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Average-case analysis
We will introduce (and solve) a new problem, and then analyze the
average-case run-time of our algorithm.

Recall definition of average-case run-time:

T avg
A (n) =

∑
instance I of size n

TA(I) ·
(
relative frequency of I

)
For this module:

Assume that the set In of size-n instances is finite
(or can be mapped to a finite set in a natural way)
Assume that all instances occur equally frequently

Then we can use the following simplified formula

T avg(n) =
∑

I:size(I)=n T (I)
#instances of size n = 1

|In|
∑
I∈In

T (I)

To learn how to analyze this, we will do simpler examples first.
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A simple (contrived) example
silly-test(π, n)
π: a permutation of {0, . . . , n−1}, stored as an array
1. if π[0] = 0 then for j = 1 to n do print ‘bad case’
2. else print ‘good case’

T avg(n) = 1
n!
∑

π∈Πn

T (π) = 1
n!
( ∑

π∈Πn
in bad case

T (π) +
∑

π∈Πn
in good case

T (π)
)

(n − 1)! permutations have π[0] = 0 ⇒ run-time c · n
The remaining n!− (n − 1)! permutations have run-time c.

(for some constant c > 0)

T avg(n) = 1
n!
(

#{π ∈ Πn in bad case} · cn + #{π ∈ Πn in good case} · c
)

= 1
n!
(

(n − 1)! · cn + (n!− (n − 1)!) · c
)
≤ 1

ncn + c = 2c ∈ O(1)
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A second (not-so-contrived) example

all-0-test(w , n)
// test whether all entries of bitstring w [0..n−1] are 0
1. if (n = 0) return true
2. if (w [n−1] = 1) return false
3. all-0-test(w , n−1)

(In real life, you would write this non-recursive.)

Define T (w) = # bit-comparisons (i.e., line 2) on input w . This is
asymptotically the same as the run-time.

Worst-case run-time: Always go into the recursion until n = 0.
T (n) = 1 + T (n−1) = 1 + 1 + · · ·+ T (0) = n ∈ Θ(n).

Best-case run-time: Return immediately. T (n) = 1 ∈ Θ(1).

Average-case run-time?
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Average-case run-time of all-0-test
Recall T avg(n) = 1

|Bn|
∑
w∈Bn

T (w). (Bn = {bitstrings of length n})

Recursive formula for one non-empty bitstring w :

T (w) =
{

1 if w [n−1] = 1
1 + T (w [0..n−2]︸ ︷︷ ︸

length n−1

) otherwise

Natural guess for the recursive formula for T avg(n):

T avg(n) = 1
2︸︷︷︸

half have
w [n−1]=1

·1 + 1
2︸︷︷︸

half have
w [n−1]=0

(1 + T ???(n−1))

This holds with ≤ (but is useless) if ‘???’ is ‘worst’.
This is not obvious if ‘???’ is ‘avg’.
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Average-case run-time of all-0-test

T avg(n) = 1
|Bn|

∑
w∈Bn

T (w)

=

= 1 + 1
2T

avg(n − 1)

This recursion resolves to T avg(n) ∈ O(1).
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Average-case analysis and recursions
Why can’t we always write ‘avg’ for ‘???’ in T avg (n) = 1 + 1

2T
???(n−1) ?

Consider the following (contrived) example:

silly-all-0-test(w , n)
w : array of size at least n that stores bits
1. if (n = 0) then return true
2. if (w [n−1] = 1) then return false
3. if (n > 1) then w [n−2]← 0 // this is the only change
4. silly-all-0-test(w , n−1)

Only one more line of code in each recursion, so same formula applies.

But observe that now T (w) =
{
1 if w [n−1] = 1
n if w [n−1] = 0

.

So T avg(n) = 1 + n
2 ∈ Θ(n). The “obvious” recursion did not hold.

Average-case analysis is highly non-trivial for recursive algorithms.
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Review and Outlook
quick-sort(A) // array of size n
1. if n ≤ 1 then return
2. i ← partition(A, choose-pivot(A))
3. quick-sort(A[0, 1, . . . , i−1])
4. quick-sort(A[i+1, . . . , n−1])

≤ v ≥ vv
i

correct
placesort recursively sort recursively

sorted

choose-pivot: detemines pivot-value v .
For now, we simply take the rightmost item in A.
partition: achieves top picture, returns pivot-rank i
This takes n key-comparisons (compare two items of A).

quick-sort has Θ(n2) worst-case run-time.
quick-sort has Θ(n log n) best-case run-time.

What is the average-case run-time?
We will study a related problem (with simpler algorithm) first.
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The Selection Problem

We saw Selection: Given an array A of n numbers, and 0 ≤ k < n, find
the element that would be at position k of the sorted array.

(We also call this the element of rank k.)

30
0

60
1

10
2

0
3

50
4

80
5

90
6

10
7

40
8

70
9

select(3) should return 30.

Selection can be done with heaps in time Θ(n + k log n).

Special case: MedianFinding = Selection with k =
⌊n
2
⌋
. With

previous approaches, this takes time Θ(n log n), no better than sorting.

Question: Can we do selection in linear time?
Yes! We will develop algorithm quick-select below.
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quick-select Algorithm
Selection: Want item m such that (after rearranging A) we have

≤ m ≥ mm
k

quick-select(A, k)
A: array of size n, k: integer s.t. 0 ≤ k < n
1. p ← choose-pivot(A)
2. i ← partition(A, p)
3. if i = k then return A[i ]
4. else if i > k then return quick-select(A[0 . . . i−1], k)
5. else if i < k then return quick-select(A[i+1 . . . n−1], k − (i+1))

Idea: After partition have

Where is m if k = i? If k < i? If k > i?

≤ v ≥ vv
i
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Analysis of quick-select
Let T (n, k) be the number of key-comparisons in a size-n array with
parameter k. (This is asymptotically the same as the run-time.)

partition uses n key-comparisons.

Worst-case run-time:
Sub-array always gets smaller, so ≤ n recursions.
Each takes ≤ n comparisons ⇒ O(n2) time.
This is tight: If pivot-value is always the maximum and k = 0
Tworst(n, 0) ≥ n + (n−1) + (n−2) + · · ·+ 1 ∈ Ω(n2)

Best-case run-time: First chosen pivot could be the kth element
No recursive calls; T (n, k) = n ∈ Θ(n)

Average case analysis? Doing this directly would be very complicated.
Instead we will do it via a detour into a randomized version.
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Randomized algorithm example (very contrived)

randomized-all-0-test(w , n)
w : array of size at least n that stores bits
1. if n = 0 return true
2. if (random(2)=0) then

w [n−1] = 1− w [n−1] // this is the only change
3. if w [n−1] = 1 return false
4. randomized-all-0-test(w , n−1)

This is all-0-test, except that we flip last bit based on a coin toss.

We assume the existence of a function random(n) that returns an integer
uniformly from {0, 1, 2, . . . , n−1}. So Pr(random(2) = 0) = 1

2 .

In each recursion, we use the outcome x ∈ {0, 1} of one coin toss.
We return without recursing if x = w [n−1] (this has probability 1

2).
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Expected run-time of randomized-all-0-test
Define T (w ,R) := # bit-comparisons used on input w if the random
outcomes are R. (This is proportional to the run-time.)

The random outcomes R consist of two parts R = 〈x ,R ′〉:
I x : outcome of first coin toss
I R ′: random outcomes (if any) for the recursions

We have Pr(R) = Pr(x) · Pr(R ′) (random choices are independent).

Recursive formula for one instance:

T (w ,R) = T (w , 〈x ,R ′〉) =
{

1 if x = w [n−1]
1 + T (w [0..n−2],R ′) otherwise

Natural guess for the recursive formula for T exp(n):

T exp(n)= 1
2︸︷︷︸

Pr(x=w [n−1])

·1+ 1
2︸︷︷︸

Pr(x 6=w [n−1])

(1+T exp(n−1)) = 1+ 1
2T

exp(n−1)

T.Biedl (CS-UW) CS240E – Module 3 Winter 2025 14 / 45



Expected run-time of randomized-all-0-test
Define T (w ,R) := # bit-comparisons used on input w if the random
outcomes are R. (This is proportional to the run-time.)

The random outcomes R consist of two parts R = 〈x ,R ′〉:
I x : outcome of first coin toss
I R ′: random outcomes (if any) for the recursions

We have Pr(R) = Pr(x) · Pr(R ′) (random choices are independent).

Recursive formula for one instance:

T (w ,R) = T (w , 〈x ,R ′〉) =
{

1 if x = w [n−1]
1 + T (w [0..n−2],R ′) otherwise

Natural guess for the recursive formula for T exp(n):

T exp(n)= 1
2︸︷︷︸

Pr(x=w [n−1])

·1+ 1
2︸︷︷︸

Pr(x 6=w [n−1])

(1+T exp(n−1)) = 1+ 1
2T

exp(n−1)

T.Biedl (CS-UW) CS240E – Module 3 Winter 2025 14 / 45



Expected run-time of randomized-all-0-test
Define T (w ,R) := # bit-comparisons used on input w if the random
outcomes are R. (This is proportional to the run-time.)

The random outcomes R consist of two parts R = 〈x ,R ′〉:
I x : outcome of first coin toss
I R ′: random outcomes (if any) for the recursions

We have Pr(R) = Pr(x) · Pr(R ′) (random choices are independent).

Recursive formula for one instance:
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Expected run-time of randomized-all-0-test
In contrast to average-case analysis, the natural guess usually is correct for
the expected run-time.

Proof for randomized-all-0-test:
T exp(w) =

∑
R

Pr(R)T (w ,R) =

∑
x

∑
R′

Pr(x) Pr(R ′)T (w , 〈x ,R ′〉)

=

Therefore T exp(n) = max
w∈Bn

T exp(w) ≤ 1 + 1
2T

exp(n−1)
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Expected run-time of randomized-all-0-test

We had T exp
rand-all-0-test(n) ≤ 1 + 1

2T
exp
rand-all-0-test(n−1)

We earlier had T avg
all-0-test(n) ≤ 1 + 1

2T
avg
all-0-test(n−1)

Same recursion ⇒ same upper bound ⇒ T exp
rand-all-0-test(n) ∈ O(1).

Recall: randomized-all-0-test was very similar to all-0-test
(The only different was a random bitflip.)

Is it a coincidence that the two recursive formulas are the same?
Or does the expected time of a randomized version always have
something to do with the average-case time?

Not in general! (It depends how we randomize.)
Yes if the randomization is a shuffle (choose instance randomly).
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Avg-case run-time via expected run-time
Consider the following randomization of a deterministic algorithm A.

shuffle-A(n)
1. Among all instances In of size n for A, choose I randomly
2. A(I)

(shuffle-A usually does not solve what A solves)

If we do not count the time for line 1:

T avg
A (n) = 1

|In|
∑
I∈In

T (I) =
∑
I∈In

Pr(I chosen) · T (I) = T exp
shuffle-A(n)

So the average-case run-time of A is the same as this run-time of A
on randomly chosen input.

This gives us a different way to compute T avg
A (n).
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Avg-case run-time via expected run-time
Example: all-0-test (rephrased with for-loops):

shuffle-all-0-test(n)
1. for (i = n−1; i ≥ 0; i--) do
2. w [i ]← random(2)
3. for (i = n−1; i ≥ 0; i--) do
4. if (w [i ] = 1) return false
5. return true

randomized-all-0-test(w , n)
1. for (i = n−1; i ≥ 0; i--) do
2. if (random(2)=0) then

w [i ] = 1− w [i ]
3. if (w [i ] = 1) return false
4. return true

These algorithms are not quite the same.
I Randomization outside respectively inside the for-loop.

But this does not matter for the expected number of bit-comparisons.
I Either way, at time of comparison the bit is 1 with probability 1

2 .

So T avg
all-0-test(n) = T exp

shuffle-all-0-test(n) = T exp
rand-all-0-test(n) ∈ O(1)

can be deduced without analyzing T avg
all-0-test(n) directly.
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Summary: Average-case run-time vs. expected run-time
So: are average-case run-time and expected run-time the same?

No!

average-case run-time expected run-time

1
|In|

∑
I∈In

T (I) max
I∈In

∑
outcomes R

Pr(R) · T (I,R)

average over
instances

weighted average over
random outcomes

(usually) applied to a
deterministic algorithm

applied only to a
randomized algorithm

There is a relationship only if the randomization effectively achieves
“choose the input instance randomly”.
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Outline

3 Sorting, Average-case and Randomization
Analyzing average-case run-time
Selection and quick-select
Randomized Algorithms
quick-select revisited
Tips and Tricks for quick-sort
Lower Bound for Comparison-Based Sorting
Non-Comparison-Based Sorting
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Average-case analysis of quick-select
Recall quick-select:

quick-select(A, k)
1. i ← partition(A, n−1)
2. if i = k then return A[i ]
3. else if i > k then quick-select(A[0 . . . i−1], k)
4. else if i < k then quick-select(A[i+1 . . . n−1], k − (i+1))

For analyzing the average-case run-time, we make two assumptions:
All input-items are distinct.

I This can be forced using tie-breakers.
All possible orders of the input-items occur equally often.
All possible rank-parameters occur equally often.

I This is not completely realistic (mostly-sorted orders or rank-parameter
dn/2e are more common).

I But we cannot do average-case analysis without it.
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Randomizing quick-select: Shuffling

Goal: Create a randomized version of quick-select.
This will give a proof of the avg-case run-time of quick-select.
This will be a better algorithm in practice.

First idea: Shuffle the input, then do quick-select.

shuffle-quick-select(A, k)
1. for (j ← 1 to n−1) do swap(A[j],A[random(j+1)] ) // shuffle
2. quick-select(A, k)

Shuffling (permuting) the input-array is (by assumption) equivalent to
randomly choosing an input instance.
So we know T avg

quick-select(n) = T exp
shuffle-quick-select(n)

(Recall: T (·) counts key-comparisons, so shuffling is free.)
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Randomizing quick-select: Random Pivot

Second idea: Do the shuffling inside the recursion.
(Equivalently: Randomly choose which value is used for the pivot.)

randomized-quick-select(A, k)
1. swap A[n−1] with A[random(n)]
2. i ← partition(A, n−1)
3. if i = k then return A[i ]
4. else if i > k then
5. return randomized-quick-select(A[0 . . . i−1], k)
6. else if i < k then
7. return randomized-quick-select(A[i+1 . . . n−1], k − (i+1))

T exp
rand.-quick-select(n) = T exp

shuffle-quick-select(n).

(This is not completely obvious, but believable. No proof.)
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Expected run-time of randomized-quick-select

Let T (A, k,R) = # key-comparisons of randomized-quick-select on input
〈A, k〉 if the random outcomes are R. (This is proportional to the run-time.)

Write random outcomes R as R = 〈i ,R ′〉 (where ‘i ’ stands for ‘the
first random number was such that the pivot-rank is i ’)
Observe: Pr(pivot-rank is i) = 1

n
We recurse in an array of size i or n−i−1 (or not at all)

Recursive formula for one instance (and fixed R = 〈i ,R ′〉):

T (A, k, 〈i ,R ′〉) = n +


T ( size-i array , k,R ′) if i > k
T ( size-(n−i−1) array , k−i−1,R ′) if i < k
0 otherwise
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Analysis of randomized-quick-select
As for rand-all-0-test: over all R, the recursions can use T exp(array-size).

T exp(A, k)


=
∑
R

P(R) · T (〈A, k〉,R) =
n−1∑
i=0

∑
R′

P(i) · P(R ′) · T (〈A, k〉, 〈i ,R ′〉)

= 1
n

k−1∑
i=0

∑
R′

P(R ′)
(
n + T (〈A[i+1..n−1], k−i−1〉,R ′)

)
+ 1

n · n︸ ︷︷ ︸
i=k

+1
n

n−1∑
i=k+1

∑
R′

P(R ′)
(
n + T (〈A[0..i−1, k〉,R ′)

)

= n + 1
n

k−1∑
i=0

∑
R′

P(R ′)T (〈A[i+1..n−1], k−i−1〉,R ′)

+ 1
n

n−1∑
i=k+1

∑
R′

P(R ′)T (〈A[0..i−1, k〉,R ′)

= n + 1
n

k−1∑
i=0

T exp(〈A[i+1..n−1], k−i−1〉)︸ ︷︷ ︸
≤T exp(n−i−1)

+1
n

n−1∑
i=k+1

T exp(〈A[0..i−1], k〉)︸ ︷︷ ︸
≤T exp(i)

 te
di
ou

s
bu

t
st
ra
ig
ht
fo
rw
ar
d

≤ n + 1
n

n−1∑
i=0

max{T exp(i),T exp(n−i−1)} independent of A, k
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Analysis of randomized-quick-select

In summary, the expected run-time of randomized-quick-select satisfies:

T exp(n) ≤ n + 1
n

n−1∑
i=0

max{T exp(i),T exp(n−i−1)}

Claim: This recursion resolves to O(n).
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Summary of Selection

randomized-quick-select has expected run-time Θ(n).
I The run-time bound is tight since partition takes Ω(n) time
I If we’re unlucky in the random numbers then the run-time is still Ω(n2)

So the expected run-time of shuffle-quick-select is Θ(n).
So the run-time of quick-select on randomly chosen input is Θ(n).
So the average-case run-time of quick-select is Θ(n).

randomized-quick-select is generally the fastest solution to
Selection.

There exists a variation that solves Selection with worst-case
run-time Θ(n), but it uses double recursion and is slower in practice.
(→ cs341, maybe)
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Randomizing quick-sort

randomized-quick-sort(A)
1. if n ≤ 1 then return
2. p ← random(n)
3. i ← partition(A, p)
4. randomized-quick-sort(A[0, 1, . . . , i−1])
5. randomized-quick-sort(A[i+1, . . . , n−1])

Observe: Pr(pivot has rank i) = 1
n

Assume the random output was such that the pivot-rank is i :
We use n comparisons in partition.
We recurse in two arrays, of size i and n−i−1

This implies

T exp(n) = . . . = . . . ≤ . . .︸ ︷︷ ︸
long but straightforward

= n + 1
n

n−1∑
i=0

(
T exp(i)+T exp(n−i−1)

)
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Expected run-time of randomized-quick-sort

T exp(n) ≤ n + 1
n

n−1∑
i=0

(
T exp(i)+T exp(n−i−1)

)
= n+2

n

n−1∑
i=1

T exp(i)

(since T (0) = 0)
Claim: T exp(n) ∈ O(n log n).
Proof:
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Summary of quick-sort

randomized-quick-sort has expected run-time Θ(n log n).
I The run-time bound is tight since the best-case run-time is Ω(n log n)
I If we’re unlucky in the random numbers then the run-time is still Ω(n2)

Can show: This has the same expected run-time as quick-select on
randomly chosen input (no details)
So the average-case run-time of quick-sort is Θ(n log n).

The auxiliary space is not good (Θ(n)) but can be improved ( later)

There are numerous other tricks to improve randomized-quick-select
I We will see some below.

With these, this is in practice the fastest solution to Sorting
(but not in theory).
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Randomized Algorithms
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quick-sort with tricks

randomized-quick-sort-improved(A, n)
1. Initialize a stack S of index-pairs with { (0, n−1) }
2. while S is not empty
3. (`, r)← S.pop() // avoid recursions
4. while (r−`+1 > 10) do // stop recursions early
5. p ← `+ random(`−r+1)
6. i ← Hoare-partition(A, `, r , p) // use better routine
7. if (i−` > r−i) do // reduce aux. space
8. S.push( (`, i−1) )
9. `← i+1 // remove tail-recursion
10. else
11. S.push( (i+1, r) )
12. r ← i−1
13. insertion-sort(A)
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Hoare’s Partition Routine
partition is very easy to implement with lists or streams (exercise).
This uses O(n) auxiliary space and is rather slow.
More challenging: partition in place (with O(1) auxiliary space).
Idea: Keep swapping the outer-most wrongly-positioned pairs.
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Hoare’s In-Place Partition Routine

Loop invariant: A ≤ v ≥ v v?
i j n−1

Hoare-partition(A, p)
A: array of size n, p: integer s.t. 0 ≤ p < n
1. swap(A[n−1],A[p])
2. i ← −1, j ← n−1, v ← A[n−1]
3. loop
4. do i ← i+1 while A[i ] < v
5. do j ← j−1 while j > i and A[j] > v
6. if i ≥ j then break (goto 9)
7. else swap(A[i ],A[j])
8. end loop
9. swap(A[n−1],A[i ])
10. return i
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Improvement ideas for quick-sort
Every recursive call uses O(1) auxiliary space to store a record.
quick-sort has nested recursive calls. To analyze its auxiliary space,
consider the recursion tree and analyze its height (recursion depth)

I Write size of subproblem into each node.
I If n ≥ 2 then there are two subproblems, hence two children.

n

i n−i−1

n

n−1

n−2 0

0

recursion depth can be Ω(n)

Recursion tree is also useful for analyzing the run-time:
I On every level, the total number of key-comparisons is ≤ n.
I Can argue (later): On average, the height is O(log n).
I This gives another proof of O(n log n) average-case run-time.
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Auxiliary space for quick-sort

Claim: If we always continue in the smaller subproblem first, then the
auxiliary space is in Θ(log n).

Proof: Consider the path in the
recursion tree to the current sub-
problem.

For each child:
Either halved the size (or
better).
Or the sibling is done ⇒ not
on stack

n

n1 ≤ n/2

returned n2 ≤ n1 ≤ n/2

≥ (n2−1)/2 * n3 ≤ n2/2 ≤ n/4

≥ (n−1)/2 *

At all times, the current problem size is at most
(
1
2

)|S|
n.

⇒ At all times, |S| ≤ log n.
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Randomized Algorithms
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Lower bounds for sorting
We have seen many sorting algorithms:

Sort Running time Analysis
selection-sort Θ(n2) worst-case
insertion-sort Θ(n2) worst-case

Θ(n) best-case
merge-sort Θ(n log n) worst-case
heap-sort Θ(n log n) worst-case
quick-sort Θ(n log n) average-case
randomized-quick-sort Θ(n log n) expected

Question: Can one do better than Θ(n log n) running time?
Answer: Yes and no! It depends on what we allow .

No: Comparison-based sorting lower bound is Ω(n log n).
Yes: Non-comparison-based sorting can achieve O(n) (under
restrictions!). (→ later)
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Lower bound for sorting in the comparison model
All algorithms so far are comparison-based: Data is accessed only by

comparing two elements (a key-comparison)
moving elements around (e.g. copying, swapping)

Theorem. Any comparison-based sorting algorithm requires in the worst
case Ω(n log n) comparisons to sort n distinct items.
Proof.
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Decision trees
Any comparison-based algorithms can be expressed as decision tree.

x0 : x1

x1 : x2 x1 : x2

x0 : x2 x0 : x20,1,2 2,1,0

0,2,1 2,0,1 1,0,2 1,2,0

To sort {x0, x1, x2}:

Example: {x0=4, x1=2, x2=7}

{4, 2, 7}

{4, 2, 7}

{4, 2, 7}
Output: {4, 2, 7} has sorting permutation 〈1, 0, 2〉

(i.e., x1=2 ≤ x0=4 ≤ x2=7)

< ≥

< ≥

< ≥

≥<

< ≥
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Non-Comparison-Based Sorting

Assume keys are numbers in base R (R: radix)
I So all digits are in {0, . . . ,R−1}
I R = 2, 10, 128, 256 are the most common, but R need not be constant

Example (R = 4): 123 230 21 320 210 232 101

Assume all keys have the same number w of digits.
I Can achieve after padding with leading 0s.
I In typical computers, w = 32 or w = 64, but w need not be constant

Example (R = 4): 123 230 021 320 210 232 101

Can sort based on individual digits.
I How to sort 1-digit numbers?
I How to sort multi-digit numbers based on this?
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(Single-digit) bucket-sort

Sort array A by last digit:

A B A
12 3© B[0]

→ 230 → 320 → 210 230

23 0© B[1]

→ 021 → 101 320

02 1© B[2]

→ 232 210

32 0© =⇒ B[3]

→ 123

=⇒

021

21 0©

101

23 2©

232

10 1©

123
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(Single-digit) bucket-sort

bucket-sort(A, n, sort-key(·))
A: array of size n
sort-key(·) : maps items of A to {0, . . . ,R−1}
1. Initialize an array B[0...R − 1] of empty queues (buckets)
2. for i ← 0 to n−1 do
3. Append A[i ] at end of B[sort-key(A[i ])]
4. i ← 0
5. for j ← 0 to R − 1 do
6. while B[j] is non-empty do
7. move front element of B[j] to A[i++]

In our example sort-key(A[i ]) returns the last digit of A[i ]

bucket-sort is stable: equal items stay in original order.
Run-time Θ(n + R), auxiliary space Θ(n + R)
It is possible to replace the lists by arrays  count-sort (no details).
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Most-significant-digit(MSD)-radix-sort

Sort array of w -digit radix-R numbers recursively:
sort by 1st digit, then each group by 2nd digit, etc.

1©23
2©32
0©21
3©20
2©10
2©30
1©01

021

1 2©3
1 0©1

101

123
2 3©2
2 1©0
2 3©0

210
23 2©
23 0©

230

232320

(d = 1) (d = 2) (d = 3)
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MSD-radix-sort

MSD-radix-sort(A, n, d ← 1)
A: array of size n, contains w -digit radix-R numbers
1. if (d ≤ w and (n > 1))
2. bucket-sort(A, n,‘return dth digit of A[i ]’)
3. `← 0 // find sub-arrays and recurse
4. for j ← 0 to R − 1
5. Let r ≥ `− 1 be maximal s.t. A[`..r ] have dth digit j
6. MSD-radix-sort(A[`..r ], r−`+1, d+1)
7. `← r + 1

Analysis:
Θ(w) levels of recursion in worst-case.
Θ(n) subproblems on most levels in worst-case.
Θ(R + (size of sub-array)) time for each bucket-sort call.

⇒ Run-time Θ(wnR) — slow. Many recursions and allocated arrays.
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Least-significant-digit(LSD)-radix-sort

LSD-radix-sort(A, n)
A: array of size n, contains m-digit radix-R numbers
1. for d ← least significant to most significant digit do
2. bucket-sort(A, n, ‘return dth digit of A[i ]’)

12 3© 2 3©0 1©01 021
23 0© 3 2©0 2©10 101
02 1© (d = 3) 2 1©0 (d = 2) 3©20 (d = 1) 123
32 0© =⇒ 0 2©1 =⇒ 0©21 =⇒ 210
21 0© 1 0©1 1©23 230
23 2© 2 3©2 2©30 232
10 1© 1 2©3 2©32 320

Loop-invariant: A is sorted w.r.t. digits d , . . . ,w of each entry.
Time cost: Θ(w(n + R)) Auxiliary space: Θ(n + R)
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Summary

Sorting is an important and very well-studied problem
Can be done in Θ(n log n) time; faster is not possible for general input
heap-sort is the only Θ(n log n)-time algorithm we have seen with
O(1) auxiliary space.
merge-sort is also Θ(n log n), selection & insertion sorts are Θ(n2).
quick-sort is worst-case Θ(n2), but often the fastest in practice
bucket-sort and radix-sort achieve o(n log n) if the input is special

Randomized algorithms can eliminate “bad cases”
Best-case, worst-case, average-case can all differ.
Often it is easier to analyze the run-time on randomly chosen input
rather than the average-case run-time.
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