CS 240E - Data Structures
and Data Management (Enriched)

Module 1: Introduction and Asymptotic Analysis

Therese Bied|

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-01-04 03:40

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 1/23

Outline

@ Introduction and Asymptotic Analysis
@ How to “Solve a Problem”
@ Asymptotic Notation
@ Rules for asymptotic notation
@ Analysis of Algorithms Revisited

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025

Outline

@ Introduction and Asymptotic Analysis
@ How to “Solve a Problem”

T.Biedl (CS-UW) CS240 — Module 1

Algorithms and Problems (review)

Problem: Description of possible input and desired output.
Example: Sorting problem.

Algorithm: Step-by-step process, works on any instance /.
Example: insertion-sort

1) Describe the overall idea
"Keep part of array sorted, and repeatedly add more to sorted part.

2) Give pseudo-code or detailed description.

insertion-sort(A, n)

A: array of size n

1. for (i < 1;i < n;i++) do

2. for (j < i;j > 0 and A[j—1] > A[j];j--) do
3. swap A[j] and A[j — 1]

Pseudo-code: designed for a person, not for a computer.

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 2/23

Algorithms and Problems (review)

3) Argue correctness.

@ Typically state loop-invariants, or other key-ingredients, but no need
for a formal (CS245-style) proof by induction.

@ Sometimes obvious enough from idea-description and comments.

4) Analyze the algorithm.
@ We want to bound the number of primitive operations
@ We want to bound the auxiliary space

@ We need a computer model: Random Access Model (RAM)
» unlimited set of memory cells
» any number fits into a cell (but do not abuse)
» standard arithmetic operations, but no /-, sin, ...
» all operations take the same amount of time

e We do not count exactly, instead use asymptotic analysis (big-O)

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 3/23

Outline

@ Introduction and Asymptotic Analysis

@ Asymptotic Notation

T.Biedl (CS-UW) CS240 — Module 1

Order Notation overview

|

Symbol and acronyms

H picture / definition

Typical use

) asymptotic merge-sort takes
O | big-0 | *YMP 5 ;
upper bound O(nlog n) time.
Q big- asymptotic insertion-sort may
Omega | lower bound take Q(n?) time.
asvmptoticall insertion-sort has
© | Theta thz ssme/ti P{t worst-case run-time
g @(nZ)
; merge-sort _asymp.
. asymptoticall . .
o | little-o ymptoticaty faster than insertion-
strictly smaller .
sort 1n worst case.
little- asymptotically merge-sort uses
w omega | strictly bigger asymp. more space
g€ than insertion-sort.

T.Biedl (CS-UW)

CS240 - Module 1

Winter 2025 4 /23

Order Notation

Study relationships between functions.

Example: f(x) = 75x + 500 and g(x) = 5x2 (e.g. ¢ = 1, ny = 20)

O-notation: f(x) € O(g(x)) (f is asymptotically upper-bounded by g) if
there exist constants ¢ > 0 and ng > 0 s.t. |f(x)| < c|g(x)]| for all x > no.

In CS240: Parameter is usually an integer (write n rather than x).
f(n), g(n) usually positive for sufficiently big n (omit absolute value signs).

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 5/23

Asymptotic Lower Bound

e We have 2n? + 3n+ 11 € O(n?).
o But we also have 2n? +3n + 11 € O(n'9).
o We want a tight asymptotic bound.

Q-notation: f(x) € Q(g(x)) (f is asymptotically lower-bounded by g) if
there exist constants ¢ > 0 and ng > 0 s.t. c|g(x)| < |f(x)| for all x > no.

Example: Prove that f(n) = 2n% + 3n+ 11 € Q(n?) from first principles.

Example: Prove that n% —5n € Q(n?) from first principles.

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 6 /23

Asymptotic Tight Bound
©-notation: f(x) € ©(g(x)) (f is asymptotically tightly-bounded by g) if

there exist constants c1, ¢ > 0 and ng > 0 such that
a1 lg(x)] < |f(x)] < a2 lg(x)| for all x > ng.

Equivalently: f(n) € ©(g(n)) < f(n) € O(g(n)) and f(n) € Q(g(n))

We also say that the growth rates of f and g are the same. Typically, f(x)
may be “complicated” and g(x) is chosen to be a very simple function.

Example: Prove that log,(n) € ©(log n) for all b > 1 from first principles.

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 7/23

Common Growth Rates

Commonly encountered growth rates in analysis of algorithms include the
following:

° @(1) (constant),
log n) (logarithmic),

©(n) (linear),

©(nlog n) (linearithmic),

°
(D

%) (quadratic),
O(n®) (cubic),
2") (exponential).

o(
(n
(
©(nlogk n), for some constant k (quasi-linear),
(n
(
o(

These are sorted in increasing order of growth rate.

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 8 /23

Common Growth Rates

Commonly encountered growth rates in analysis of algorithms include the
following:

e O(1) (constant),
e O(log n) (logarithmic),
e O(n) (linear),

©(nlog n) (linearithmic),

°
O]

n?) (quadratic),
e O(n%) (cubic),

(
(
(
©(nlog” n), for some constant k (quasi-linear),
(
(
e O(2") (exponential).

These are sorted in increasing order of growth rate.

How do we define ‘increasing order of growth rate'?

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 8 /23

Strictly smaller asymptotic bounds

e We have f(n) = n € ©(n).
@ How to express that f(n) grows slower than n®?

y g(x) =x

o-notation: f(x) € o(g(x)) (f is asymptotically strictly smaller than g) if
for all constants ¢ > 0, there exists a constant ng > 0 such that

|f(x)] < c|g(x)] for all x > no.
T.Biedl (CS-UW)

CS240 - Module 1 Winter 2025 9 /23

Strictly smaller/larger asymptotic bounds

Example: Prove that n € o(n2) from first principles.

T.Biedl (CS-UW) CS240 — Module 1

Strictly smaller/larger asymptotic bounds

Example: Prove that n € o(n2) from first principles.

@ Main difference between o and O is the quantifier for c.

@ ng will depend on c, so it is really a function ng(c).

@ We also say ‘the growth rate of f is less than the growth rate of g’.
o Rarely proved from first principles (instead use limit-rule ~~ later).

w-notation: f(x) € w(g(x)) (f is asymptotically strictly larger than g) if
for all constants ¢ > 0, there exists a constant ng > 0 such that
[f(x)| > c|g(x)| for all x > ng.

@ Symmetric, the growth rate of f is more than the growth rate of g.

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 10 / 23

Outline

@ Introduction and Asymptotic Analysis

@ Rules for asymptotic notation

T.Biedl (CS-UW) CS240 — Module 1

The Limit Rule

Suppose that f(n) > 0 and g(n) > 0 for all n > ng. Suppose that
L= lim f(n) (in particular, the limit exists).

Then
o(g(n)) ifL=0
fm) € {@(g(n)) if0<L<oo

If the fraction tends to infinity then f(n) € w(g(n)).

The required limit can often be computed using /'Hépital’s rule. Note that

this result gives sufficient (but not necessary) conditions for the stated
conclusion to hold.

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 11 /23

Application 1: Logarithms vs. polynomials

Compare the growth rates of f(n) = logn and g(n) = n.

Now compare the growth rates of f(n) = (logn)¢ and g(n) = n9 (where
¢ > 0 and d > 0 are arbitrary numbers).

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 12 /23

Application 2: Polynomials
Let f(n) be a polynomial of degree d > 0:

f(n) = cdnd + Cd_lnd_l +---t+cn+

for some ¢4 > 0.

Then f(n) € ©(n9):

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025

13 / 23

Example: Oscillating functions

Consider two oscillating functions fi, f» for which lim,_ f"(n") does not
exist. Are they in ©(n)?

y f(n) = n(1+sinx7/2) y f(n)=n(2 +sin3n7r/2)
n
2n

T\

[

[

o

m ll \

) ! \

b [

i “ i \

7\ I I \
Iy vy \
Iy ‘o \
~ ! A i \

v . n

So no limit ~~» must use other methods to prove asymptotic bounds.

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 14 /23

Relationships between Order Notations

o f(n) € ©(g(n)) < g(n) € O(f(n))
o f(n) € O(g(n)) < g(n) € Q(f(n))
o f(n) € o(g(n)) < g(n) € w(f(n))
o f(n) € ©(g(n)) < f(n) € O(g(n)) and f(n) € Q(g(n))
e f(n) € o(g(n f(n) € O(g(n))
o f(n) € o(g(n)) = f(n) & Qg(n))
e f(n) € w(g(n f(n) € Q(g(
o f(n) € w(g(n)) = f(n) & O(g(n

Example: Fill the following table with TRUE or FALSE:

~— —

n

n

) =
) =
) =
) =

~— ~—

)
)

Is f(n) €...(g(n))?
mlem] o | o0 [9 | w

[logn | vn || | | |

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 15 /23

Asymptotic Notation and Arithmetic

o Normally, we say f(n) € ©(g(n)) because ©(g(n)) is a set.

@ Avoid doing arithmetic with asymptotic notations.
Do not write O(n) + O(n) = O(n).
(CS136 allowed you to be sloppy here. CS240 does not,
mostly because it can go badly wrong with recursions.)

@ Instead, when you do arithmetic, replace ‘©(f(n))’ by ‘c - f(n) for

some constant ¢ > 0’
(That's still a bit sloppy (why?), but less dangerous.)

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 16 / 23

Asymptotic Notation and Arithmetic

o Normally, we say f(n) € ©(g(n)) because ©(g(n)) is a set.

@ Avoid doing arithmetic with asymptotic notations.
Do not write O(n) + O(n) = O(n).
(CS136 allowed you to be sloppy here. CS240 does not,
mostly because it can go badly wrong with recursions.)

@ Instead, when you do arithmetic, replace ‘©(f(n))’ by ‘c - f(n) for
some constant ¢ > 0’
(That's still a bit sloppy (why?), but less dangerous.)

@ There are some (very limited) exceptions:
» f(n) = n? + ©(n) means “f(n) is n? plus a linear term”
* nicer to read than “n® 4+ n+ logn"
* more precise about constants than “©(n?)"

» But use this very sparingly (typically only for stating the final result)

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 16 / 23

Asymptotic Notation and Arithmetic

o Normally, we say f(n) € ©(g(n)) because ©(g(n)) is a set.

@ Avoid doing arithmetic with asymptotic notations.
Do not write O(n) + O(n) = O(n).
(CS136 allowed you to be sloppy here. CS240 does not,
mostly because it can go badly wrong with recursions.)

@ Instead, when you do arithmetic, replace ‘©(f(n))’ by ‘c - f(n) for
some constant ¢ > 0’
(That's still a bit sloppy (why?), but less dangerous.)

@ There are some (very limited) exceptions:
» f(n) = n? + ©(n) means “f(n) is n? plus a linear term”
* nicer to read than “n® 4+ n+ logn"
* more precise about constants than “©(n?)"

» But use this very sparingly (typically only for stating the final result)
» Similarly f(n) = n? + o(1) means “n? plus a vanishing term.”

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 16 / 23

Outline

@ Introduction and Asymptotic Analysis

@ Analysis of Algorithms Revisited

T.Biedl (CS-UW) CS240 — Module 1

Complexity of Algorithms

@ To measure run-time, count primitive operations, sum up over loops,
bound asymptotically.

@ Run-time T(n) is always a function of the input size n.

@ Algorithm can have different running times on two instances of the
same size.

insertion-sort(A, n)

A: array of size n

1. for (i < 1;i < n;i++) do

2. for (j < i;j > 0 and A[j—1] > A[j];j--) do
3. swap A[j] and A[j — 1]

Let T 4(/) denote the running time of an algorithm A on instance /.

Study this value for the worst-possible, best-possible and ‘typical’
(average) instance /.

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 17 /23

Complexity of Algorithms
Worst-case (best-case) complexity of an algorithm: The
worst-case (best-case) running time of an algorithm A is a function

T : Z" — R mapping n (the input size) to the longest (shortest) running
time for any input instance of size n:

T () = max{ Ta()}

TA™(n) = min{ Ta(/)}

To prove a lower bound on the worst-case run-time: Pick one especially
bad example, and bound its run-time (using Q2-notation).

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is a function T : Z* — R mapping n (the input
size) to the average running time of A over all instances of size n:

T28(n) = > Ta(l) - (relative frequency of /)
1€Z,

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 18 /23

Analysis of recursive algorithms

We illustrate this here on merge-sort.

Step 1: Describe the overall idea

Input: Array A of n integers

@ We split A into two subarrays
Ap and Ag that are roughly half | ‘

as blg / split into halves \

e ReCUrSiVe/y sort AI_ and AR sort recursively sort recursively
\\\ / ~
© After A; and Agr have been imerge
sorted, use a function merge to
merge them into a single sorted sorted
array.

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 19 /23

Explaining the solution of a problem

Step 2: Give pseudo-code or detailed description.

[y

else

2
3.
4.
5
6

merge-sort(A, n)
A: array of size n
if (n < 1) then return

m=[(n-1)/2]
merge-sort(A[0..m], m + 1)
merge-sort(Alm + 1..n—1], r)
merge(A[0..m], Alm + 1..n—1])

Improvements to this, and pseudo-code for merge ~» course notes

T.Biedl (CS-UW)

CS240 - Module 1 Winter 2025

20/ 23

Analysis of merge-sort

Step 3: Argue correctness.

o Typically state loop-invariants, or other key-ingredients, but no need
for a formal (CS245-style) proof by induction.

@ Sometimes obvious enough from idea-description and comments.

Step 4: Analyze the run-time.
o First analyze work done outside recursions.
o If applicable, analyze subroutines separately.

@ If there are recursions: how big are the subproblems?
The run-time then becomes a recursive function.

Let T(n) denote the time to run merge-sort on an array of length n.
O (initialize array) takes time ©(n)
Q@ (recursively call merge-sort) takes time T([51]) + T([5])
@ (call merge) takes time ©(n)

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 21 /23

The run-time of merge-sort

@ The recurrence relation for T(n) is as follows (constant factor ¢
replaces ©):

T(n):{:(wnﬂ(m)wn fn-1

@ The following is the corresponding sloppy recurrence
(it has floors and ceilings removed):

T(n) = 2T(§)+cn ifn>1
c if n=1.

@ When n is a power of 2, then the exact and sloppy recurrences are
identical and can easily be solved by various methods.
E.g. prove by induction that T(n) = cnlog(2n) € ©(nlog n).

@ It is possible to show that T(n) € ©(nlogn) for all n
by analyzing the exact recurrence.

T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 22 /23

Some Recurrence Relations

Recursion \ resolves to \ example

T(n) < T(n/2)+ O(1) T(n) € O(log n) binary-search

T(n) <2T(n/2)+ O(n) T(n) € O(nlogn) | merge-sort

T(n) <2T(n/2)+ O(logn) | T(n) € O(n) heapify (*)

T(n) < cT(n—1)+ O(1) T(n) € O(1) avg-case analysis (*)
for some c <1

T(n) <2T(n/4)+ O(1) T(n) € O(+v/n) range-search (¥*)
T(n) < T(yv/n)+ O(v/n) T(n) € O(v/n) interpol. search (*)
T(n) < T(v/n)+ O(1) T(n) € O(loglogn) | interpol. search (*)

@ Once you know the result, it is (usually) easy to prove by induction.
@ These bounds are tight if the upper bounds are tight.

@ Many more recursions, and some methods to find the result, in CS341.

(*) These may or may not get used later in the course.
T.Biedl (CS-UW) CS240 - Module 1 Winter 2025 23 /23

	Introduction and Asymptotic Analysis
	How to ``Solve a Problem''
	Algorithms and Problems (review)
	Algorithms and Problems (review)

	Asymptotic Notation
	Order Notation overview
	Order Notation
	Asymptotic Lower Bound
	Asymptotic Tight Bound
	Common Growth Rates
	Strictly smaller asymptotic bounds
	Strictly smaller/larger asymptotic bounds

	Rules for asymptotic notation
	The Limit Rule
	Application 1: Logarithms vs. polynomials
	Application 2: Polynomials
	Example: Oscillating functions
	Relationships between Order Notations
	Asymptotic Notation and Arithmetic

	Analysis of Algorithms Revisited
	Complexity of Algorithms
	Complexity of Algorithms
	Analysis of recursive algorithms
	Explaining the solution of a problem
	Analysis of merge-sort
	The run-time of merge-sort
	Some Recurrence Relations

