CS 240E - Data Structures
and Data Management (Enriched)

Module 3: Sorting, Average-case and Randomization

Therese Bied|

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-01-18 17:05

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 1/ 44

Outline

© Sorting, Average-case and Randomization
@ Review and Outlook
@ Analyzing average-case run-time
@ Run-time on randomly chosen input
@ SELECTION and quick-select
@ Tips and Tricks for quick-sort
@ Lower Bound for Comparison-Based Sorting
@ Non-Comparison-Based Sorting

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025

Outline

© Sorting, Average-case and Randomization
@ Review and Outlook

T.Biedl (CS-UW) CS240 — Module 3

Review and Outlook
Recall the following well-known algorithm for SORTING:

quick-sort(A) // array of size n [=~ /] =2 |

1. if n <1 then return / l \

2.0+ partition(A, ChOOSG—inOt(A)) ‘ sort recursively ‘ e ‘ sort recursively ‘
3. quick-sort(A[0,1, ..., i—1])
4. quick-sort(A[i+1,...,n—1]) \ l /

‘ sorted ‘

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 2 /44

Review and Outlook

Recall the following well-known algorithm for SORTING:

™~

ccccccc

sort recursively

!

-~

quick-sort(A) // array of size n [=~

1. if n <1 then return /

2.0+ partition(A, ChOOSE—inOt(A)) ‘ sort recursively
3. quick-sort(A[0,1, ..., i—1]) \

4. quick-sort(A[i+1,...,n—1]) |

sorted

quick-sort has ©(n?) worst-case run-time.

quick-sort has ©(nlog n) best-case run-time.

T.Biedl (CS-UW) CS240 - Module 3

Winter 2025

2/ 44

Review and Outlook

Recall the following well-known algorithm for SORTING:

quick-sort(A) // array of size n [=~ /] =2 |

1. if n <1 then return / l \

2.0+ partition(A, ChOOSE—inOt(A)) ‘ sort recursively e ‘ sort recursively ‘
3. quick-sort(A[0,1, ..., i—1])
4. quick-sort(A[i+1,...,n—1]) \ l /

‘ sorted ‘

quick-sort has ©(n?) worst-case run-time.

quick-sort has ©(nlog n) best-case run-time.

Goal: Analyze average-case run-time via randomization.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 2 /44

Review and Outlook

Recall the following well-known algorithm for SORTING:

1.

e

quick-sort(A) // array of size n |
if n <1 then return
i« partition(A, choose-pivot(A)) \
quick-sort(A[0, 1, ..., i—1])
quick-sort(A[i+1, ..., n—1])

[v]

-~

!

™~

sort recursively

correct
place

sort recursively

N

!

-~

sorted

quick-sort has ©(n?) worst-case run-time.

quick-sort has ©(nlog n) best-case run-time.

Goal: Analyze average-case run-time via randomization.

Two detours needed:

@ How does one analyze the average-case?

@ And what does that have to do with randomization?

T.Biedl (CS-UW)

CS240 - Module 3

Winter 2025

2/ 44

Outline

© Sorting, Average-case and Randomization

@ Analyzing average-case run-time

T.Biedl (CS-UW) CS240 — Module 3

Average-case analysis

Recall definition of average-case run-time:

T5%(n) = Z T (1) - (relative frequency of /)

instance [of size n

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 3 /44

Average-case analysis

Recall definition of average-case run-time:

T2%(n) = Z T(!) - (relative frequency of /)

instance [of size n

For this module:

@ Assume that the set Z, of size-n instances is finite
(or can be mapped to a finite set in a natural way)

@ Assume that all instances occur equally frequently

Then we can use the following simplified formula

Tavg() leize(l (/) Z T

#instances of size n \I] =

To learn how to analyze this, we will do simpler examples first.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025

3 /44

A simple (contrived) example

silly-test(m, n)

7: a permutation of {0,...,n—1}, stored as an array

1. if w[0] = 0 then for j <— 1 to n do print ‘bad case’
2. else print ‘good case’

) =Y T = Y T Y TW)

well, m€Mp €My
in bad case in good case

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 4 /44

A simple (contrived) example

silly-test(m, n)

7: a permutation of {0,...,n—1}, stored as an array

1. if w[0] = 0 then for j <— 1 to n do print ‘bad case’
2. else print ‘good case’

) =LY = (Y T Y T()

e, welp welp
in bad case in good case
@ bad case = run-time < c-n (for some constant ¢ > 0)

@ good case = run-time < ¢

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 4 /44

A simple (contrived) example

silly-test(m, n)

7: a permutation of {0,...,n—1}, stored as an array

1. if 7[0] = 0 then for j < 1 to n do print ‘bad case’
2. else print ‘good case’

1 1
avg - — ——
Tn) = > T(m) = ; T(m) + ; T())
g n in bad cnase in good Zase
@ bad case = run-time < c-n (for some constant ¢ > 0)

@ good case = run-time < ¢

1
T%8(n) < (#{WEI'I,, in bad case} - cn + #{mwell, in good case} -c)

n!

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 4 /44

A simple (contrived) example

silly-test(m, n)

7: a permutation of {0,...,n—1}, stored as an array

1. if 7[0] = 0 then for j < 1 to n do print ‘bad case’
2. else print ‘good case’

1 1
avg - — ——
Tn) = > T(m) = ; T(m) + ; T())
g n in bad cnase in good Zase
@ bad case = run-time < c-n (for some constant ¢ > 0)

@ good case = run-time < ¢

1
T%8(n) < (#{WEI'I,, in bad case} - cn + #{mwell, in good case} -c)

n!

(n—1)! <n!

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 4 /44

A simple (contrived) example

silly-test(m, n)

7: a permutation of {0,...,n—1}, stored as an array

1. if 7[0] = 0 then for j < 1 to n do print ‘bad case’
2. else print ‘good case’

1 1
avg - — ——
Tn) = > T(m) = ; T(m) + ; T())
g n in bad cnase in good Zase
@ bad case = run-time < c-n (for some constant ¢ > 0)

@ good case = run-time < ¢

T%8(n) < %(#{WEI’I” in bad case} - cn + #{mwell, in good case} -c)
(n—1)! <n!
< l((n—l)!-cn+n!~c)zlcn—kc:2ce0(1)
- nl n

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 4 /44

A second (not-so-contrived) recursive example

all-0-test(w, n)

// test whether all entries of bitstring w[0..n—1] are 0
1. if (n =0) return true

2. if (w[n—1] = 1) return false

3. all-O-test(w, n—1)

(In real life, you would write this non-recursive.)

Define T(w) = # bit-comparisons (i.e., line 2) on input w. This is
asymptotically the same as the run-time.

Worst-case run-time: Always go into the recursion until n = 0.
T(n)=1+T(n-1)=1+4+1+4---4+T(0) =ne€ O(n).

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 5/ 44

A second (not-so-contrived) recursive example

all-0-test(w, n)

// test whether all entries of bitstring w[0..n—1] are 0
1. if (n =0) return true

2. if (w[n—1] = 1) return false

3. all-O-test(w, n—1)

(In real life, you would write this non-recursive.)

Define T(w) = # bit-comparisons (i.e., line 2) on input w. This is
asymptotically the same as the run-time.

Worst-case run-time: Always go into the recursion until n = 0.
T(n)=1+T(n-1)=1+4+1+4---4+T(0) =ne€ O(n).

Best-case run-time: Return immediately. T(n) =1 € ©(1).

Average-case run-time?

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 5/ 44

Average- case run-time of all-0-test

T%(n) = Z T(w (B, = {bitstrings of length n},|B,| = 2")
weB,

IBI

Recursive formula for one non-empty bitstring w:

N 1 if wih—1] =1
T(w) = { 1+ T(w[0..n—2]) otherwise
—

length n—1

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 6 /44

Average case run-time of all-0-test

T*8(n Z T(w (B, = {bitstrings of length n},|B,| = 2")
weB,

IBI

Recursive formula for one non-empty bitstring w:

B 1 if wih—1] =1
T(w) = { 1+ T(w[0..n—2]) otherwise
—

length n—1

Natural guess for the recursive formula for T2v8(n):

ToV8(p) = j/ 1+ \%/ 1+ T (n-1))
half have half have
w[n—1]=1 w[n—1]=0

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 6 /44

Average case run-time of all-0-test
Tavg

Z T(w (B, = {bitstrings of length n}, |B,| = 2")
weB,

IBI

Recursive formula for one non-empty bitstring w:

T(w) = { 1 if win—1] =1
1+ T(w[0..n—2]) otherwise
————
length n—1

Natural guess for the recursive formula for T#V&(n):

T™¢(n) = 3 1+ 5 (1+T7(n-1))
~~ ~~
half have half have
w[n—1]=1 w[n—1]=0

@ This holds with < (but is useless) if ‘???" is ‘worst’.

@ This is not obvious if ‘777" is ‘avg.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 6 /44

Average—case run-time of all-0-test

> T(w)

weB,

Tavg
\B |

1
=1+ 5T™¥n—1)

Easy induction proof: T2v&(n) <2 € O(1).

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 7/ 44

Average-case analysis and recursions
Why can't we always write ‘avg’ for ‘?2?" in T*8(n) =1+ 177" (n-1) ?

Consider the following (contrived) example:

silly-all-0-test(w, n)

w: array of size at least n that stores bits

1. if (n=0) then return true

if (w[n—1] = 1) then return false

if (n> 1) then w[n—2]+0 // this is the only change
silly-all-O-test(w, n—1)

Hown

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 8 /44

Average-case analysis and recursions
Why can't we always write ‘avg’ for ‘???" in T*8(n) =1+ 1T7"""(n-1) ?

Consider the following (contrived) example:

silly-all-0-test(w, n)

w: array of size at least n that stores bits

1. if (n=0) then return true

if (w[n—1] = 1) then return false

if (n > 1) then w[n—2]+ 0 // this is the only change
silly-all-0-test(w, n—1)

Hown

@ Only one more line of code in each recursion, so same formula applies.
1 ifwn-1]=1

@ But observe that now T(w) = { i wln—1] = 0°
n imrwin— =

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 8 /44

Average-case analysis and recursions
Why can't we always write ‘avg’ for ‘???" in T*8(n) =1+ 1T7"""(n-1) ?

Consider the following (contrived) example:

silly-all-0-test(w, n)

w: array of size at least n that stores bits

1. if (n=0) then return true

if (w[n—1] = 1) then return false

if (n > 1) then w[n—2]+ 0 // this is the only change
silly-all-0-test(w, n—1)

Hown

@ Only one more line of code in each recursion, so same formula applies.
1 ifwn-1]=1

n ifwln-1=0

@ So T*8(n) =1+ 5 € ©(n). The “obvious" recursion did not hold.

e But observe that now T(w) = {

Average-case analysis is highly non-trivial for recursive algorithms.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 8 /44

Outline

© Sorting, Average-case and Randomization

@ Run-time on randomly chosen input

T.Biedl (CS-UW) CS240 — Module 3

Randomizations of algorithms

randomized-all-O-test(w, n)
w: array of size at least n that stores bits
1. if n =0 return true
2. if (random(2)=0) then
wn—1] + 1 — w[n—1] // this is the only change
3. if w[n—1] =1 return false
4. randomized-all-0-test(w, n—1)

This is all-O-test, except that we flip last bit based on a coin toss.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 9 /44

Randomizations of algorithms

randomized-all-O-test(w, n)
w: array of size at least n that stores bits
1. if n =0 return true
2. if (random(2)=0) then
wn—1] + 1 — w[n—1] // this is the only change
3. if w[n—1] =1 return false
4. randomized-all-0-test(w, n—1)

This is all-O-test, except that we flip last bit based on a coin toss.

In each recursion, we use the outcome x € {0, 1} of one coin toss.
We return without recursing if x = w[n—1] (this has probability 1).

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 9 /44

Expected run-time of randomized-all-O-test

Let T(w, R) be the # of bit-comparisons used on input w if the random
outcomes are R.

@ The random outcomes R consist of two parts R = (x, R'):

» x: outcome of first coin toss
» R’: random outcomes (if any) for the recursions

We have Pr(R) = Pr(x) - Pr(R’") (random choices are independent).

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 10 / 44

Expected run-time of randomized-all-O-test

Let T(w, R) be the # of bit-comparisons used on input w if the random
outcomes are R.

@ The random outcomes R consist of two parts R = (x, R'):

» x: outcome of first coin toss
» R’: random outcomes (if any) for the recursions

We have Pr(R) = Pr(x) - Pr(R’") (random choices are independent).
@ Recursive formula for one instance:

, 1 if x = w[n—1]
T(w,R) = T(w,(x,R)) = { 1+ T(w[0..n—2], Rl) otherwise

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 10 / 44

Expected run-time of randomized-all-O-test

Let T(w, R) be the # of bit-comparisons used on input w if the random
outcomes are R.

@ The random outcomes R consist of two parts R = (x, R'):
» x: outcome of first coin toss
» R’: random outcomes (if any) for the recursions

We have Pr(R) = Pr(x) - Pr(R’") (random choices are independent).

@ Recursive formula for one instance:

) 1 if x = w[n—1]
T(w,R)=T(w,(x,R')) = { 14+ T(W[O,.n—Q], Rl) otherwise

o Natural guess for the recursive formula for TP (n):

T™P(n)= i 1+ 1 (1+T%(n-1)) = 1+3T"P(n-1)
<~ <~
Pr(x=w[n—1]) Pr(x#w[n—1])

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 10 / 44

Expected run-time of randomized-all-O-test

In contrast to average-case analysis, the natural guess usually is correct for
the expected run-time.

Proof for randomized-all-O-test:

TP(w) = ZPF(R)T(W,R):
R

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 11 / 44

Expected run-time of randomized-all-O-test

In contrast to average-case analysis, the natural guess usually is correct for
the expected run-time.

Proof for randomized-all-O-test:

W) = D PURIT(w R) = 3.3 Prix) Pr(R)T(w, (x, RY)
R

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 11 / 44

Expected run-time of randomized-all-O-test

In contrast to average-case analysis, the natural guess usually is correct for
the expected run-time.

Proof for randomized-all-O-test:

W) = D PURIT(w R) = 3.3 Prix) Pr(R)T(w, (x, RY)
R

Therefore T*P(n) = max TOP(w) < 1+ 3TP(n—1)

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 11 / 44

Expected run-time of randomized-all-O-test

© We had TZ0,) rese(n) < 14 5 T2R (n—1)

ra rand-all-O-test
. avg 1 Javg
o We earlier had T35, ,...(n) <14 5T,% 0c:(n—1)

@ Same recursion = same upper bound = TP - (n) € O(1).

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 12 / 44

Expected run-time of randomized-all-O-test

e We had Texp (n) < 1+ %Tre;I:i—a/I—O—test(n_l)

rand-all-O-test

o We earlier had T2)% , . (n) <1+ 3T2% (n-1)

@ Same recursion = same upper bound = TP - (n) € O(1).

Recall: randomized-all-O-test was very similar to all-O-test
(The only different was a random bitflip.)

Is it a coincidence that the two recursive formulas are the same?

Or does the expected time of a randomized version always have something
to do with the average-case time?

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 12 / 44

Expected run-time of randomized-all-O-test

e We had Texp (n) < 1+ %Tre;g;—all—O—test(n_l)

rand-all-O-test

o We earlier had T3% ..., (n) <1+ %Tj,‘,’_%_test(n—l)

@ Same recursion = same upper bound = TP - (n) € O(1).
Recall: randomized-all-O-test was very similar to all-O-test
(The only different was a random bitflip.)
Is it a coincidence that the two recursive formulas are the same?

Or does the expected time of a randomized version always have something
to do with the average-case time?

@ Not in general! (It depends how we randomize.)
@ Yes if the randomization is a shuffle (choose instance randomly).

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 12 / 44

Avg-case run-time via expected run-time

Consider the following randomization of a deterministic algorithm A.

shuffle-A(n)
1. Among all instances Z, of size n for A, choose | randomly
2. A

(shuffle-A usually does not solve what A solves)

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 13 / 44

Avg-case run-time via expected run-time

Consider the following randomization of a deterministic algorithm A.

shuffle-A(n)
1. Among all instances Z, of size n for A, choose | randomly
2. A

(shuffle-A usually does not solve what A solves)

@ If we do not count the time for line 1:

Tﬂvg ’I ’ Z T Z Pr(I chosen) - T(I) = shuff/e a(n)
€T, 1€,

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 13 / 44

Avg-case run-time via expected run-time

Consider the following randomization of a deterministic algorithm A.

shuffle-A(n)
1. Among all instances Z,, of size n for A, choose / randomly
2. A

(shuffle-A usually does not solve what A solves)

@ If we do not count the time for line 1:

TﬂVg ’_’[’ Z T Z Pr(/ chosen) T(/) Shuff/e .A()

@ So the average-case run-time of A is the same as this run-time of A
on randomly chosen input.

e This gives us a different way to compute T5"%(n).

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 13 / 44

Avg-case run-time via expected run-time

Example: all-O-test (rephrased with for-loops):

shuffle-all-0-test(n)
1. for (i + n—1;i > 0;i--) do

2. wl[i] < random(2) 2.
3. for (i < n—1;i > 0;i--) do

4. if (w[i] =1) return false 3.
5. return true 4.

randomized-all-O-test(w, n)
1. for (i + n—1;i > 0;i--) do

if (random(2)=0) then
wli] < 1 — wli]

if (w[i] =1) return false

return true

T.Biedl (CS-UW)

CS240 - Module 3 Winter 2025

14 / 44

Avg-case run-time via expected run-time

Example: all-O-test (rephrased with for-loops):

shuffle-all-0-test(n) randomized-all-O-test(w, n)

1. for (i + n—1;i > 0;i--) do 1. for (i + n—1;i > 0;i--) do

2. w[i] < random(2) 2. if (random(2)=0) then

3. for (i < n—1;i > 0;i--) do wli] < 1 — wli]

4. if (w[i] =1) return false 3. if (w[i] =1) return false
5. return true 4. return true

@ These algorithms are not quite the same.

» Randomization outside respectively inside the for-loop.
But this does not matter for the expected number of bit-comparisons.
» Either way, at time of comparison the bit is 1 with probability %

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 14 / 44

Avg-case run-time via expected run-time

Example: all-O-test (rephrased with for-loops):

shuffle-all-0-test(n) randomized-all-O-test(w, n)

1. for (i + n—1;i > 0;i--) do 1. for (i + n—1;i > 0;i--) do

2. w[i] < random(2) 2. if (random(2)=0) then

3. for (i < n—1;i > 0;i--) do wli] < 1 — wli]

4. if (w[i] =1) return false 3. if (w[i] =1) return false
5. return true 4. return true

@ These algorithms are not quite the same.

» Randomization outside respectively inside the for-loop.
But this does not matter for the expected number of bit-comparisons.
» Either way, at time of comparison the bit is 1 with probability %

So Tal‘lzg(;) test(n) shuffle all-0- test(n) rca);lfj all-0- test(n) € O(]')

can be deduced without analyzing T3,% ,_..(n) directly.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 14 / 44

Summary: Average-case run-time vs. expected run-time

So: are average-case run-time and expected run-time the same?

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 15 / 44

Summary: Average-case run-time vs. expected run-time

So: are average-case run-time and expected run-time the same?

No!

average-case run-time expected run-time

1 ST max Y Pr(R)-T(I,R)

|Zn| 1€,

1€T, outcomes R
average over weighted average over
instances random outcomes

(usually) applied to a applied only to a
deterministic algorithm randomized algorithm

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 15 / 44

Summary: Average-case run-time vs. expected run-time

So: are average-case run-time and expected run-time the same?

No!
average-case run-time expected run-time
RS0 max S Pr(R)- T(I,R)
|Zn| 1€,
1€T, outcomes R
average over weighted average over
instances random outcomes
(usually) applied to a applied only to a
deterministic algorithm randomized algorithm

There is a relationship only if the randomization effectively achieves

“choose the input instance randomly”.
T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 15 / 44

Outline

© Sorting, Average-case and Randomization

@ SELECTION and quick-select

T.Biedl (CS-UW) CS240 — Module 3

The SELECTION Problem

SELECTION problem: Given an array A of n numbers, and 0 < k < n, find
the element that would be at position k of the sorted array.

(We also call this the element of rank k.)

0 1 2 3 4 5 6 7 8 9
[30]60]| 10[o [50[8 [90] 10]40] 70|
select(3) should return 30.

SELECTION can be done with heaps in time ©(n + k log n).

Special case: MEDIANFINDING = SELECTION with k = [4]. With
previous approaches, this takes time ©(nlogn), no better than sorting.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 16 / 44

The SELECTION Problem

SELECTION problem: Given an array A of n numbers, and 0 < k < n, find
the element that would be at position k of the sorted array.
(We also call this the element of rank k.)

0 1 2 3 4 5 6 7 8 9
[30]60]| 10[o [50[8 [90] 10]40] 70|
select(3) should return 30.

SELECTION can be done with heaps in time ©(n + k log n).

Special case: MEDIANFINDING = SELECTION with k = [4]. With
previous approaches, this takes time ©(nlogn), no better than sorting.

Question: Can we do selection in linear time?
Yes! We will develop algorithm quick-select below.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 16 / 44

quick-select Algorithm
Goal: Find element m of rank k by rearranging A:

T R) BT

k

Recall: partition method (from quick-sort) achieves

] <v |v] >v

i

Whereis mif i=k? If i < k? If i > k?

quick-select(A, k)
A: array of size n, k: integers.t. 0 < k <n
1. p + choose-pivot(A)

2. i+ partition(A, p)

3. if i = k then return A[i]

4. else if i > k then return quick-select(A[0...i—1], k)

5. else if i < k then return quick-select(A[i+1...n—1], k — (i+1))
T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 17 / 44

Analysis of quick-select

Let T(A, k) be the number of key-comparisons for quick-select(A, k).
partition uses n key-comparisons.

Write A’ for rearranged A after partition, and i for the pivot-rank.

n if i =k

T(A k)=< n+ T(A0..i—1], k) if i > k (sub-array has size i)
n+ T(Ai+1..n=1], k—i—1) if i<k (...size n—i—1)

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 18 / 44

Analysis of quick-select

Let T(A, k) be the number of key-comparisons for quick-select(A, k).
partition uses n key-comparisons.

Write A’ for rearranged A after partition, and i for the pivot-rank.

n if i =k

T(A k)=< n+ T(A[0..i-1], k) if i > k (sub-array has size i)
n+ T(Ai+1..n=1], k—i—1) if i<k (...size n—i—1)

Worst-case run-time:
o Sub-array always gets smaller, so < n recursions = O(n?) time.

o This is tight: If pivot-rank is always n —1 and kK =0
TV (n,0) > n+ (n—1) + (n—2) +--- + 1 € Q(n?)

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 18 / 44

Analysis of quick-select

Let T(A, k) be the number of key-comparisons for quick-select(A, k).
partition uses n key-comparisons.

Write A’ for rearranged A after partition, and i for the pivot-rank.

n if i =k
T(A k)=< n+ T(A[0..i-1], k) if i > k (sub-array has size i)
n+ T(Ai+1..n=1], k—i—1) if i<k (...size n—i—1)

Worst-case run-time:

o Sub-array always gets smaller, so < n recursions = O(n?) time.
o This is tight: If pivot-rank is always n —1 and kK =0
TV (n,0) > n+ (n—1) + (n—2) +--- + 1 € Q(n?)

Best-case run-time: ©(n) if i = k in first round.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 18 / 44

Analysis of quick-select

Let T(A, k) be the number of key-comparisons for quick-select(A, k).
partition uses n key-comparisons.

Write A’ for rearranged A after partition, and i for the pivot-rank.

n if i =k
T(A k)=< n+ T(A[0..i-1], k) if i > k (sub-array has size i)
n+ T(Ai+1..n=1], k—i—1) if i<k (...size n—i—1)

Worst-case run-time:

o Sub-array always gets smaller, so < n recursions = O(n?) time.
o This is tight: If pivot-rank is always n —1 and kK =0
TV (n,0) > n+ (n—1) + (n—2) +--- + 1 € Q(n?)

Best-case run-time: ©(n) if i = k in first round.

Average case run-time?

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 18 / 44

Average-case analysis of quick-select (sketch)
n if i =k

T(A k)=< n+ T(A[0..i-1], k) if i > k (sub-array has size i)
n+ T(Ai+1..n=1], k—i—1) ifi <k (...size n—i—1)

To obtain "obvious” recursive formula:
1 . . .
@ Argue: -th of the inputs have pivot-rank i
(Easy if we assume that instances are permutations.)
@ Argue: the rank-index k does not matter for analysis.

(Not obvious, but analysis works even if we take maxy.)

o Argue: If Ais “average”, then A is also “average”. Difficult!

» Formally: Over all choices of A, we have equally many occurrences of each possibility of A’.
» False for some implementations of partition. Correct if partition only compares to the pivot-value.

1 n—1
Tavg < - Tan H Tan oy 1
(n)_n—l—n;max{ (1), (n—i)}

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 19 / 44

Randomizing quick-select: Shuffling

To avoid the difficult proof, use randomization instead.

Goal: Create a randomized version of quick-select.

@ This will give a proof of the avg-case run-time of quick-select.

@ This will be a better algorithm in practice.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025

20 / 44

Randomizing quick-select: Shuffling

To avoid the difficult proof, use randomization instead.

Goal: Create a randomized version of quick-select.

@ This will give a proof of the avg-case run-time of quick-select.
o This will be a better algorithm in practice.

First idea: Shuffle the input, then do quick-select.

shuffle-quick-select(A, k)

1. for (j < 1 to n—1) do swap(A[j], A[random(j+1)]) // shuffle
2. quick-select(A, k)

e Assumption: Shuffling (permuting) the input-array is equivalent to
randomly choosing an input instance.

avg _ Texp
@ So we know Tquick—select(n) - shuff/e—quick—select(n)

(Recall: T(-) counts key-comparisons, so shuffling is free.)

T.Biedl (CS-UW) CS240 - Module 3

Winter 2025 20 / 44

Randomizing quick-select: Random Pivot

Second idea: Do the shuffling inside the recursion.
(Equivalently: Randomly choose which value is used for the pivot.)

randomized-quick-select(A, k)

1. swap A[n—1] with A[random(n)]

2. i+ partition(A, n—1)

3. if i = k then return A[/]

4. else if i > k then

5. return randomized-quick-select(A[0 ... i—1], k)

6. else if i < k then

7 return randomized-quick-select(A[i+1...n—1], k — (i+1))

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 21/ 44

Randomizing quick-select: Random Pivot

Second idea: Do the shuffling inside the recursion.
(Equivalently: Randomly choose which value is used for the pivot.)

randomized-quick-select(A, k)

1. swap A[n—1] with A[random(n)]

2. i+ partition(A, n—1)

3. if i = k then return A[/]

4. else if i > k then

5. return randomized-quick-select(A[0 ... i—1], k)

6. else if i < k then

7 return randomized-quick-select(A[i+1...n—1], k — (i+1))

exp __ Texp
° Trand. —quick—select(n) - Tshuff/e—quick—se/ect(n) :

(This is not completely obvious, but believable. No proof.)

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 21/ 44

Expected run-time of randomized-quick-select

Let T(A, k, R) = # key-comparisons of randomized-quick-select on input
(A, k) if the random outcomes are R.

@ Write random outcomes R as R = (i, R') (where ‘i’ stands for ‘the

first random number was such that the pivot-rank is i)
e Observe: Pr(pivot-rank is i) = 1

@ We recurse in an array of size i or n—i—1 (or not at all)

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 22 /44

Expected run-time of randomized-quick-select

Let T(A, k, R) = # key-comparisons of randomized-quick-select on input
(A, k) if the random outcomes are R.

@ Write random outcomes R as R = (i, R') (where ‘i’ stands for ‘the

first random number was such that the pivot-rank is i")

e Observe: Pr(pivot-rank is i) = 1

e We recurse in an array of size i or n—i—1 (or not at all)

@ Recursive formula for one instance (and fixed R = (i, R')):

T (size-i array, k, R') if i >k
T(A k, (i, RY) =n+ < T(size-(n—i—1) array, k—i—1,R") ifi<k
0 otherwise

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 22 /44

Analysis of randomized-quick-select
Since the expected run-time uses the worst-case instance, the recursive
formula can now be shown easily:

TP(A, k)
= 2 P(R) - T((AK),R) = S5 P P(R) - T(AK). (. R)) <
i=0 R’ 5
S 3
7;21213 R') (n+ T((A’[/+1 n=1], k=i-1),R')) 5
i=0 R’ 5
+1 n + Z S PR (n+ T(AT0-i-1, k), R)) &
—k i=k+1 R’ g
k 1 - [}
=+ ZZP(R’)T((A’[I+1 n—1], k—i—1), R') £
n = 3
+7 Z > P(R)T((A0..i-1,k),R) 3
i=k+1 R/ 9
k 1 -1 _8‘

=n4 = ZT"XP ((A'li+1..n=1], k—i—1))+ > TP(A0..i-1], k)
=0 i=k+1 M

<Texp(n—i—1) <Texp(f)

-1
15 . . .
<n+ - Z max{ TP(i), T*P(n—i—1)} independent of A, k
Ni=o
T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 23 /44

Analysis of randomized-quick-select

In summary, the expected run-time of randomized-quick-select satisfies:

1 n—1
TP(n) < n+ = max{ TP(i), T*P(n—i—1
(n) . ; {7 () ()}

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 24 / 44

Analysis of randomized-quick-select

In summary, the expected run-time of randomized-quick-select satisfies:

1 n—1
TP(n) < n+ = max{ TP(i), T*P(n—i—1
(n) . ; {7 () ()}

Claim: This recursion resolves to O(n).

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 24 / 44

Summary of SELECTION

e randomized-quick-select has expected run-time ©(n).

» The run-time bound is tight since partition takes Q(n) time
» If we're unlucky in the random numbers then the run-time is still Q(n?)

@ So the expected run-time of shuffle-quick-select is ©(n).
@ So the run-time of quick-select on randomly chosen input is ©(n).

@ So the average-case run-time of quick-select is ©(n).

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 26 / 44

Summary of SELECTION

e randomized-quick-select has expected run-time ©(n).

» The run-time bound is tight since partition takes Q(n) time
» If we're unlucky in the random numbers then the run-time is still Q(n?)

So the expected run-time of shuffle-quick-select is ©(n).

So the run-time of quick-select on randomly chosen input is ©(n).

So the average-case run-time of quick-select is ©(n).

randomized-quick-select is generally the fastest solution to
SELECTION.

There exists a variation that solves SELECTION with worst-case
run-time ©(n), but it uses double recursion and is slower in practice.
(— cs341, maybe)

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 26 / 44

Randomizing quick-sort

We analyze the avg-case run-time of quick-sort again via randomization.

randomized-quick-sort(A)

1. if n <1 then return

p « random(n)

i < partition(A, p)
randomized-quick-sort(A[0,1, ..., i—1])
randomized-quick-sort(A[i+1, ..., n—1])

g wn

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 27 / 44

Randomizing quick-sort

We analyze the avg-case run-time of quick-sort again via randomization.

randomized-quick-sort(A)

1. if n <1 then return

p « random(n)

i < partition(A, p)
randomized-quick-sort(A[0, 1, ..., i—1])
randomized-quick-sort(A[i+1, ..., n—1])

g wn

@ We use n comparisons in partition.

o Pr(pivot has rank i) = 1

n
@ We recurse in two arrays, of size i and n—i—1

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 27 / 44

Randomizing quick-sort

We analyze the avg-case run-time of quick-sort again via randomization.

randomized-quick-sort(A)

1. if n <1 then return

p « random(n)

i < partition(A, p)
randomized-quick-sort(A[0, 1, ..., i—1])
randomized-quick-sort(A[i+1, ..., n—1])

g wn

@ We use n comparisons in partition.

o Pr(pivot has rank i) = 1

n
@ We recurse in two arrays, of size i and n—i—1

This implies

n—

1
TP(n)= ... = ... < ... =n+-

1
(T ()4 TP(n—i-1))
0

=

long but straightforward

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 27 / 44

Expected run-time of randomized-quick-sort

X 1 n-1 o .]) n—1 .
T(n) < n ;0 (To2(i)+ TP (n=i=1)) = n+= ; TP ()

(since T(0) =0)
Claim: T“®(n) € O(nlogn).
Proof:

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 28 / 44

Expected run-time of randomized-quick-sort

X 1 n-1 o .]) n—1 .
T(n) < n ;0 (To2(i)+ TP (n=i=1)) = n+= ; TP ()

(since T(0) =0)
Claim: T“®(n) € O(nlogn).
Proof:

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 28 / 44

Summary of quick-sort

e randomized-quick-sort has expected run-time ©(nlog n).

» The run-time bound is tight since the best-case run-time is Q(nlog n)
> If we're unlucky in the random numbers then the run-time is still Q(n?)

e This implies (with the same detour through shuffle-quick-sort):

The average-case run-time of quick-sort is ©(nlog n).

@ The auxiliary space is not good (©(n)) but can be improved (~ later)

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 29 / 44

Summary of quick-sort

e randomized-quick-sort has expected run-time ©(nlog n).

» The run-time bound is tight since the best-case run-time is Q(nlog n)
» If we're unlucky in the random numbers then the run-time is still Q(n?)

This implies (with the same detour through shuffle-quick-sort):

The average-case run-time of quick-sort is ©(nlog n).

@ The auxiliary space is not good (©(n)) but can be improved (~ later)

There are numerous other tricks to improve randomized-quick-select
» We will see some below.

@ With these, this is in practice the fastest solution to SORTING
(but not in theory).

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 29 / 44

Outline

© Sorting, Average-case and Randomization

@ Tips and Tricks for quick-sort

T.Biedl (CS-UW) CS240 — Module 3

quick-sort with tricks

1.

2
3
4
5.
6
7
8
9

10.
11.
12.
13.

randomized-quick-sort-improved(A, n)

Initialize a stack S of index-pairs with { (0, n—1) }

while S is not empty
(¢,r) < S.pop()
while (r—/+1 > 10) do
p < £+ random({—r+1)
i < Hoare-partition(A, ¢, r, p)
if (i—¢ > r—i) do
S.push((£,i—1))
0+ i+1
else
S.push((i+1,r))
r+i-1
insertion-sort(A)

//
//

//
//

//

avoid recursions
stop recursions early

use better routine
reduce aux. space

remove tail-recursion

T.Biedl (CS-UW) CS240 - Module 3

Winter 2025 30/ 44

Hoare's Partition Routine

@ partition is very easy to implement with lists or streams (exercise).
This uses O(n) auxiliary space and is rather slow.

e More challenging: partition in place (with O(1) auxiliary space).

o ldea: Keep swapping the outer-most wrongly-positioned pairs.

i=-1 0 1 2 3 4 5 6 7 8 j=s
[30]60]10] o [5s0]s0]90[20]40Jv=r0]

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 31/ 44

Hoare's Partition Routine
@ partition is very easy to implement with lists or streams (exercise).
This uses O(n) auxiliary space and is rather slow.
e More challenging: partition in place (with O(1) auxiliary space).
o ldea: Keep swapping the outer-most wrongly-positioned pairs.

i=-1 0 1 2 3 4 5 6 7 8 j=s
[30]60]10] o [5s0]s0]90[20]40Jv=r0]
0 1 2 3 4 i=5 6 7 J=8 9
[30] 60]10] o]s0]s0]90]20]40Jv=r0]

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 31/ 44

Hoare's Partition Routine
@ partition is very easy to implement with lists or streams (exercise).
This uses O(n) auxiliary space and is rather slow.
e More challenging: partition in place (with O(1) auxiliary space).
o ldea: Keep swapping the outer-most wrongly-positioned pairs.

i=-1 0 1 2 3 4 5 6 7 8 j=s
[30]60]10] o [5s0]s0]90[20]40Jv=r0]

0 1 2 3 4 i=5 6 7 J=8 9
[30] 60]10] o]s0]s0]90]20]40Jv=r0]
0 1 2 3 4 i=5 6 7 J=8 9
[30]60]10] o [5s0]40] 90 [20] 80 Jv=10]

o

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 31/ 44

Hoare's Partition Routine

@ partition is very easy to implement with lists or streams (exercise).
This uses O(n) auxiliary space and is rather slow.

e More challenging: partition in place (with O(1) auxiliary space).

o ldea: Keep swapping the outer-most wrongly-positioned pairs.

i=-1 0 1 2 3 4 5 6 7 8 j=s
[30]60]10] o [5s0]s0]90[20]40Jv=r0]

0 1 2 3 4 i=5 6 7 J=8 9
[30] 60]10] o]s0]s0]90]20]40Jv=r0]

0 1 2 3 4 i=5 6 7 J=8 9
[30]60]10] o [5s0]40] 90 [20] 80 Jv=10]

0 1 2 3 4 5 i=6 J=7 8 9
[30] 60]10] o [5s0]40] 9 [20] 80 Jv=10]

o

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 31/ 44

Hoare's Partition Routine

@ partition is very easy to implement with lists or streams (exercise).
This uses O(n) auxiliary space and is rather slow.

e More challenging: partition in place (with O(1) auxiliary space).

o ldea: Keep swapping the outer-most wrongly-positioned pairs.

i=-1 0 1 2 3 4 5 6 7 8 j=s
[30]60]10] o [5s0]s0]90[20]40Jv=r0]
0 1 2 3 4 i=5 6 7 J=8 9
[30] 60]10] o]s0]s0]90]20]40Jv=r0]
0 1 2 3 4 i=5 6 7 J=8 9
[30]60]10] o [5s0]40] 90 [20] 80 Jv=10]
0 1 2 3 4 5 i=6 J=7 8 9
[30] 60]10] o [5s0]40] 9 [20] 80 Jv=10]
0 1 2 3 4 5 i=6 J=7 8 9
[30] 60]10] o [5s0]40]2]9] 80 Jv=r0]

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 31/ 44

Hoare's Partition Routine

@ partition is very easy to implement with lists or streams (exercise).
This uses O(n) auxiliary space and is rather slow.

e More challenging: partition in place (with O(1) auxiliary space).

o ldea: Keep swapping the outer-most wrongly-positioned pairs.

i=-1 0 1 2 3 4 5 6 7 8 j=s
[30]60]10] o [5s0]s0]90[20]40Jv=r0]
0 1 2 3 4 i=5 6 7 J=8 9
[30] 60]10] o]s0]s0]90]20]40Jv=r0]
0 1 2 3 4 i=5 6 7 J=8 9
[30]60]10] o [5s0]40] 90 [20] 80 Jv=10]
0 1 2 3 4 5 i=6 J=7 8 9
[30] 60]10] o [5s0]40] 9 [20] 80 Jv=10]
0 1 2 3 4 5 i=6 J=7 8 9
[30] 60]10] o [5s0]40]2]9] 80 Jv=r0]
0 1 2 3 4 5 J%6 i=7 8 9
[30] 60]10] o [5s0]40]20]90] 8o Jv=r0]

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 31/ 44

Hoare's Partition Routine

@ partition is very easy to implement with lists or streams (exercise).
This uses O(n) auxiliary space and is rather slow.

e More challenging: partition in place (with O(1) auxiliary space).

o ldea: Keep swapping the outer-most wrongly-positioned pairs.

i=-1 0 1 2 3 4 5 6 7 8 j=s
[30]60]10] o [5s0]s0]90[20]40Jv=r0]
0 1 2 3 4 i=5 6 7 J=8 9
[30] 60]10] o]s0]s0]90]20]40Jv=r0]
0 1 2 3 4 i=5 6 7 J=8 9
[30]60]10] o [5s0]40] 90 [20] 80 Jv=10]
0 1 2 3 4 5 i=6 J=7 8 9
[30] 60]10] o [5s0]40] 9 [20] 80 Jv=10]
0 1 2 3 4 5 i=6 J=7 8 9
[30] 60]10] o [5s0]40]2]9] 80 Jv=r0]
0 1 2 3 4 5 J%6 i=7 8 9
[30] 60]10] o [5s0]40]20]90] 8o Jv=r0]
0 1 2 3 4 5 J%6 =7 8 9
[30]60]10] 05040]20]70]80] 0]

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 31/ 44

Hoare's In-

Place Partition Routine

Loop invariant: A <v \ ? | >v [v]
i j n—1
Hoare-partition(A, p)
A: array of size n, p: integers.t. 0< p<n
1. swap(A[n—1], Alp])
2. i+ -1, j<n-1, v+ An-1]
3. loop
4. do i < i+1 while A[i] < v
5. do j + j—1 while j > i and A[j] > v
6 if i > j then break (goto 9)
7 else swap(Al[i], A[j])
8. end loop
9. swap(A[n—1], A[i])
10. return j
T.Biedl (CS-UW) CS240 - Module 3 Winter 2025

32/ 44

Improvement ideas for quick-sort

@ Every recursive call uses O(1) auxiliary space to store a record.
@ quick-sort has nested recursive calls. To analyze its auxiliary space,
consider the recursion tree and analyze its height (recursion depth)

» Write size of subproblem into each node.
» If n > 2 then there are two subproblems, hence two children.

recursion depth can be Q(n)

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 33 /44

Improvement ideas for quick-sort

@ Every recursive call uses O(1) auxiliary space to store a record.
@ quick-sort has nested recursive calls. To analyze its auxiliary space,
consider the recursion tree and analyze its height (recursion depth)
» Write size of subproblem into each node.
» If n > 2 then there are two subproblems, hence two children.

recursion depth can be Q(n)

@ Recursion tree is also useful for analyzing the run-time:
» On every level, the total number of key-comparisons is < n.
» Can argue (later): On average, the height is O(log n).
» This gives another proof of O(nlogn) average-case run-time.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 33 /44

Auxiliary space for quick-sort

Claim: If we always continue in the smaller subproblem first, then the
auxiliary space is in ©(log n).

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 34 /44

Auxiliary space for quick-sort

Claim: If we always continue in the smaller subproblem first, then the
auxiliary space is in ©(log n).

Proof: Consider the path in the
recursion tree to the current sub-
problem.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 34 /44

Auxiliary space for quick-sort

Claim: If we always continue in the smaller subproblem first, then the
auxiliary space is in ©(log n).

Proof: Consider the path in the
recursion tree to the current sub-
problem.

Cno

(nl < n/2> (2 (n—l)/2) *

For each child:

e Either halved the size (or ‘veturned) (2 < m < n/2
better).
@ Or the sibling is done = not

n3 < m/2<n/4

on stack

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 34 /44

Auxiliary space for quick-sort

Claim: If we always continue in the smaller subproblem first, then the
auxiliary space is in ©(log n).

Proof: Consider the path in the
recursion tree to the current sub-
problem.

(m<n2) (G (n-1)/2)*

For each child:

e Either halved the size (or ‘veturned) (m < m < n/2
better).

@ Or the sibling is done = not
on stack

. o S|
At all times, the current problem size is at most (%) n.

= At all times, [S| < log n.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 34 /44

Outline

© Sorting, Average-case and Randomization

@ Lower Bound for Comparison-Based Sorting

T.Biedl (CS-UW) CS240 — Module 3

Lower bounds for sorting

We have seen many sorting algorithms:

Sort Running time Analysis
selection-sort O(n?) worst-case
insertion-sort 0(n?) worst-case
©(n) best-case
merge-sort ©(nlog n) worst-case
heap-sort ©(nlog n) worst-case
quick-sort ©(nlogn) | average-case
randomized-quick-sort | ©(nlog n) expected

T.Biedl (CS-UW) CS240 - Module 3

Winter 2025

35/ 44

Lower bounds for sorting

We have seen many sorting algorithms:

Sort Running time Analysis
selection-sort O(n?) worst-case
insertion-sort 0(n?) worst-case
©(n) best-case
merge-sort ©(nlog n) worst-case
heap-sort ©(nlog n) worst-case
quick-sort ©(nlogn) | average-case
randomized-quick-sort | ©(nlog n) expected

Question: Can one do better than ©(nlog n) running time?
Answer: Yes and no! It depends on what we allow.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 35/ 44

Lower bounds for sorting

We have seen many sorting algorithms:

Sort Running time Analysis
selection-sort 0(n?) worst-case
insertion-sort 0(n?) worst-case
©(n) best-case
merge-sort ©(nlog n) worst-case
heap-sort ©(nlog n) worst-case
quick-sort ©(nlogn) | average-case
randomized-quick-sort | ©(nlog n) expected

Question: Can one do better than ©(nlog n) running time?
Answer: Yes and no! It depends on what we allow.

e No: Comparison-based sorting lower bound is Q(nlog n).

@ Yes: Non-comparison-based sorting can achieve O(n) (under
restrictions!). (— later)

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 35/ 44

Lower bound for sorting in the comparison model

All algorithms so far are comparison-based: Data is accessed only by
@ comparing two elements (a key-comparison)
@ moving elements around (e.g. copying, swapping)

Theorem. Any comparison-based sorting algorithm requires in the worst
case Q(nlog n) comparisons to sort n distinct items.

Proof.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 36 / 44

Decision trees
Any comparison-based algorithms can be expressed as decision tree.

To sort {xp, x1, X2 }:

< > < >

0,21 | 2,0,1 | | 1,0,2 | | 1,2,0|

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 37/ 44

Decision trees

Any comparison-based algorithms can be expressed as decision tree.
To sort {xg, x1, X2} Example: {xo=4, x1=2, xc=T7}

< > < >

0,21 | 2,0,1 | | 1,0,2 | | 1,2,0|

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 37/ 44

Decision trees
Any comparison-based algorithms can be expressed as decision tree.

To sort {xp, x1, X2 }:

< >
{4,2,7}

X1 X2

< > < >

0,21 | 2,0,1 | | 1,0,2 | | 1,2,0|

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 37/ 44

Decision trees
Any comparison-based algorithms can be expressed as decision tree.

To sort {xp, x1, X2 }:

0,21 | 2,0,1 | | 1,0,2 | | 1,2,0|

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 37/ 44

Decision trees

Any comparison-based algorithms can be expressed as decision tree.

To sort {xp, x1, X2 }:

< > < >
0,2,1 | 2,0,1 | | 1,0,2 | | 1,2,0 |
{4,2,7}

Output: {4,2,7} has sorting permutation (1,0, 2)
(e, x1=2 < xp=4 < x=T7)

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025

37 / 44

Outline

© Sorting, Average-case and Randomization

@ Non-Comparison-Based Sorting

T.Biedl (CS-UW) CS240 — Module 3

Non-Comparison-Based Sorting

@ Assume keys are numbers in base R (R: radix)
» So all digits are in {0,...,R—1}
» R =2,10,128,256 are the most common, but R need not be constant

Example (R = 4): [123 [230 [21 [320 [210 [232 [101 |

@ Assume all keys have the same number w of digits.

» Can achieve after padding with leading Os.
> In typical computers, w = 32 or w = 64, but w need not be constant

Example (R =4): | 123 [230 [021 [320 | 210 | 232 | 101 |

@ Can sort based on individual digits.

» How to sort 1-digit numbers?
» How to sort multi-digit numbers based on this?

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 38/ 44

(Single-digit) bucket-sort

Sort array A by last digit:

A B
12 B[0]
| 230 | B[1]
| 020 | B[2]
1320 | = | B[3]
210
| 230 |
100

T.Biedl (CS-UW)

CS240 - Module 3

Winter 2025

39 / 44

(Single-digit) bucket-sort

Sort array A by last digit:

A
120
230
02Q@)

210
23Q
100D

T.Biedl (CS-UW)

320 | =

B
B[0]
B[1]
B[2]
B[3] | — [123]

CS240 - Module 3

Winter 2025

39 / 44

(Single-digit) bucket-sort

Sort array A by last digit:

A B
12Q) B[o] | —[230
[230 | B[1]
| 020 | B[2]
1320 | = [B[3] | —[123
210
| 239 |
100

T.Biedl (CS-UW)

CS240 - Module 3

Winter 2025

39 / 44

(Single-digit) bucket-sort

Sort array A by last digit:

A B
12Q) B[o] | —[230
| 230 | B[1] | — |021
| 020 | B[2]
1320 | = [B[3] | —[123
210
| 23Q |
100D

T.Biedl (CS-UW)

CS240 - Module 3

Winter 2025

39 / 44

(Single-digit) bucket-sort

Sort array A by last digit:

A B
120 B[0] | —[230] — [320]
| 230 | B[1] | —[021

020 | B[2]

1320 | = [B[3] | —[123

210

| 23Q |

100D

T.Biedl (CS-UW)

CS240 - Module 3

Winter 2025

39 / 44

(Single-digit) bucket-sort

Sort array A by last digit:

A B
120 B[0] | — [230] —[320] — |210]
| 230 | B[1] | —[021

020 | B[2]

1320 | = [B[3] | —[123

210

| 23Q |

100D

T.Biedl (CS-UW)

CS240 - Module 3

Winter 2025

39 / 44

(Single-digit) bucket-sort

Sort array A by last digit:

A B
12 B[0] | —|230] —[320]| — [210]
| 230 | B[1] | —[021

020 | B[2] | =232

1320 | = [B[3] | —[123

210

50

Hoe

T.Biedl (CS-UW)

CS240 - Module 3

Winter 2025

39 / 44

(Single-digit) bucket-sort

Sort array A by last digit:

A B
12 B[0] | —|230] —[320]| — [210]
| 230 | B[1] | —[021] — 101

020 | B[2] | —[232

1320 | = [B[3] | —[123

210

56

Hoe

T.Biedl (CS-UW)

CS240 - Module 3

Winter 2025

39 / 44

(Single-digit) bucket-sort

Sort array A by last digit:

A B
12 B[0] | — |230] —[320] — [210]
| 230 | B[1] | —[021] —[101

020 | B[2] | —[232

1320 | = [B[3] | —[123

210

56

Hoe

T.Biedl (CS-UW)

CS240 - Module 3

230

Winter 2025

39 / 44

(Single-digit) bucket-sort

Sort array A by last digit:

A B
12 B[0] | —|230] —[320| — [210]
| 230 | B[1] | —[021] —[101
020 | B[2] | —[232
1320 | = [B[3] | —[123
210
56
Hoe

T.Biedl (CS-UW)

CS240 - Module 3

230

320

Winter 2025

39 / 44

(Single-digit) bucket-sort

Sort array A by last digit:

A B
120 B[0] | — [230] —[320] — |210]
| 230 | B[1] | —[021] —[101
020 | B[2] | —[232
1320 | = [B[3] | —[123
210
56
Hoe

T.Biedl (CS-UW)

CS240 - Module 3

230

320

210

Winter 2025

39 / 44

(Single-digit) bucket-sort

Sort array A by last digit:

A B
12 B[0] | —|230] —[320]| — [210]
| 230 | B[1] | —|021|—[101
020 | B[2] | —[232
1320 | = [B[3] | —[123
210
56
Hoe

T.Biedl (CS-UW)

CS240 - Module 3

230

320

210

021

Winter 2025

39 / 44

(Single-digit) bucket-sort

Sort array A by last digit:

A B
12 B[0] | —|230] —[320]| — [210]
| 230 | B[1] | —[021] — 101
020 | B[2] | —[232
1320 | = [B[3] | —[123
210
56
Hoe

T.Biedl (CS-UW)

CS240 - Module 3

230

320

210

021

101

Winter 2025

39 / 44

(Single-digit) bucket-sort

Sort array A by last digit:

A B
12 B[0] | —|230] —[320]| — [210]
| 230 | B[1] | —[021] —[101
020 | B[2] | =232
1320 | = [B[3] | —[123
210
56
Hoe

T.Biedl (CS-UW)

CS240 - Module 3

230

320

210

021

101

232

Winter 2025

39 / 44

(Single-digit) bucket-sort

Sort array A by last digit:

A B

12 B[0] | —|230] —[320]| — [210]
| 230 | B[1] | —[021] —[101

020 | B[2] | —[232

1320 | = [B[3] | — 123

210

56

Hoe

T.Biedl (CS-UW)

CS240 - Module 3

230

320

210

021

101

232

123

Winter 2025

39 / 44

(Single-digit) bucket-sort

bucket-sort(A, n, sort-key(-))
A: array of size n
sort-key(-) : maps items of A to {0,...,R—1}
1. Initialize an array B[0...R — 1] of empty queues (buckets)
for i <~ 0 to n—1 do

Append A[i] at end of B[sort-key(A[i])]
i+ 0
for j«< 0to R—1do

while B[j] is non-empty do

move front element of B[j] to A[i++]

Nooam~wbN

@ In our example sort-key(A[i]) returns the last digit of A[i]

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 40 / 44

(Single-digit) bucket-sort

bucket-sort(A, n, sort-key(-))
A: array of size n
sort-key(-) : maps items of A to {0,...,R—1}
1. Initialize an array B[0...R — 1] of empty queues (buckets)
for i <~ 0 to n—1 do

Append A[i] at end of B[sort-key(A[i])]
i+ 0
for j«< 0to R—1do

while B[j] is non-empty do

move front element of B[j] to A[i++]

Nooam~wbN

In our example sort-key(A[i]) returns the last digit of A[]
bucket-sort is stable: equal items stay in original order.
Run-time ©(n + R), auxiliary space ©(n + R)

It is possible to replace the lists by arrays ~» count-sort (no details).

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 40 / 44

Most-significant-digit(MSD)-radix-sort

Sort array of w-digit radix-R numbers recursively:
sort by 1st digit, then each group by 2nd digit, etc.

D23
@32
021
320
@10
@30
D01

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 41 / 44

Most-significant-digit(MSD)-radix-sort

Sort array of w-digit radix-R numbers recursively:
sort by 1st digit, then each group by 2nd digit, etc.

(d=1)

@23

@32 123
021 —" 101
320

@10 \ 232
230 200
o1 230

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025

41/ 44

Most-significant-digit(MSD)-radix-sort

Sort array of w-digit radix-R numbers recursively:
sort by 1st digit, then each group by 2nd digit, etc.

(d=1) (d=2)
D23 A 021]
232 03] L 101]
021 101 [—
52 - [123]
@10 \ /'-
230 200 L 230
o1 230 230

T.Biedl (CS-UW) CS240 — Module 3

Most-significant-digit(MSD)-radix-sort

Sort array of w-digit radix-R numbers recursively:
sort by 1st digit, then each group by 2nd digit, etc.

(d=1) (d=2) (d=3)
D23
32| o3| 1]
021 101 [—
@10
L N ol -
@01 290 230 T

T.Biedl (CS-UW) CS240 — Module 3

MSD-radix-sort

MSD-radix-sort(A,n, d + 1)

A: array of size n, contains w-digit radix-R numbers
1. if (d<w and (n>1))

2 bucket-sort(A, n,'return dth digit of A[i]')

3 £+0 // find sub-arrays and recurse
4, forj« 0toR—-1

5 Let r > ¢ — 1 be maximal s.t. A[¢..r] have dth digit j
6 MSD-radix-sort(A[£..r], r—{+1, d+1)

7 l—r+1

Analysis:
@ O(w) levels of recursion in worst-case.
@ O(n) subproblems on most levels in worst-case.
@ O(R + (size of sub-array)) time for each bucket-sort call.

= Run-time ©(wnR) — slow. Many recursions and allocated arrays.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 42 / 44

Least-significant-digit(LSD)-radix-sort

LSD-radix-sort(A, n)
A: array of size n, contains m-digit radix-R numbers
1. for d < least significant to most significant digit do

2. bucket-sort(A, n, ‘return dth digit of A[i]")
1203 230 @o1 021
230 320 @10 101

020 | (d=3) [200 | (d=2) [®20 | (d =1) | 123
320 = 021 = 021 = 210

210 101 @23 230

230 232 @30 232

10D 123 232 320
@ Loop-invariant: A is sorted w.r.t. digits d, ..., w of each entry.

e Time cost: ©(w(n+ R)) Auxiliary space: ©(n+ R)

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025

43 / 44

Summary

@ SORTING is an important and very well-studied problem

@ Can be done in ©(nlog n) time; faster is not possible for general input

@ heap-sort is the only ©(nlog n)-time algorithm we have seen with
O(1) auxiliary space.

e merge-sort is also ©(nlog n), selection & insertion sorts are O(n?).

o quick-sort is worst-case ©(n?), but often the fastest in practice

@ bucket-sort and radix-sort achieve o(nlog n) if the input is special

@ Randomized algorithms can eliminate “bad cases”
@ Best-case, worst-case, average-case can all differ.

@ Often it is easier to analyze the run-time on randomly chosen input
rather than the average-case run-time.

T.Biedl (CS-UW) CS240 - Module 3 Winter 2025 44 / 44

	Sorting, Average-case and Randomization
	Review and Outlook
	Review and Outlook

	Analyzing average-case run-time
	Average-case analysis
	A simple (contrived) example
	A second (not-so-contrived) recursive example
	Average-case run-time of all-0-test
	Average-case run-time of all-0-test
	Average-case analysis and recursions

	Run-time on randomly chosen input
	Randomizations of algorithms
	Expected run-time of randomized-all-0-test
	Expected run-time of randomized-all-0-test
	Expected run-time of randomized-all-0-test
	Avg-case run-time via expected run-time
	Avg-case run-time via expected run-time
	Summary: Average-case run-time vs. expected run-time

	Selection and quick-select
	The Selection Problem
	quick-select Algorithm
	Analysis of quick-select
	Average-case analysis of quick-select (sketch)
	Randomizing quick-select: Shuffling
	Randomizing quick-select: Random Pivot
	Expected run-time of randomized-quick-select
	Analysis of randomized-quick-select
	Analysis of randomized-quick-select
	Proof continued...
	Summary of Selection
	Randomizing quick-sort
	Expected run-time of randomized-quick-sort
	Summary of quick-sort

	Tips and Tricks for quick-sort
	quick-sort with tricks
	Hoare's Partition Routine
	Hoare's In-Place Partition Routine
	Improvement ideas for quick-sort
	Auxiliary space for quick-sort

	Lower Bound for Comparison-Based Sorting
	Lower bounds for sorting
	Lower bound for sorting in the comparison model
	Decision trees

	Non-Comparison-Based Sorting
	Non-Comparison-Based Sorting
	(Single-digit) bucket-sort
	(Single-digit) bucket-sort
	Most-significant-digit(MSD)-radix-sort
	MSD-radix-sort
	Least-significant-digit(LSD)-radix-sort
	Summary

