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ADT Priority Queue
Priority Queue generalizes both ADT Stack and ADT Queue.

It is a collection of items (each having a priority or key) with operations
insert: inserting an item tagged with a priority
delete-max: removing and returning an item of highest priority.

We can have extra operations: size, is-empty, and get-max

This is a maximum-oriented priority queue. A minimum-oriented
priority queue replaces operation delete-max by delete-min.

Applications:
How would you simulate a stack with a priority queue?

How would you simulate a queue with a priority queue?

Other applications: typical todo-list, simulation systems, sorting
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Using a Priority Queue to Sort

PQ-Sort(A[0..n − 1])
1. initialize PQ to an empty priority queue
2. for i ← 0 to n − 1 do
3. PQ.insert(an item with priority A[i ])
4. for i ← n − 1 down to 0 do
5. A[i ]← priority of PQ.delete-max()

Note: Run-time depends on how we implement the priority queue.
Sometimes written as: O(initialization + n · insert + n · delete-max)

With two easy (but slow) realizations of priority queues:
• Unsorted array or list ( selection-sort)
• Sorted array or list ( insertion-sort)

T.Biedl (CS-UW) CS240E – Module 2 Winter 2025 3 / 31



Using a Priority Queue to Sort

PQ-Sort(A[0..n − 1])
1. initialize PQ to an empty priority queue
2. for i ← 0 to n − 1 do
3. PQ.insert(an item with priority A[i ])
4. for i ← n − 1 down to 0 do
5. A[i ]← priority of PQ.delete-max()

Note: Run-time depends on how we implement the priority queue.
Sometimes written as: O(initialization + n · insert + n · delete-max)

With two easy (but slow) realizations of priority queues:
• Unsorted array or list ( selection-sort)
• Sorted array or list ( insertion-sort)

T.Biedl (CS-UW) CS240E – Module 2 Winter 2025 3 / 31



Better Realization: Binary Heap

Binary tree with
1 structural property and

2 heap-order property.

Recall: 15 represents
priority = 15, <other info>•
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Heaps – Definition

A heap is a binary tree with the following two properties:

1 Structural Property: All the levels of a heap are completely filled,
except (possibly) for the last level. The filled items in the last level
are left-justified .

2 Heap-order Property: For any node i , the key of the parent of i is
larger than or equal to key of i .

The full name for this is max-oriented binary heap.

Lemma: The height of a heap with n nodes is Θ(log n).
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Storing Heaps in Arrays

Heaps should not be stored as binary trees!

Let H be a heap of n items and let A be an array of size n. Store root in
A[0] and continue with elements level-by-level from top to bottom, in each
level left-to-right.

50A[0]

29A[1]

27A[3]

23A[7] 26 A[8]

15 A[4]

47 A[2]

8A[5] 20 A[6]

0 1 2 3 4 5 6 7 8
A: 50 29 47 27 15 8 20 23 26
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insert in Heaps
insert(35):
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By structural property: no choice where the new node can go.

This may or may not lead to heap-order violations.
Fix violations by “bubbling up” in the tree.
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insert in Heaps
Place the new key at the first free leaf
Use fix-up to restore heap-order.

insert(x)
1. `← last()+1
2. A[`]← x // assume dynamic array used
3. increase size // size: stored by PQ
4. fix-up(A, `)

fix-up(A, i)
i : an index corresponding to a node of the heap
1. while parent(i) exists and A[parent(i)].key < A[i ].key do
2. swap A[i ] and A[parent(i)]
3. i ← parent(i)

Time: O(height of heap) = O(log n) (and this is tight).
(Correctness may seem obvious, but is actually non-trivial.)
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delete-max in Heaps
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The maximum item of a heap is just the root node.
We replace root by the last leaf (last leaf is taken out).
The heap-order property might be violated: perform a fix-down:
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delete-max in Heaps

fix-down(A, i)
A: an array that stores a heap of size n
i: an index corresponding to a node of the heap
1. while i is not a leaf do
2. j ← left child of i // find child with larger key
3. if (i has right child and A[right child of i ].key > A[j].key)
4. j ← right child of i
5. if A[i ].key ≥ A[j].key break
6. swap A[j] and A[i ]
7. i ← j

Time: O(height of heap) = O(log n) (and this is tight).
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Sorting using heaps
Recall: Any priority queue can be used to sort in time

O(initialization + n · insert + n · delete-max)

Using the binary-heaps implementation of PQs, we obtain:
PQ-sort-with-heaps(A)
1. initialize H to an empty heap
2. for i ← 0 to n − 1 do
3. H.insert(A[i ])
4. for i ← n − 1 down to 0 do
5. A[i ]← H.delete-max()

both operations run in O(log n) time for heaps
 PQ-sort using heaps takes O(n log n) time (and this is tight).

Can improve this with two simple tricks → heap-sort
1 Can use the same array for input and heap.  O(1) auxiliary space!
2 Heaps can be built faster if we know all input in advance.
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Building Heaps with fix-down
Problem: Given n items all at once (in A[0 · · · n − 1]) build a heap
containing all of them.

Solution 2: Using fix-downs instead:

heapify(A)
A: an array
1. n← A.size()
2. for i ← parent(last()) downto root() do
3. fix-down(A, i , n)

Show: heapify has run-time Θ(n).
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heapify example
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heapify run-time: proof
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More Priority Queues Operations
Binary Heaps are a good realization for insert and delete-max.
What if we want more operations for a priority queue (PQ)?

increase-key(v , k), decrease-key(v , k)
Change key of node v to k if k is bigger/smaller than v .key
Easy to do with fix-up/fix-down

merge(P1, P2)
Given: two priority queues P1,P2 of size n1 and n2.
Want: One priority queue P that contains all their items
Outlook: Three approaches (where n = n1 + n2):

I Merge binary heaps. O(log3 n) worst-case time (no details)
I Meldable heaps: heap-order-property but no structural property.

O(log n) expected run-time for all operations.
I Binomial heaps: different structural and order property.

O(log n) worst-case run-time for all operations.
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Meldable Heaps

Priority queue stored as a binary tree
Heap-order-property: Parent no smaller than child.
No structural property; any binary tree is allowed.

50

29

27

26

25

34

10

Tree-based: Store items at nodes with references to left/right child
(Array-based implementations must use Ω(n) time for merge—why?)
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PQ-operations in Meldable Heaps

Both insert and delete-max can be done by reduction to merge.

P.insert(x):
Create a 1-node meldable heap P ′ that stores x .
Merge P ′ with P.

P.delete-max():
Stash item that is at root.
Let P` and Pr be left and right sub-heap of root.
Update P ← merge(P`,Pr )
Return stashed item.

Both operations have run-time O(merge).
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Merging Meldable Heaps

Idea: Merge heap with smaller root into other one,
randomly choose into which sub-heap to merge.

meldableHeap::merge(r1, r2)
r1, r2: roots of two heaps (possibly NULL)
returns root of merged heap
1. if r1 is NULL return r2
2. if r2 is NULL return r1
3. if r1.key < r2.key swap(r1, r2)
4. // now r1 has max-key and becomes the root.
5. randomly pick one child c of r1
6. replace subheap at c by merge(c, r2)
7. return r1

We will see: The expected run-time is O(log n).

T.Biedl (CS-UW) CS240E – Module 2 Winter 2025 18 / 31



Merging Meldable Heaps

Idea: Merge heap with smaller root into other one,
randomly choose into which sub-heap to merge.

meldableHeap::merge(r1, r2)
r1, r2: roots of two heaps (possibly NULL)
returns root of merged heap
1. if r1 is NULL return r2
2. if r2 is NULL return r1
3. if r1.key < r2.key swap(r1, r2)
4. // now r1 has max-key and becomes the root.
5. randomly pick one child c of r1
6. replace subheap at c by merge(c, r2)
7. return r1

We will see: The expected run-time is O(log n).

T.Biedl (CS-UW) CS240E – Module 2 Winter 2025 18 / 31



Merge Example
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who is bigger?
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Randomized algorithms

A randomized algorithm is one which relies on some random
numbers in addition to the input.

Computers cannot generate randomness. We assume that there exists a
pseudo-random number generator (PRNG), a deterministic program that
uses an initial value or seed to generate a sequence of seemingly random
numbers. The quality of randomized algorithms depends on the quality of
the PRNG!


Doing randomization is often a good idea if an algorithm has bad
worst-case time but seems to perform much better on most instances.

Goal: Shift the dependency of run-time from what we can’t control
(the input) to what we can control (the random numbers).

No more bad instances, just unlucky numbers.

T.Biedl (CS-UW) CS240E – Module 2 Winter 2025 20 / 31



Expected run-time
The run-time of the algorithm now depends on the random numbers.

Define TA(I,R) to be the run-time of a randomized algorithm A for an
instance I and the sequence R of outcomes of random trials.

The expected run-time T exp(I) for instance I is the expected value:

T exp(I) = E[T (I,R)] =
∑
R

T (I,R) · Pr(R)

Now take the maximum over all instances of size n to define the expected
run-time (or formally: worst-instance expected-luck run-time) of A.

T exp(n) := max
I∈In

T exp(I)

We can still have good luck or bad luck, so occasionally we also discuss
the very worst that could happen, i.e., maxI maxR T (I,R).
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Analysis of merge in a meldable heap
Observe: merge does two random downward walks in a binary tree.

Let T (I,R) = length of random downward walk in tree I when
random outcomes are R.
As usual: T exp(n) = max|I|=n

∑
R Pr(R)T (I,R).

Theorem: T exp(n) ∈ O(log n).
Proof:

So merge (and also insert and delete-max) takes O(log n) expected time.
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Binomial Heaps
Very different structure from binary heaps and meldable heaps:

19

8

5 10

12 18

14

11

7 4

15

13 6

16

3

1 9

List L of binary trees.
Each binary tree is a flagged tree:
Complete binary tree T plus root r that has T as left subtree

I Flagged tree of height h has 2h nodes.
I So h ≤ log n for all flagged trees.

Order-property: Nodes in left subtree have no-smaller keys.
(No restrictions on nodes in the right subtree.)
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Binomial Heap Operations

insert: Reduce to merge as before.
delete-max: Bottleneck is finding the maximum.

I At each flagged tree, root contains the maximum of tree.
I Search roots in L ⇒ O(|L|) time.
I (Removal also will be non-trivial  later)

We want L to be short.

Proper binomial heap: No two flagged trees have the same height.
Observation: A proper binomial heap has |L| ≤ log n + 1.

I The flagged tree of largest height h has h ≤ log n.
I Can have only one flagged tree of each height in {0, . . . , h}.
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Making Binomial Heaps Proper

Goal: Given a binomial heap, make it proper.
Need subroutine: combine two flagged trees of the same height.
This can be done in constant time: If r .key ≥ r ′.key:

r

c

TL

+

r ′

c ′

T ′
L

=

r

r ′

c ′

T ′
L

c

TL

Idea: Do this whenever two flagged trees have same height.
With this, make-proper can be implemented in O(|L|+ log n) time.
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Making Binomial Heaps Proper

binomialHeap::make-proper()
1. n← size of the binomial heap
2. compute `← blog nc
3. B ← array of size ` + 1, initialized all-NULL
4. L← list of flagged trees
5. while L is non-empty do
6. T ← L.pop(), h← T .height
7. while T ′ ← B[h] is not NULL do
8. if T .root.key < T ′.root.key do swap T and T ′

9. // combine T with T ′

10. T ′.right← T .left, T .left← T ′, T .height← h+1
11. B[h]← NULL, h++
12. B[h]← T
13. // copy B back to list
14. for (h = 0; h ≤ `; h++) do
15. if B[h] 6= NULL do L.append(B[h])

T.Biedl (CS-UW) CS240E – Module 2 Winter 2025 28 / 31



Binomial Heap Operations
Idea: Make binomial heap proper after every operation.
⇒ L always has length O(log n)
⇒ Each make-proper takes O(log n) time

merge: O(log n) worst-case time.
I Concatenate the two lists.
I Call make-proper.

find-max: O(log n) worst-case time.
I Find maximum root in O(|L|) time

insert: O(log n) worst-case time
I Create new flagged tree with one node, add to L.
I Call make-proper.

delete-max
I Find maximum as in find-max
I Now how do we remove it?
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delete-max in a binomial heap

Say the maximum key is at root of flagged tree T
Split T \ {root} into into flagged trees T1, . . . ,Tk
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Remove T from L, create new binomial heap M ′ with {T1, . . . ,Tk}
Have k ≤ log n ⇒ O(log n) worst-case time.
Apply merge to M ′ and existing binomial heap

Summary: All operations have O(log n) worst-case run-time.
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Why these weird conventions?
Flagged trees, heap-order property, delete-max seem unintuitive.
These are actually very intuitive if one knows left-child-right-sibling
conversion from binary trees to multi-way trees.
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Flagged tree of height d ⇔ d subtrees, of heights d−1, d−2, . . . , 0
Binomial-heap order property ⇔ standard heap-order property
delete-max ⇔ create new heap with all children of the root
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