CS 240E – Data Structures and Data Management (Enriched)

Module 3: Sorting, Average-case and Randomization

Therese Biedl

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-01-16 11:42

Outline

3 Sorting, Average-case and Randomization

- Analyzing average-case run-time
- SELECTION and quick-select
- Randomized Algorithms
- quick-select revisited
- Tips and Tricks for quick-sort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Outline

3 Sorting, Average-case and Randomization

• Analyzing average-case run-time

- SELECTION and quick-select
- Randomized Algorithms
- quick-select revisited
- Tips and Tricks for quick-sort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Average-case analysis

We will introduce (and solve) a new problem, and then analyze the *average-case run-time* of our algorithm.

Average-case analysis

We will introduce (and solve) a new problem, and then analyze the *average-case run-time* of our algorithm.

Recall definition of average-case run-time:

$$T_{\mathcal{A}}^{avg}(n) = \sum_{\text{instance } I \text{ of size } n} T_{\mathcal{A}}(I) \cdot (\text{relative frequency of } I)$$

Average-case analysis

We will introduce (and solve) a new problem, and then analyze the *average-case run-time* of our algorithm.

Recall definition of average-case run-time:

 $T_{\mathcal{A}}^{avg}(n) = \sum_{\text{instance } I \text{ of size } n} T_{\mathcal{A}}(I) \cdot (\text{relative frequency of } I)$

For this module:

- Assume that the set *I_n* of size-*n* instances is finite (or can be mapped to a finite set in a natural way)
- Assume that all instances occur equally frequently

Then we can use the following simplified formula

$$T^{avg}(n) = \frac{\sum_{I:\text{size}(I)=n} T(I)}{\#\text{instances of size } n} = \frac{1}{|\mathcal{I}_n|} \sum_{I \in \mathcal{I}_n} T(I)$$

To learn how to analyze this, we will do simpler examples first.

T.Biedl (CS-UW)

A simple (contrived) example

silly-test(π , n) π : a permutation of $\{0, \ldots, n-1\}$, stored as an array 1. **if** $\pi[0] = 0$ **then for** j = 1 to n **do** print 'bad case' 2. **else** print 'good case'

$$T^{avg}(n) = \frac{1}{n!} \sum_{\pi \in \Pi_n} T(\pi) = \frac{1}{n!} \Big(\sum_{\substack{\pi \in \Pi_n \\ \text{in bad case}}} T(\pi) + \sum_{\substack{\pi \in \Pi_n \\ \text{in good case}}} T(\pi) \Big)$$

A simple (contrived) example

silly-test (π, n) π : a permutation of $\{0, ..., n-1\}$, stored as an array 1. if $\pi[0] = 0$ then for j = 1 to n do print 'bad case' 2. else print 'good case'

$$T^{avg}(n) = \frac{1}{n!} \sum_{\pi \in \Pi_n} T(\pi) = \frac{1}{n!} \Big(\sum_{\substack{\pi \in \Pi_n \\ \text{in bad case}}} T(\pi) + \sum_{\substack{\pi \in \Pi_n \\ \text{in good case}}} T(\pi) \Big)$$

- (n-1)! permutations have $\pi[0] = 0 \Rightarrow$ run-time $c \cdot n$
- The remaining n! (n 1)! permutations have run-time *c*. (for some constant c > 0)

A simple (contrived) example

silly-test(π , n) π : a permutation of $\{0, \ldots, n-1\}$, stored as an array 1. **if** $\pi[0] = 0$ **then for** j = 1 to n **do** print 'bad case' 2. **else** print 'good case'

$$T^{avg}(n) = \frac{1}{n!} \sum_{\pi \in \Pi_n} T(\pi) = \frac{1}{n!} \Big(\sum_{\substack{\pi \in \Pi_n \\ \text{in bad case}}} T(\pi) + \sum_{\substack{\pi \in \Pi_n \\ \text{in good case}}} T(\pi) \Big)$$

- (n-1)! permutations have $\pi[0] = 0 \Rightarrow$ run-time $c \cdot n$
- The remaining n! (n 1)! permutations have run-time c.
 (for some constant c > 0)

$$T^{avg}(n) = \frac{1}{n!} \Big(\#\{\pi \in \Pi_n \text{ in bad case}\} \cdot cn + \#\{\pi \in \Pi_n \text{ in good case}\} \cdot c \Big)$$
$$= \frac{1}{n!} \Big((n-1)! \cdot cn + (n! - (n-1)!) \cdot c \Big) \le \frac{1}{n} cn + c = 2c \in O(1)$$

A second (not-so-contrived) example

all-0-test(w, n)
// test whether all entries of bitstring
$$w[0..n-1]$$
 are 0
1. if $(n = 0)$ return true
2. if $(w[n-1] = 1)$ return false
3. $all-0$ -test $(w, n-1)$

(In real life, you would write this non-recursive.)

Define T(w) = # bit-comparisons (i.e., line 2) on input w. This is asymptotically the same as the run-time.

Worst-case run-time: Always go into the recursion until n = 0. $T(n) = 1 + T(n-1) = 1 + 1 + \dots + T(0) = n \in \Theta(n)$.

A second (not-so-contrived) example

all-0-test(w, n)
// test whether all entries of bitstring
$$w[0..n-1]$$
 are 0
1. if $(n = 0)$ return true
2. if $(w[n-1] = 1)$ return false
3. $all-0$ -test $(w, n-1)$

(In real life, you would write this non-recursive.)

Define T(w) = # bit-comparisons (i.e., line 2) on input w. This is asymptotically the same as the run-time.

Worst-case run-time: Always go into the recursion until n = 0. $T(n) = 1 + T(n-1) = 1 + 1 + \dots + T(0) = n \in \Theta(n)$.

Best-case run-time: Return immediately. $T(n) = 1 \in \Theta(1)$.

Average-case run-time?

Recall
$$T^{\operatorname{avg}}(n) = \frac{1}{|\mathcal{B}_n|} \sum_{w \in \mathcal{B}_n} T(w).$$
 $(\mathcal{B}_n = \{ \text{bitstrings of length } n \})$

Recursive formula for one non-empty bitstring w:

$$T(w) = \begin{cases} 1 & \text{if } w[n-1] = 1\\ 1 + T(\underbrace{w[0..n-2]}_{\text{length } n-1}) & \text{otherwise} \end{cases}$$

Recall
$$T^{\operatorname{avg}}(n) = \frac{1}{|\mathcal{B}_n|} \sum_{w \in \mathcal{B}_n} T(w).$$
 $(\mathcal{B}_n = \{ \text{bitstrings of length } n \})$

Recursive formula for one non-empty bitstring w:

$$T(w) = \begin{cases} 1 & \text{if } w[n-1] = 1\\ 1 + T(\underbrace{w[0..n-2]}_{\text{length } n-1}) & \text{otherwise} \end{cases}$$

Natural guess for the recursive formula for $T^{avg}(n)$:

$$T^{avg}(n) = \underbrace{\frac{1}{2}}_{\substack{\text{half have} \\ w[n-1]=1}} \cdot 1 + \underbrace{\frac{1}{2}}_{\substack{\text{half have} \\ w[n-1]=0}} (1 + T^{???}(n-1))$$

Recall
$$T^{\operatorname{avg}}(n) = \frac{1}{|\mathcal{B}_n|} \sum_{w \in \mathcal{B}_n} T(w).$$
 $(\mathcal{B}_n = \{ \text{bitstrings of length } n \})$

Recursive formula for one non-empty bitstring w:

$$T(w) = \begin{cases} 1 & \text{if } w[n-1] = 1\\ 1 + T(\underbrace{w[0..n-2]}_{\text{length } n-1}) & \text{otherwise} \end{cases}$$

Natural guess for the recursive formula for $T^{avg}(n)$:

$$T^{avg}(n) = \underbrace{\frac{1}{2}}_{\substack{\text{half have} \\ w[n-1]=1}} \cdot 1 + \underbrace{\frac{1}{2}}_{\substack{\text{half have} \\ w[n-1]=0}} (1 + T^{???}(n-1))$$

- This holds with \leq (but is useless) if '???' is 'worst'.
- This is not obvious if '???' is 'avg'.

$$T^{avg}(n) = \frac{1}{|\mathcal{B}_n|} \sum_{w \in \mathcal{B}_n} T(w)$$

=

$$=1+rac{1}{2}T^{avg}(n-1)$$

This recursion resolves to $T^{avg}(n) \in O(1)$.

T.Biedl (CS-UW)

CS240E - Module 3

Winter 2025

Average-case analysis and recursions

Why can't we always write 'avg' for '???' in $T^{avg}(n) = 1 + \frac{1}{2}T^{???}(n-1)$? Consider the following (contrived) example:

silly-all-0-test(w, n) w: array of size at least n that stores bits 1. if (n = 0) then return true 2. if (w[n-1] = 1) then return false 3. if (n > 1) then $w[n-2] \leftarrow 0$ // this is the only change 4. silly-all-0-test(w, n-1)

Average-case analysis and recursions

Why can't we always write 'avg' for '???' in $T^{avg}(n) = 1 + \frac{1}{2}T^{???}(n-1)$? Consider the following (contrived) example:

silly-all-0-test(w, n)
w: array of size at least n that stores bits
1. if
$$(n = 0)$$
 then return true
2. if $(w[n-1] = 1)$ then return false
3. if $(n > 1)$ then $w[n-2] \leftarrow 0$ // this is the only change
4. silly-all-0-test(w, n-1)

• Only one more line of code in each recursion, so same formula applies.

• But observe that now
$$T(w) = \begin{cases} 1 & \text{if } w[n-1] = 1 \\ n & \text{if } w[n-1] = 0 \end{cases}$$
.

Average-case analysis and recursions

Why can't we always write 'avg' for '???' in $T^{avg}(n) = 1 + \frac{1}{2}T^{???}(n-1)$? Consider the following (contrived) example:

silly-all-0-test(w, n)
w: array of size at least n that stores bits
1. if
$$(n = 0)$$
 then return true
2. if $(w[n-1] = 1)$ then return false
3. if $(n > 1)$ then $w[n-2] \leftarrow 0$ // this is the only change
4. silly-all-0-test(w, n-1)

• Only one more line of code in each recursion, so same formula applies.

• But observe that now
$$T(w) = \begin{cases} 1 & \text{if } w[n-1] = 1 \\ n & \text{if } w[n-1] = 0 \end{cases}$$
.

• So $T^{avg}(n) = 1 + \frac{n}{2} \in \Theta(n)$. The "obvious" recursion did not hold.

Average-case analysis is highly non-trivial for recursive algorithms.

T.Biedl (CS-UW)

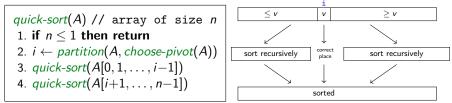
Outline

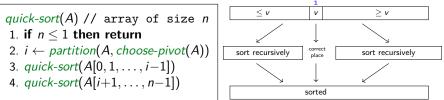
3 Sorting, Average-case and Randomization

Analyzing average-case run-time

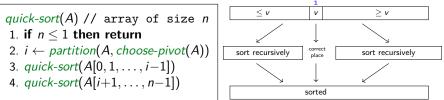
• SELECTION and quick-select

- Randomized Algorithms
- quick-select revisited
- Tips and Tricks for *quick-sort*
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

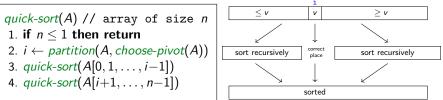




- *choose-pivot*: detemines **pivot-value** v.
 For now, we simply take the rightmost item in A.
- partition: achieves top picture, returns pivot-rank i This takes n key-comparisons (compare two items of A).



- choose-pivot: detemines pivot-value v.
 For now, we simply take the rightmost item in A.
- partition: achieves top picture, returns pivot-rank i This takes n key-comparisons (compare two items of A).
- quick-sort has $\Theta(n^2)$ worst-case run-time.
- quick-sort has $\Theta(n \log n)$ best-case run-time.

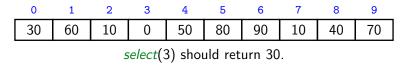


- choose-pivot: detemines pivot-value v.
 For now, we simply take the rightmost item in A.
- partition: achieves top picture, returns pivot-rank i This takes n key-comparisons (compare two items of A).
- quick-sort has $\Theta(n^2)$ worst-case run-time.
- quick-sort has $\Theta(n \log n)$ best-case run-time.
- What is the *average-case* run-time?
- We will study a related problem (with simpler algorithm) first.

The $\operatorname{Selection}$ Problem

We saw SELECTION: Given an array A of n numbers, and $0 \le k < n$, find the element that would be at position k of the sorted array.

(We also call this the element of rank k.)



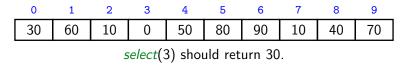
SELECTION can be done with heaps in time $\Theta(n + k \log n)$.

Special case: MEDIANFINDING = SELECTION with $k = \lfloor \frac{n}{2} \rfloor$. With previous approaches, this takes time $\Theta(n \log n)$, no better than sorting.

The $\operatorname{Selection}$ Problem

We saw SELECTION: Given an array A of n numbers, and $0 \le k < n$, find the element that would be at position k of the sorted array.

(We also call this the element of rank k.)



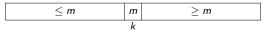
SELECTION can be done with heaps in time $\Theta(n + k \log n)$.

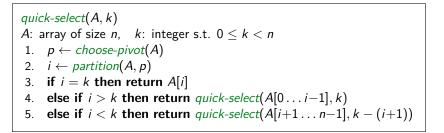
Special case: MEDIANFINDING = SELECTION with $k = \lfloor \frac{n}{2} \rfloor$. With previous approaches, this takes time $\Theta(n \log n)$, no better than sorting.

Question: Can we do selection in linear time? Yes! We will develop algorithm *quick-select* below.

quick-select Algorithm

SELECTION: Want item m such that (after rearranging A) we have





Where is *m* if k = i? If k < i? If k > i?

Analysis of quick-select

Let T(n, k) be the number of key-comparisons in a size-*n* array with parameter *k*. (This is asymptotically the same as the run-time.)

partition uses n key-comparisons.

Worst-case run-time:

- Sub-array always gets smaller, so $\leq n$ recursions. Each takes $\leq n$ comparisons $\Rightarrow O(n^2)$ time.
- This is tight: If pivot-value is always the maximum and k = 0 $T^{\text{worst}}(n,0) \ge n + (n-1) + (n-2) + \dots + 1 \in \Omega(n^2)$

Analysis of quick-select

Let T(n, k) be the number of key-comparisons in a size-*n* array with parameter *k*. (This is asymptotically the same as the run-time.)

partition uses n key-comparisons.

Worst-case run-time:

- Sub-array always gets smaller, so $\leq n$ recursions. Each takes $\leq n$ comparisons $\Rightarrow O(n^2)$ time.
- This is tight: If pivot-value is always the maximum and k = 0 $T^{\text{worst}}(n,0) \ge n + (n-1) + (n-2) + \dots + 1 \in \Omega(n^2)$

Best-case run-time: First chosen pivot could be the *k*th element No recursive calls; $T(n, k) = n \in \Theta(n)$

Analysis of quick-select

Let T(n, k) be the number of key-comparisons in a size-*n* array with parameter *k*. (This is asymptotically the same as the run-time.)

partition uses n key-comparisons.

Worst-case run-time:

- Sub-array always gets smaller, so $\leq n$ recursions. Each takes $\leq n$ comparisons $\Rightarrow O(n^2)$ time.
- This is tight: If pivot-value is always the maximum and k = 0 $T^{\text{worst}}(n,0) \ge n + (n-1) + (n-2) + \dots + 1 \in \Omega(n^2)$

Best-case run-time: First chosen pivot could be the *k*th element No recursive calls; $T(n, k) = n \in \Theta(n)$

Average case analysis? Doing this directly would be *very* complicated. Instead we will do it via a detour into a randomized version.

T.Biedl (CS-UW)

CS240E - Module 3

Outline

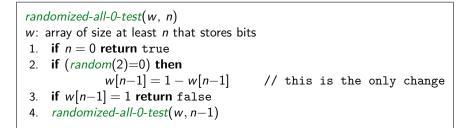
3 Sorting, Average-case and Randomization

- Analyzing average-case run-time
- SELECTION and quick-select

Randomized Algorithms

- quick-select revisited
- Tips and Tricks for quick-sort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

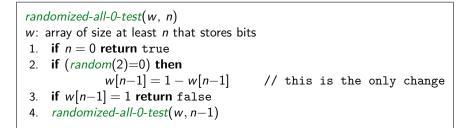
Randomized algorithm example (very contrived)



This is *all-0-test*, except that we flip last bit based on a coin toss.

We assume the existence of a function random(n) that returns an integer uniformly from $\{0, 1, 2, ..., n-1\}$. So $Pr(random(2) = 0) = \frac{1}{2}$.

Randomized algorithm example (very contrived)



This is *all-0-test*, except that we flip last bit based on a coin toss.

We assume the existence of a function random(n) that returns an integer uniformly from $\{0, 1, 2, ..., n-1\}$. So $Pr(random(2) = 0) = \frac{1}{2}$.

In each recursion, we use the outcome $x \in \{0, 1\}$ of one coin toss. We return without recursing if x = w[n-1] (this has probability $\frac{1}{2}$).

Define T(w, R) := # bit-comparisons used on input w if the random outcomes are R. (This is proportional to the run-time.)

- The random outcomes R consist of two parts $R = \langle x, R' \rangle$:
 - x: outcome of first coin toss
 - ▶ *R*′: random outcomes (if any) for the recursions

We have $Pr(R) = Pr(x) \cdot Pr(R')$ (random choices are independent).

Define T(w, R) := # bit-comparisons used on input w if the random outcomes are R. (This is proportional to the run-time.)

- The random outcomes R consist of two parts $R = \langle x, R' \rangle$:
 - x: outcome of first coin toss
 - ▶ *R*′: random outcomes (if any) for the recursions

We have $Pr(R) = Pr(x) \cdot Pr(R')$ (random choices are independent).

• Recursive formula for one instance:

$$T(w, R) = T(w, \langle x, R' \rangle) = \begin{cases} 1 & \text{if } x = w[n-1] \\ 1 + T(w[0..n-2], R') & \text{otherwise} \end{cases}$$

Define T(w, R) := # bit-comparisons used on input w if the random outcomes are R. (This is proportional to the run-time.)

- The random outcomes R consist of two parts $R = \langle x, R' \rangle$:
 - x: outcome of first coin toss
 - ▶ *R*′: random outcomes (if any) for the recursions

We have $Pr(R) = Pr(x) \cdot Pr(R')$ (random choices are independent).

• Recursive formula for one instance:

$$T(w,R) = T(w,\langle x,R'
angle) = \left\{egin{array}{cc} 1 & ext{if } x = w[n-1] \ 1 + T(w[0..n-2],R') & ext{otherwise} \end{array}
ight.$$

• Natural guess for the recursive formula for $T^{exp}(n)$:

$$T^{exp}(n) = \underbrace{\frac{1}{2}}_{\Pr(x=w[n-1])} \cdot 1 + \underbrace{\frac{1}{2}}_{\Pr(x\neq w[n-1])} (1 + T^{exp}(n-1)) = 1 + \frac{1}{2} T^{exp}(n-1)$$

In contrast to average-case analysis, the natural guess usually is correct for the expected run-time.

Proof for randomized-all-0-test:

$$T^{exp}(w) = \sum_{R} \Pr(R)T(w,R) =$$

In contrast to average-case analysis, the natural guess usually is correct for the expected run-time.

Proof for randomized-all-0-test:

$$T^{exp}(w) = \sum_{R} \Pr(R)T(w,R) = \sum_{x} \sum_{R'} \Pr(x)\Pr(R')T(w,\langle x,R'\rangle)$$

=

In contrast to average-case analysis, the natural guess usually is correct for the expected run-time.

Proof for randomized-all-0-test:

$$T^{exp}(w) = \sum_{R} \Pr(R)T(w,R) = \sum_{x} \sum_{R'} \Pr(x)\Pr(R')T(w,\langle x,R'\rangle)$$

=

Therefore
$$T^{exp}(n) = \max_{w \in \mathcal{B}_n} T^{exp}(w) \le 1 + \frac{1}{2} T^{exp}(n-1)$$

T.Biedl (CS-UW)

- We had $T^{exp}_{\textit{rand-all-0-test}}(n) \le 1 + \frac{1}{2}T^{exp}_{\textit{rand-all-0-test}}(n-1)$
- We earlier had $\mathcal{T}^{avg}_{all-0\text{-test}}(n) \leq 1 + rac{1}{2}\mathcal{T}^{avg}_{all-0\text{-test}}(n-1)$
- Same recursion \Rightarrow same upper bound $\Rightarrow T_{rand-all-0-test}^{exp}(n) \in O(1)$.

- We had $T^{exp}_{\textit{rand-all-0-test}}(n) \le 1 + \frac{1}{2}T^{exp}_{\textit{rand-all-0-test}}(n-1)$
- We earlier had $T^{avg}_{all-0-test}(n) \leq 1 + rac{1}{2}T^{avg}_{all-0-test}(n-1)$
- Same recursion \Rightarrow same upper bound $\Rightarrow T_{rand-all-0-test}^{exp}(n) \in O(1)$.
- Recall: *randomized-all-0-test* was very similar to *all-0-test* (The only different was a random bitflip.)
- Is it a coincidence that the two recursive formulas are the same? Or does the expected time of a randomized version always have something to do with the average-case time?

- We had $T^{exp}_{\textit{rand-all-0-test}}(n) \le 1 + \frac{1}{2}T^{exp}_{\textit{rand-all-0-test}}(n-1)$
- We earlier had $T^{avg}_{all-0-test}(n) \leq 1 + rac{1}{2}T^{avg}_{all-0-test}(n-1)$
- Same recursion \Rightarrow same upper bound $\Rightarrow T_{rand-all-0-test}^{exp}(n) \in O(1)$.
- Recall: *randomized-all-0-test* was very similar to *all-0-test* (The only different was a random bitflip.)
- Is it a coincidence that the two recursive formulas are the same? Or does the expected time of a randomized version always have something to do with the average-case time?
- Not in general! (It depends how we randomize.)
- Yes if the randomization is a *shuffle* (choose instance randomly).

Consider the following randomization of a deterministic algorithm \mathcal{A} .

shuffle- $\mathcal{A}(n)$ 1. Among all instances \mathcal{I}_n of size n for \mathcal{A} , choose I randomly 2. $\mathcal{A}(I)$

(*shuffle-A* usually does not solve what A solves)

Consider the following randomization of a deterministic algorithm \mathcal{A} .

shuffle- $\mathcal{A}(n)$ 1. Among all instances \mathcal{I}_n of size n for \mathcal{A} , choose I randomly 2. $\mathcal{A}(I)$

(*shuffle-A* usually does not solve what A solves)

• If we do not count the time for line 1:

$$T_{\mathcal{A}}^{avg}(n) = \frac{1}{|\mathcal{I}_n|} \sum_{I \in \mathcal{I}_n} T(I) = \sum_{I \in \mathcal{I}_n} Pr(I \text{ chosen}) \cdot T(I) = T_{shuffle-\mathcal{A}}^{exp}(n)$$

Consider the following randomization of a deterministic algorithm \mathcal{A} .

shuffle- $\mathcal{A}(n)$ 1. Among all instances \mathcal{I}_n of size *n* for \mathcal{A} , choose *l* randomly 2. $\mathcal{A}(l)$

(*shuffle-A* usually does not solve what \overline{A} solves)

• If we do not count the time for line 1:

$$T_{\mathcal{A}}^{avg}(n) = \frac{1}{|\mathcal{I}_n|} \sum_{I \in \mathcal{I}_n} T(I) = \sum_{I \in \mathcal{I}_n} Pr(I \text{ chosen}) \cdot T(I) = T_{shuffle-\mathcal{A}}^{exp}(n)$$

- So the average-case run-time of A is the same as this **run-time of** A **on randomly chosen input**.
- This gives us a different way to compute $T_{\mathcal{A}}^{avg}(n)$.

Example: *all-0-test* (rephrased with for-loops):

shuffle-all-0-test(n)
1. for
$$(i = n-1; i \ge 0; i--)$$
 do
2. $w[i] \leftarrow random(2)$
3. for $(i = n-1; i \ge 0; i--)$ do
4. if $(w[i] = 1)$ return false
5. return true

randomized-all-0-test(w, n) 1. for (i = n-1; $i \ge 0$; i--) do 2. if (random(2)=0) then w[i] = 1 - w[i]3. if (w[i] = 1) return false 4. return true

Example: *all-0-test* (rephrased with for-loops):

shuffle-all-0-test(n)
1. for $(i = n-1; i \ge 0; i)$ do
2. $w[i] \leftarrow random(2)$
3. for $(i = n-1; i \ge 0; i)$ do
4. if $(w[i] = 1)$ return false
5. return true

randomized-all-0-test(w, n)
1. for
$$(i = n-1; i \ge 0; i--)$$
 do
2. if $(random(2)=0)$ then
 $w[i] = 1 - w[i]$
3. if $(w[i] = 1)$ return false
4. return true

- These algorithms are not quite the same.
 - Randomization outside respectively inside the for-loop.
- But this does not matter for the expected number of bit-comparisons.
 - Either way, at time of comparison the bit is 1 with probability $\frac{1}{2}$.

Example: *all-0-test* (rephrased with for-loops):

shuffle-all-0-test(n)
1. for $(i = n-1; i \ge 0; i)$ do
2. $w[i] \leftarrow random(2)$
3. for $(i = n-1; i \ge 0; i)$ do
4. if $(w[i] = 1)$ return false
5. return true

randomized-all-0-test(w, n)
1. for
$$(i = n-1; i \ge 0; i--)$$
 do
2. if $(random(2)=0)$ then
 $w[i] = 1 - w[i]$
3. if $(w[i] = 1)$ return false
4. return true

- These algorithms are not quite the same.
 - Randomization outside respectively inside the for-loop.
- But this does not matter for the expected number of bit-comparisons.
 - Either way, at time of comparison the bit is 1 with probability ¹/₂.

• So
$$T^{avg}_{all-0-test}(n) = T^{exp}_{shuffle-all-0-test}(n) = T^{exp}_{rand-all-0-test}(n) \in O(1)$$

can be deduced without analyzing $T_{all-0-test}^{avg}(n)$ directly.

T.Biedl (CS-UW)

Summary: Average-case run-time vs. expected run-time

So: are average-case run-time and expected run-time the same?

Summary: Average-case run-time vs. expected run-time

So: are average-case run-time and expected run-time the same?

No!

average-case run-time	expected run-time
$\frac{1}{ \mathcal{I}_n }\sum_{I\in\mathcal{I}_n}T(I)$	$\max_{I \in \mathcal{I}_n} \sum_{\text{outcomes } R} \Pr(R) \cdot T(I, R)$
average over instances	weighted average over random outcomes
(usually) applied to a deterministic algorithm	applied only to a randomized algorithm

Summary: Average-case run-time vs. expected run-time

So: are average-case run-time and expected run-time the same?

No!

average-case run-time	expected run-time
$\frac{1}{ \mathcal{I}_n }\sum_{I\in\mathcal{I}_n}\mathcal{T}(I)$	$\max_{I \in \mathcal{I}_n} \sum_{\text{outcomes } R} \Pr(R) \cdot T(I, R)$
average over instances	weighted average over random outcomes
(usually) applied to a deterministic algorithm	applied only to a randomized algorithm

There is a relationship *only* if the randomization effectively achieves "choose the input instance randomly".

T.Biedl (CS-UW)

CS240E - Module 3

Outline

3 Sorting, Average-case and Randomization

- Analyzing average-case run-time
- SELECTION and quick-select
- Randomized Algorithms
- quick-select revisited
- Tips and Tricks for *quick-sort*
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Average-case analysis of quick-select

Recall quick-select:

 $\begin{array}{ll} quick-select(A, k)\\ 1. & i \leftarrow partition(A, n-1)\\ 2. & \text{if } i = k \text{ then return } A[i]\\ 3. & \text{else if } i > k \text{ then } quick-select(A[0 \dots i-1], k)\\ 4. & \text{else if } i < k \text{ then } quick-select(A[i+1 \dots n-1], k-(i+1))\end{array}$

For analyzing the average-case run-time, we make two assumptions:

- All input-items are distinct.
 - This can be forced using tie-breakers.
- All possible orders of the input-items occur equally often. All possible rank-parameters occur equally often.
 - ▶ This is not completely realistic (mostly-sorted orders or rank-parameter $\lceil n/2 \rceil$ are more common).
 - But we cannot do average-case analysis without it.

Randomizing quick-select: Shuffling

Goal: Create a randomized version of *quick-select*.

- This will give a proof of the avg-case run-time of *quick-select*.
- This will be a better algorithm in practice.

Randomizing quick-select: Shuffling

Goal: Create a randomized version of *quick-select*.

- This will give a proof of the avg-case run-time of *quick-select*.
- This will be a better algorithm in practice.

First idea: Shuffle the input, then do quick-select.

shuffle-quick-select(A, k) 1. for $(j \leftarrow 1 \text{ to } n-1)$ do swap(A[j], A[random(j+1)]) // shuffle 2. quick-select(A, k)

• Shuffling (permuting) the input-array is (by assumption) equivalent to randomly choosing an input instance.

• So we know
$$T_{quick-select}^{avg}(n) = T_{shuffle-quick-select}^{exp}(n)$$

(Recall: $T(\cdot)$ counts key-comparisons, so shuffling is free.)

Randomizing quick-select: Random Pivot

Second idea: Do the shuffling inside the recursion. (Equivalently: Randomly choose which value is used for the pivot.)

```
randomized-quick-select(A, k)

1. swap A[n-1] with A[random(n)]

2. i \leftarrow partition(A, n-1)

3. if i = k then return A[i]

4. else if i > k then

5. return randomized-quick-select(A[0 \dots i-1], k)

6. else if i < k then

7. return randomized-quick-select(A[i+1 \dots n-1], k - (i+1))
```

Randomizing quick-select: Random Pivot

Second idea: Do the shuffling inside the recursion. (Equivalently: Randomly choose which value is used for the pivot.)

randomized-quick-select(A, k) 1. swap A[n-1] with A[random(n)]2. $i \leftarrow partition(A, n-1)$ 3. if i = k then return A[i]4. else if i > k then 5. return randomized-quick-select($A[0 \dots i-1], k$) 6. else if i < k then 7. return randomized-quick-select($A[i+1 \dots n-1], k - (i+1)$)

• $T_{rand.-quick-select}^{exp}(n) = T_{shuffle-quick-select}^{exp}(n).$

(This is not completely obvious, but believable. No proof.)

Expected run-time of randomized-quick-select

Let T(A, k, R) = # key-comparisons of *randomized-quick-select* on input $\langle A, k \rangle$ if the random outcomes are R. (This is proportional to the run-time.)

- Write random outcomes R as $R = \langle i, R' \rangle$ (where 'i' stands for 'the first random number was such that the pivot-rank is i')
- Observe: $Pr(pivot-rank is i) = \frac{1}{n}$
- We recurse in an array of size *i* or n-i-1 (or not at all)

Expected run-time of randomized-quick-select

Let T(A, k, R) = # key-comparisons of *randomized-quick-select* on input $\langle A, k \rangle$ if the random outcomes are R. (This is proportional to the run-time.)

• Write random outcomes R as $R = \langle i, R' \rangle$ (where 'i' stands for 'the first random number was such that the pivot-rank is i')

• Observe:
$$Pr(pivot-rank is i) = \frac{1}{n}$$

- We recurse in an array of size *i* or n-i-1 (or not at all)
- Recursive formula for one instance (and fixed $R = \langle i, R' \rangle$):

$$T(A, k, \langle i, R' \rangle) = n + \begin{cases} T(\text{size-}i \text{ array}, k, R') & \text{if } i > k \\ T(\text{size-}(n-i-1) \text{ array}, k-i-1, R') & \text{if } i < k \\ 0 & \text{otherwise} \end{cases}$$

23 / 45

Analysis of randomized-quick-select

As for *rand-all-0-test*: over all *R*, the recursions can use $T^{exp}(array-size)$.

$$T^{exp}(A, k) \begin{pmatrix} = \sum_{R} P(R) \cdot T(\langle A, k \rangle, R) = \sum_{i=0}^{n-1} \sum_{R'} P(i) \cdot P(R') \cdot T(\langle A, k \rangle, \langle i, R' \rangle) \\ = \frac{1}{n} \sum_{i=0}^{k-1} \sum_{R'} P(R') \left(n + T(\langle A[i+1..n-1], k-i-1 \rangle, R') \right) \\ + \frac{1}{n} \sum_{i=k}^{n-1} \sum_{R'} P(R') \left(n + T(\langle A[0..i-1, k \rangle, R') \right) \\ = n + \frac{1}{n} \sum_{i=k}^{k-1} \sum_{R'} P(R') T(\langle A[i+1..n-1], k-i-1 \rangle, R') \\ + \frac{1}{n} \sum_{i=k+1}^{n-1} \sum_{R'} P(R') T(\langle A[0..i-1, k \rangle, R') \\ = n + \frac{1}{n} \sum_{i=0}^{k-1} \underbrace{T^{exp}(\langle A[i+1..n-1], k-i-1 \rangle)}_{\leq T^{exp}(n-i-1)} + \frac{1}{n} \sum_{i=k+1}^{n-1} \underbrace{T^{exp}(\langle A[0..i-1], k \rangle)}_{\leq T^{exp}(i)} \end{pmatrix}$$

T.Biedl (CS-UW)

k

Analysis of randomized-quick-select

In summary, the expected run-time of *randomized-quick-select* satisfies:

$$T^{exp}(n) \le n + \frac{1}{n} \sum_{i=0}^{n-1} \max\{T^{exp}(i), T^{exp}(n-i-1)\}$$

Analysis of randomized-quick-select

In summary, the expected run-time of *randomized-quick-select* satisfies:

$$T^{exp}(n) \le n + \frac{1}{n} \sum_{i=0}^{n-1} \max\{T^{exp}(i), T^{exp}(n-i-1)\}$$

Claim: This recursion resolves to O(n).

Summary of SELECTION

- randomized-quick-select has expected run-time $\Theta(n)$.
 - The run-time bound is tight since *partition* takes $\Omega(n)$ time
 - If we're unlucky in the random numbers then the run-time is still $\Omega(n^2)$
- So the expected run-time of *shuffle-quick-select* is $\Theta(n)$.
- So the run-time of *quick-select* on randomly chosen input is $\Theta(n)$.
- So the average-case run-time of quick-select is $\Theta(n)$.

Summary of SELECTION

- randomized-quick-select has expected run-time $\Theta(n)$.
 - The run-time bound is tight since *partition* takes $\Omega(n)$ time
 - If we're unlucky in the random numbers then the run-time is still $\Omega(n^2)$
- So the expected run-time of *shuffle-quick-select* is $\Theta(n)$.
- So the run-time of *quick-select* on randomly chosen input is $\Theta(n)$.
- So the average-case run-time of quick-select is $\Theta(n)$.
- *randomized-quick-select* is generally the fastest solution to SELECTION.
- There exists a variation that solves SELECTION with worst-case run-time $\Theta(n)$, but it uses double recursion and is slower in practice. ($\rightarrow cs341$, maybe)

Randomizing quick-sort

randomized-quick-sort(A)

- 1. if $n \leq 1$ then return
- 2. $p \leftarrow random(n)$
- 3. $i \leftarrow partition(A, p)$
- 4. randomized-quick-sort($A[0, 1, \ldots, i-1]$)
- 5. randomized-quick-sort($A[i+1, \ldots, n-1]$)

Observe: $Pr(pivot has rank i) = \frac{1}{n}$

Randomizing quick-sort

randomized-quick-sort(A)

- 1. if $n \leq 1$ then return
- 2. $p \leftarrow random(n)$
- 3. $i \leftarrow partition(A, p)$
- 4. randomized-quick-sort($A[0, 1, \ldots, i-1]$)
- 5. randomized-quick-sort($A[i+1, \ldots, n-1]$)

Observe: $Pr(pivot has rank i) = \frac{1}{n}$

Assume the random output was such that the pivot-rank is *i*:

- We use *n* comparisons in *partition*.
- We recurse in two arrays, of size i and n-i-1

Randomizing quick-sort

randomized-quick-sort(A)

- 1. if $n \leq 1$ then return
- 2. $p \leftarrow random(n)$
- 3. $i \leftarrow partition(A, p)$
- 4. randomized-quick-sort($A[0, 1, \ldots, i-1]$)
- 5. randomized-quick-sort($A[i+1,\ldots,n-1]$)

Observe: $Pr(pivot has rank i) = \frac{1}{n}$

Assume the random output was such that the pivot-rank is *i*:

- We use *n* comparisons in *partition*.
- We recurse in two arrays, of size i and n-i-1

This implies

$$T^{exp}(n) = \underbrace{\dots}_{\text{long but straightforward}} = n + \frac{1}{n} \sum_{i=0}^{n-1} \left(T^{exp}(i) + T^{exp}(n-i-1) \right)$$

Expected run-time of randomized-quick-sort

$$T^{exp}(n) \le n + \frac{1}{n} \sum_{i=0}^{n-1} \left(T^{exp}(i) + T^{exp}(n-i-1) \right) = n + \frac{2}{n} \sum_{i=1}^{n-1} T^{exp}(i)$$
(since $T(0) = 0$)

Claim: $T^{exp}(n) \in O(n \log n)$. **Proof:**

Expected run-time of randomized-quick-sort

$$T^{exp}(n) \le n + \frac{1}{n} \sum_{i=0}^{n-1} \left(T^{exp}(i) + T^{exp}(n-i-1) \right) = n + \frac{2}{n} \sum_{i=1}^{n-1} T^{exp}(i)$$
(since $T(0) = 0$)

Claim: $T^{exp}(n) \in O(n \log n)$. **Proof:**

Summary of quick-sort

- randomized-quick-sort has expected run-time $\Theta(n \log n)$.
 - The run-time bound is tight since the best-case run-time is $\Omega(n \log n)$
 - If we're unlucky in the random numbers then the run-time is still $\Omega(n^2)$
- Can show: This has the same expected run-time as *quick-select* on randomly chosen input (no details)
- So the average-case run-time of *quick-sort* is $\Theta(n \log n)$.
- The auxiliary space is not good $(\Theta(n))$ but can be improved (\rightsquigarrow later)

Summary of quick-sort

- randomized-quick-sort has expected run-time $\Theta(n \log n)$.
 - The run-time bound is tight since the best-case run-time is $\Omega(n \log n)$
 - If we're unlucky in the random numbers then the run-time is still $\Omega(n^2)$
- Can show: This has the same expected run-time as *quick-select* on randomly chosen input (no details)
- So the average-case run-time of *quick-sort* is $\Theta(n \log n)$.
- The auxiliary space is not good (Θ(n)) but can be improved (→ later)
- There are numerous other tricks to improve *randomized-quick-select*We will see some below.
- With these, this is in practice the fastest solution to SORTING (but *not* in theory).

Outline

3 Sorting, Average-case and Randomization

- Analyzing average-case run-time
- SELECTION and quick-select
- Randomized Algorithms
- quick-select revisited

• Tips and Tricks for quick-sort

- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

quick-sort with tricks

randomized-quick-sort-improved(A, n)		
1. Initialize a stack S of index-pairs with $\{(0, n-1)\}$		
2. while S is not empty		
3. $(\ell, r) \leftarrow S.pop()$	<pre>// avoid recursions</pre>	
4. while $(r-\ell+1>10)$ do	<pre>// stop recursions early</pre>	
5. $p \leftarrow \ell + random(\ell - r + 1)$		
6. $i \leftarrow Hoare-partition(A, \ell, r, p)$	<pre>// use better routine</pre>	
7. if $(i-\ell > r-i)$ do	<pre>// reduce aux. space</pre>	
8. $S.push((\ell, i-1))$		
9. $\ell \leftarrow i+1$	<pre>// remove tail-recursion</pre>	
10. else		
11. $S.push((i+1, r))$		
12. $r \leftarrow i-1$		
13. insertion-sort(A)		

- *partition* is very easy to implement with lists or streams (exercise). This uses O(n) auxiliary space and is rather slow.
- More challenging: partition in place (with O(1) auxiliary space).
- Idea: Keep swapping the outer-most wrongly-positioned pairs.

i=-1	•	1	2	3	4	5	6	7	8	j=9
	30	60	10	0	50	80	90	20	40	v=70

- *partition* is very easy to implement with lists or streams (exercise). This uses O(n) auxiliary space and is rather slow.
- More challenging: partition in place (with O(1) auxiliary space).
- Idea: Keep swapping the outer-most wrongly-positioned pairs.

i=-1	0	1	2	3	4	5	6	7	8	j=9
	30	60	10	0	50	80	90	20	40	v=70
	0	1	2	3	4	i=5	6	7	j=8	9
	30	60	10	0	50	80	90	20	40	v=70

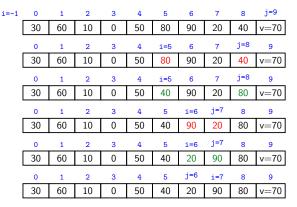
- *partition* is very easy to implement with lists or streams (exercise). This uses O(n) auxiliary space and is rather slow.
- More challenging: partition in place (with O(1) auxiliary space).
- Idea: Keep swapping the outer-most wrongly-positioned pairs.

- *partition* is very easy to implement with lists or streams (exercise). This uses O(n) auxiliary space and is rather slow.
- More challenging: partition in place (with O(1) auxiliary space).
- Idea: Keep swapping the outer-most wrongly-positioned pairs.

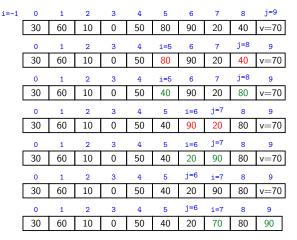
- *partition* is very easy to implement with lists or streams (exercise). This uses O(n) auxiliary space and is rather slow.
- More challenging: partition in place (with O(1) auxiliary space).
- Idea: Keep swapping the outer-most wrongly-positioned pairs.



- *partition* is very easy to implement with lists or streams (exercise). This uses O(n) auxiliary space and is rather slow.
- More challenging: partition in place (with O(1) auxiliary space).
- Idea: Keep swapping the outer-most wrongly-positioned pairs.



- *partition* is very easy to implement with lists or streams (exercise). This uses O(n) auxiliary space and is rather slow.
- More challenging: partition in place (with O(1) auxiliary space).
- Idea: Keep swapping the outer-most wrongly-positioned pairs.



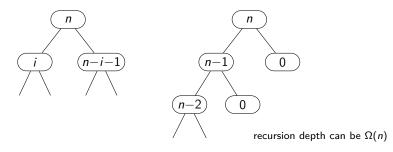
T.Biedl (CS-UW)

Hoare's In-Place Partition Routine

Loop invariant:
$$A ext{ } e$$

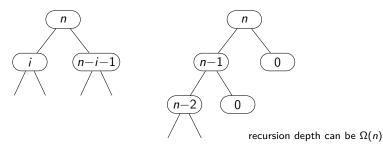
Improvement ideas for quick-sort

- Every recursive call uses O(1) auxiliary space to store a record.
- *quick-sort* has nested recursive calls. To analyze its auxiliary space, consider the **recursion tree** and analyze its height (**recursion depth**)
 - Write size of subproblem into each node.
 - If $n \ge 2$ then there are two subproblems, hence two children.



Improvement ideas for quick-sort

- Every recursive call uses O(1) auxiliary space to store a record.
- *quick-sort* has nested recursive calls. To analyze its auxiliary space, consider the **recursion tree** and analyze its height (**recursion depth**)
 - Write size of subproblem into each node.
 - If $n \ge 2$ then there are two subproblems, hence two children.



• Recursion tree is also useful for analyzing the run-time:

- On every level, the total number of key-comparisons is $\leq n$.
- Can argue (later): On average, the height is $O(\log n)$.
- This gives another proof of $O(n \log n)$ average-case run-time.

T.Biedl (CS-UW)

CS240E − Module 3

Winter 2025

Claim: If we always continue in the *smaller* subproblem first, then the auxiliary space is in $\Theta(\log n)$.

Claim: If we always continue in the *smaller* subproblem first, then the auxiliary space is in $\Theta(\log n)$.

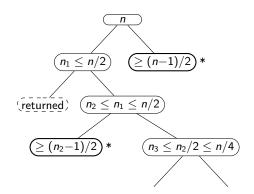
Proof: Consider the path in the recursion tree to the current sub-problem.

Claim: If we always continue in the *smaller* subproblem first, then the auxiliary space is in $\Theta(\log n)$.

Proof: Consider the path in the recursion tree to the current sub-problem.

For each child:

- Either halved the size (or better).
- Or the sibling is done \Rightarrow not on stack



Claim: If we always continue in the *smaller* subproblem first, then the auxiliary space is in $\Theta(\log n)$.

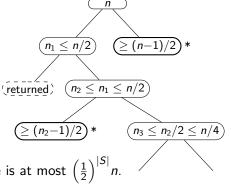
Proof: Consider the path in the recursion tree to the current sub-problem.

For each child:

- Either halved the size (or better).
- Or the sibling is done \Rightarrow not on stack

At all times, the current problem size is at most $\left(\frac{1}{2}\right)^{|S|} n$.

 \Rightarrow At all times, $|S| \leq \log n$.



Outline

3 Sorting, Average-case and Randomization

- Analyzing average-case run-time
- SELECTION and quick-select
- Randomized Algorithms
- quick-select revisited
- Tips and Tricks for *quick-sort*
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Lower bounds for sorting

We have seen many sorting algorithms:

Sort	Running time	Analysis	
selection-sort	$\Theta(n^2)$	worst-case	
insertion-sort	$\Theta(n^2)$	worst-case	
	$\Theta(n)$	best-case	
merge-sort	$\Theta(n \log n)$	worst-case	
heap-sort	$\Theta(n \log n)$	worst-case	
quick-sort	$\Theta(n \log n)$	average-case	
randomized-quick-sort	$\Theta(n \log n)$	expected	

Lower bounds for sorting

We have seen many sorting algorithms:

Sort	Running time	Analysis	
selection-sort	$\Theta(n^2)$	worst-case	
insertion-sort	$\Theta(n^2)$	worst-case	
	$\Theta(n)$	best-case	
merge-sort	$\Theta(n \log n)$	worst-case	
heap-sort	$\Theta(n \log n)$	worst-case	
quick-sort	$\Theta(n \log n)$	average-case	
randomized-quick-sort	$\Theta(n \log n)$	expected	

Question: Can one do better than $\Theta(n \log n)$ running time? **Answer**: Yes and no! *It depends on what we allow*.

Lower bounds for sorting

We have seen many sorting algorithms:

Sort	Running time	Analysis	
selection-sort	$\Theta(n^2)$	worst-case	
insertion-sort	$\Theta(n^2)$	worst-case	
	$\Theta(n)$	best-case	
merge-sort	$\Theta(n \log n)$	worst-case	
heap-sort	$\Theta(n \log n)$	worst-case	
quick-sort	$\Theta(n \log n)$	average-case	
randomized-quick-sort	$\Theta(n \log n)$	expected	

Question: Can one do better than $\Theta(n \log n)$ running time? **Answer**: Yes and no! *It depends on what we allow*.

- No: Comparison-based sorting lower bound is $\Omega(n \log n)$.
- Yes: Non-comparison-based sorting can achieve O(n) (under restrictions!). (→ later)

Lower bound for sorting in the comparison model

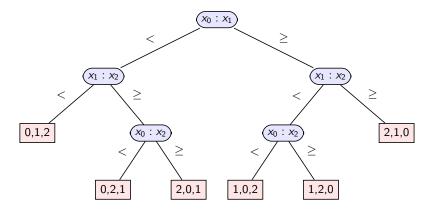
All algorithms so far are comparison-based: Data is accessed only by

- comparing two elements (a *key-comparison*)
- moving elements around (e.g. copying, swapping)

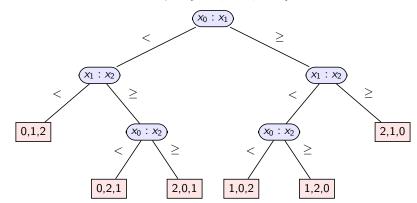
Theorem. Any *comparison-based* sorting algorithm requires in the worst case $\Omega(n \log n)$ comparisons to sort *n* distinct items.

Proof.

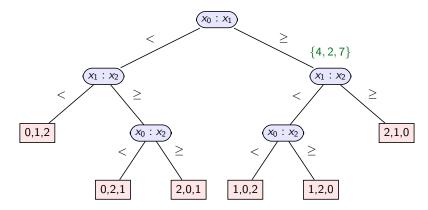
Any comparison-based algorithms can be expressed as **decision tree**. To sort $\{x_0, x_1, x_2\}$:



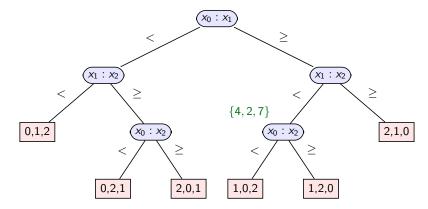
Any comparison-based algorithms can be expressed as **decision tree**. To sort $\{x_0, x_1, x_2\}$: Example: $\{x_0=4, x_1=2, x_2=7\}$



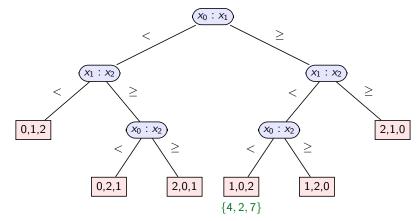
Any comparison-based algorithms can be expressed as **decision tree**. To sort $\{x_0, x_1, x_2\}$:



Any comparison-based algorithms can be expressed as **decision tree**. To sort $\{x_0, x_1, x_2\}$:



Any comparison-based algorithms can be expressed as **decision tree**. To sort $\{x_0, x_1, x_2\}$:



Output: $\{4,2,7\}$ has sorting permutation $\langle 1,0,2\rangle$

(i.e., $x_1 = 2 \le x_0 = 4 \le x_2 = 7$)

Outline

3 Sorting, Average-case and Randomization

- Analyzing average-case run-time
- SELECTION and quick-select
- Randomized Algorithms
- quick-select revisited
- Tips and Tricks for *quick-sort*
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Non-Comparison-Based Sorting

- Assume keys are numbers in base R (R: radix)
 - So all digits are in $\{0, \ldots, R-1\}$
 - R = 2, 10, 128, 256 are the most common, but R need not be constant

Example (
$$R = 4$$
): 123 230 21 320 210 232 101

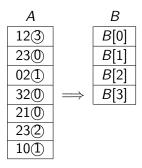
- Assume all keys have the same number w of digits.
 - Can achieve after padding with leading 0s.
 - ▶ In typical computers, w = 32 or w = 64, but w need not be constant

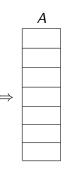
Example (R = 4): 123 230 021 320 210 232 101

• Can sort based on individual digits.

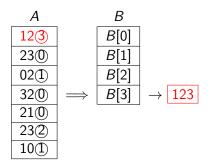
- How to sort 1-digit numbers?
- How to sort multi-digit numbers based on this?

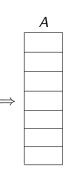
```
(Single-digit) bucket-sort
```

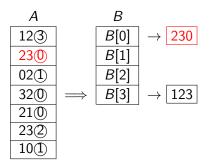




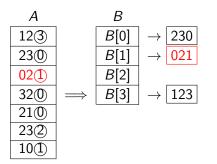
```
(Single-digit) bucket-sort
```

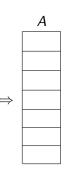


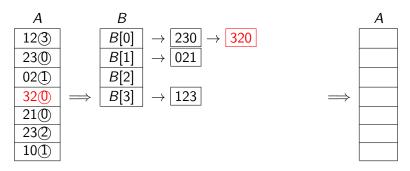


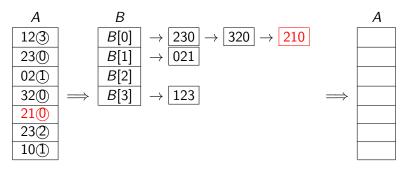


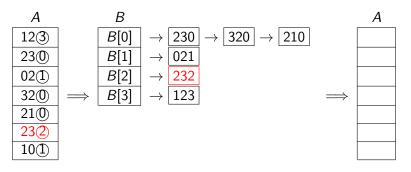

```
(Single-digit) bucket-sort
```

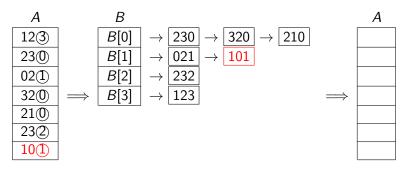


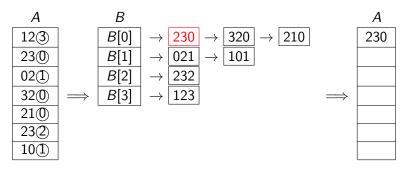


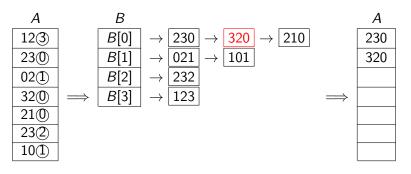


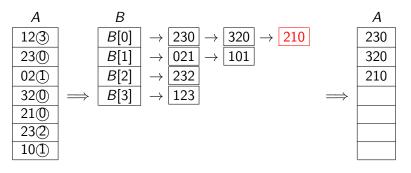


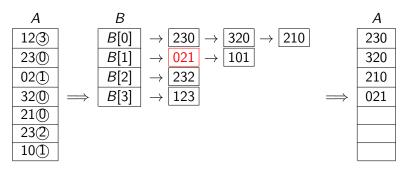


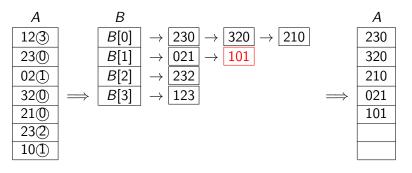


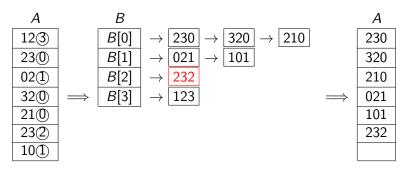


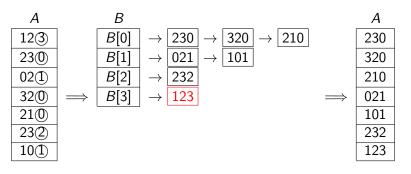












```
bucket-sort(A, n, sort-key(\cdot))

A: array of size n

sort-key(\cdot): maps items of A to {0,..., R-1}

1. Initialize an array B[0...R - 1] of empty queues (buckets)

2. for i \leftarrow 0 to n-1 do

3. Append A[i] at end of B[sort-key(A[i])]

4. i \leftarrow 0

5. for j \leftarrow 0 to R - 1 do

6. while B[j] is non-empty do

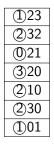
7. move front element of B[j] to A[i++]
```

• In our example *sort-key*(*A*[*i*]) returns the last digit of *A*[*i*]

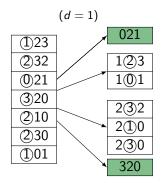
```
\begin{array}{ll} bucket-sort(A, n, sort-key(\cdot))\\ A: \mbox{ array of size }n\\ sort-key(\cdot): \mbox{ maps items of }A \mbox{ to } \{0, \ldots, R-1\}\\ 1. \mbox{ Initialize an array }B[0...R-1] \mbox{ of empty queues } (buckets)\\ 2. \mbox{ for }i \leftarrow 0 \mbox{ to } n-1 \mbox{ do}\\ 3. \mbox{ Append }A[i] \mbox{ at end of }B[sort-key(A[i])]\\ 4. \mbox{ }i \leftarrow 0\\ 5. \mbox{ for }j \leftarrow 0 \mbox{ to } R-1 \mbox{ do}\\ 6. \mbox{ while }B[j] \mbox{ is non-empty do}\\ 7. \mbox{ move front element of }B[j] \mbox{ to }A[i++]\end{array}
```

- In our example *sort-key*(A[i]) returns the last digit of A[i]
- *bucket-sort* is **stable**: equal items stay in original order.
- Run-time $\Theta(n+R)$, auxiliary space $\Theta(n+R)$
- It is possible to replace the lists by arrays \rightsquigarrow count-sort (no details).

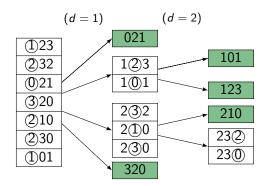
Sort array of *w*-digit radix-*R* numbers recursively: sort by 1st digit, then each group by 2nd digit, etc.



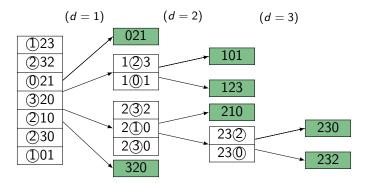
Sort array of w-digit radix-R numbers recursively: sort by 1st digit, then each group by 2nd digit, etc.



Sort array of w-digit radix-R numbers recursively: sort by 1st digit, then each group by 2nd digit, etc.



Sort array of *w*-digit radix-*R* numbers recursively: sort by 1st digit, then each group by 2nd digit, etc.

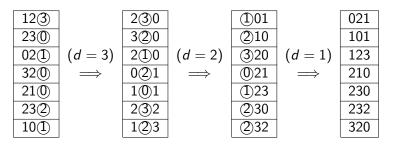


MSD-radix-sort

MSD-radix-sort $(A, n, d \leftarrow 1)$ A: array of size *n*, contains *w*-digit radix-*R* numbers 1. if $(d \leq w \text{ and } (n > 1))$ bucket-sort(A, n, 'return dth digit of A[i]') 2. 3. $\ell \leftarrow 0$ // find sub-arrays and recurse 4. for $i \leftarrow 0$ to R-1Let $r \ge \ell - 1$ be maximal s.t. $A[\ell ... r]$ have dth digit j 5. 6. MSD-radix-sort($A[\ell..r], r-\ell+1, d+1$) 7. $\ell \leftarrow r+1$

Analysis:

- $\Theta(w)$ levels of recursion in worst-case.
- $\Theta(n)$ subproblems on most levels in worst-case.
- $\Theta(R + (\text{size of sub-array}))$ time for each *bucket-sort* call.
- \Rightarrow Run-time $\Theta(wnR)$ slow. Many recursions and allocated arrays.



• Loop-invariant: A is sorted w.r.t. digits d, ..., w of each entry.

• Time cost: $\Theta(w(n+R))$ Auxiliary space: $\Theta(n+R)$

T.Biedl (CS-UW)

Summary

- SORTING is an important and *very* well-studied problem
- Can be done in $\Theta(n \log n)$ time; faster is not possible for general input
- *heap-sort* is the only $\Theta(n \log n)$ -time algorithm we have seen with O(1) auxiliary space.
- merge-sort is also $\Theta(n \log n)$, selection & insertion sorts are $\Theta(n^2)$.
- quick-sort is worst-case $\Theta(n^2)$, but often the fastest in practice
- *bucket-sort* and *radix-sort* achieve $o(n \log n)$ if the input is special
- Randomized algorithms can eliminate "bad cases"
- Best-case, worst-case, average-case can all differ.
- Often it is easier to analyze the run-time on randomly chosen input rather than the average-case run-time.