not write O(n) + O(n) = O(n).

(CS136 allowed you to be sloppy here. CS240 does not,
mostly because it can go badly wrong with recursions.)

Instead, when you do arithmetic, replace ‘Θ(f (n))’ by ‘c · f (n) for
some constant c > 0’

(That’s still a bit sloppy (why?), but less dangerous.)

There are some (very limited) exceptions:

I f (n) = n2 + Θ(n)

means “f (n) is n2 plus a linear term”
F nicer to read than “n2 + n + log n”
F more precise about constants than “Θ(n2)”

I But use this very sparingly (typically only for stating the final result)
I Similarly f (n) = n2 + o(1) means “n2 plus a vanishing term.”
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Complexity of Algorithms
To measure run-time, count primitive operations, sum up over loops,
bound asymptotically.
Run-time T (n) is always a function of the input size n.
Algorithm can have different running times on two instances of the
same size.

insertion-sort(A, n)
A: array of size n
1. for (i ← 1; i < n; i++) do
2. for (j ← i ; j > 0 and A[j−1] > A[j]; j--) do
3. swap A[j] and A[j − 1]

Let TA(I) denote the running time of an algorithm A on instance I.

Study this value for the worst-possible, best-possible and ‘typical’
(average) instance I.
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Complexity of Algorithms
Worst-case (best-case) complexity of an algorithm: The
worst-case (best-case) running time of an algorithm A is a function
T : Z+ → R mapping n (the input size) to the longest (shortest) running
time for any input instance of size n:

Tworst
A (n) = max

I∈In
{TA(I)}

T best
A (n) = min

I∈In
{TA(I)}

To prove a lower bound on the worst-case run-time: Pick one especially
bad example, and bound its run-time (using Ω-notation).

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is a function T : Z+ → R mapping n (the input
size) to the average running time of A over all instances of size n:

T avg
A (n) =

∑
I∈In

TA(I) ·
(
relative frequency of I

)
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Analysis of recursive algorithms

We illustrate this here on merge-sort.

Step 1: Describe the overall idea

Input: Array A of n integers

1 We split A into two subarrays
AL and AR that are roughly half
as big.

2 Recursively sort AL and AR
3 After AL and AR have been

sorted, use a function merge to
merge them into a single sorted
array.

split into halves

sort recursively sort recursively

merge

sorted
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Explaining the solution of a problem

Step 2: Give pseudo-code or detailed description.

merge-sort(A, n)
A: array of size n
1. if (n ≤ 1) then return
2. else
3. m = b(n − 1)/2c
4. merge-sort(A[0..m],m + 1)
5. merge-sort(A[m + 1..n−1], r)
6. merge(A[0..m],A[m + 1..n−1])

Improvements to this, and pseudo-code for merge  course notes
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Analysis of merge-sort
Step 3: Argue correctness.

Typically state loop-invariants, or other key-ingredients, but no need
for a formal (CS245-style) proof by induction.
Sometimes obvious enough from idea-description and comments.

Step 4: Analyze the run-time.
First analyze work done outside recursions.
If applicable, analyze subroutines separately.
If there are recursions: how big are the subproblems?
The run-time then becomes a recursive function.

Let T (n) denote the time to run merge-sort on an array of length n.
1 (initialize array) takes time Θ(n)
2 (recursively call merge-sort) takes time T

(
dn
2e
)

+ T
(
bn
2c
)

3 (call merge) takes time Θ(n)
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The run-time of merge-sort
The recurrence relation for T (n) is as follows (constant factor c
replaces Θ):

T (n) =
{
T
(
dn
2e
)

+ T
(
bn
2c
)

+ c n if n > 1
c if n = 1.

The following is the corresponding sloppy recurrence
(it has floors and ceilings removed):

T (n) =
{
2T

(n
2
)

+ cn if n > 1
c if n = 1.

When n is a power of 2, then the exact and sloppy recurrences are
identical and can easily be solved by various methods.
E.g. prove by induction that T (n) = cn log(2n) ∈ Θ(n log n).
It is possible to show that T (n) ∈ Θ(n log n) for all n
by analyzing the exact recurrence.
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Some Recurrence Relations

Recursion resolves to example
T (n) ≤ T (n/2) + O(1) T (n) ∈ O(log n) binary-search
T (n) ≤ 2T (n/2) + O(n) T (n) ∈ O(n log n) merge-sort
T (n) ≤ 2T (n/2) + O(log n) T (n) ∈ O(n) heapify (*)
T (n) ≤ cT (n−1) + O(1) T (n) ∈ O(1) avg-case analysis (*)
for some c < 1
T (n) ≤ 2T (n/4) + O(1) T (n) ∈ O(

√
n) range-search (*)

T (n) ≤ T (
√
n) + O(

√
n) T (n) ∈ O(

√
n) interpol. search (*)

T (n) ≤ T (
√
n) + O(1) T (n) ∈ O(log log n) interpol. search (*)

Once you know the result, it is (usually) easy to prove by induction.
These bounds are tight if the upper bounds are tight.
Many more recursions, and some methods to find the result, in CS341.

(*) These may or may not get used later in the course.
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