
CS 240E – Data Structures
and Data Management (Enriched)

Module 4: Dictionaries

Therese Biedl
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-01-21 13:32

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 1 / 38

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Scapegoat Trees
Amortized analysis
Analysis of scapegoat trees

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Scapegoat Trees
Amortized analysis
Analysis of scapegoat trees

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025

ADT Dictionary (review)

Dictionary: A collection of items, each of which contains
a key
some data (the “value”)

and is called a key-value pair (KVP). Keys can be compared and are
(typically) unique.

Operations:
search(k) (also called lookup(k))
insert(k, v)
delete(k) (also called remove(k))
optional: successor, merge, is-empty, size, etc.

Examples: symbol table, license plate database

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 2 / 38

Elementary Realizations (review)
Common assumptions:

Dictionary has n KVPs
Each KVP uses constant space
(if not, the “value” could be a pointer)
Keys can be compared in constant time

We commonly make one more assumption (to keep pseudo-code simple):
Dictionary is non-empty both before and after operation.
(In a real-life implementation you would have to treat these special cases.)

Easy realizations:

search insert delete
unsorted list/array Θ(n) Θ(1) Θ(1)
sorted array Θ(log n) Θ(n) Θ(n)
binary search tree Θ(height) Θ(height) Θ(height)

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 3 / 38

Elementary Realizations (review)
Common assumptions:

Dictionary has n KVPs
Each KVP uses constant space
(if not, the “value” could be a pointer)
Keys can be compared in constant time

We commonly make one more assumption (to keep pseudo-code simple):
Dictionary is non-empty both before and after operation.
(In a real-life implementation you would have to treat these special cases.)

Easy realizations:

search insert delete
unsorted list/array Θ(n) Θ(1) Θ(1)
sorted array Θ(log n) Θ(n) Θ(n)
binary search tree Θ(height) Θ(height) Θ(height)

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 3 / 38

Elementary Realizations (review)
Common assumptions:

Dictionary has n KVPs
Each KVP uses constant space
(if not, the “value” could be a pointer)
Keys can be compared in constant time

We commonly make one more assumption (to keep pseudo-code simple):
Dictionary is non-empty both before and after operation.
(In a real-life implementation you would have to treat these special cases.)

Easy realizations:

search insert delete
unsorted list/array Θ(n) Θ(1) Θ(1)
sorted array Θ(log n) Θ(n) Θ(n)
binary search tree Θ(height) Θ(height) Θ(height)

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 3 / 38

Overview of balanced binary search trees

We will see numerous variants of binary search trees.
The operations then have the following run-times:

Θ(log n) worst-case time (AVL-trees)
Θ(log n) amortized time (Scapegoat trees)
and no rotations.
Θ(log n) expected time (Treaps)
Θ(log n) expected time (Skip lists)
and space is smaller. (It’s not even a tree.)
Θ(log n) amortized time (Splay trees)
and space is smaller, and can handle biased requests.

(We will see “rotations”, “amortized” and “biased requests” later.)

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 4 / 38

General strategy for balanced binary search trees

Use a binary search tree, but impose structural condition

Argue that structural condition implies O(log n) ... height
(where ... might be worst-case / avg-case / expected)

With this, search takes O(log n) ... time

insert and delete may destroy the structural condition

If so: show how to restore structural condition in O(height) time

With this, insert and delete takes O(log n) ... time

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 5 / 38

General strategy for balanced binary search trees

Use a binary search tree, but impose structural condition

Argue that structural condition implies O(log n) ... height
(where ... might be worst-case / avg-case / expected)

With this, search takes O(log n) ... time

insert and delete may destroy the structural condition

If so: show how to restore structural condition in O(height) time

With this, insert and delete takes O(log n) ... time

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 5 / 38

Lazy deletion
General trick for ADT Dictionary: Reduce delete to search and insert.

delete(x) does not actually remove x from data structure.
I Instead, have a flag at each item that is either “deleted” or “present”
I insert sets the flag to “present”
I delete calls search, then sets the flag to “deleted”
I search ignores “deleted” items (but keeps searching)

Keep track of how many items are “deleted”.
If at least half are “deleted”: completely rebuild

I Run-time: O(n ∗ insert) (where n = # “present”)
I But: This only happens if we had n calls to delete since last rebuild.

All other calls to delete take O(search) time.
⇒ delete then takes O(search + insert) time in average over operations.

Lazy deletion wastes space; occasional operation is very slow.
Most realizations actually can do delete directly.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 6 / 38

Lazy deletion
General trick for ADT Dictionary: Reduce delete to search and insert.

delete(x) does not actually remove x from data structure.
I Instead, have a flag at each item that is either “deleted” or “present”
I insert sets the flag to “present”
I delete calls search, then sets the flag to “deleted”
I search ignores “deleted” items (but keeps searching)

Keep track of how many items are “deleted”.
If at least half are “deleted”: completely rebuild

I Run-time: O(n ∗ insert) (where n = # “present”)
I But: This only happens if we had n calls to delete since last rebuild.

All other calls to delete take O(search) time.
⇒ delete then takes O(search + insert) time in average over operations.

Lazy deletion wastes space; occasional operation is very slow.
Most realizations actually can do delete directly.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 6 / 38

Lazy deletion
General trick for ADT Dictionary: Reduce delete to search and insert.

delete(x) does not actually remove x from data structure.
I Instead, have a flag at each item that is either “deleted” or “present”
I insert sets the flag to “present”
I delete calls search, then sets the flag to “deleted”
I search ignores “deleted” items (but keeps searching)

Keep track of how many items are “deleted”.
If at least half are “deleted”: completely rebuild

I Run-time: O(n ∗ insert) (where n = # “present”)
I But: This only happens if we had n calls to delete since last rebuild.

All other calls to delete take O(search) time.
⇒ delete then takes O(search + insert) time in average over operations.

Lazy deletion wastes space; occasional operation is very slow.
Most realizations actually can do delete directly.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 6 / 38

Lazy deletion
General trick for ADT Dictionary: Reduce delete to search and insert.

delete(x) does not actually remove x from data structure.
I Instead, have a flag at each item that is either “deleted” or “present”
I insert sets the flag to “present”
I delete calls search, then sets the flag to “deleted”
I search ignores “deleted” items (but keeps searching)

Keep track of how many items are “deleted”.
If at least half are “deleted”: completely rebuild

I Run-time: O(n ∗ insert) (where n = # “present”)
I But: This only happens if we had n calls to delete since last rebuild.

All other calls to delete take O(search) time.
⇒ delete then takes O(search + insert) time in average over operations.

Lazy deletion wastes space; occasional operation is very slow.
Most realizations actually can do delete directly.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 6 / 38

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Scapegoat Trees
Amortized analysis
Analysis of scapegoat trees

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025

AVL Trees

Introduced by Adel’son-Vel’skĭı and Landis in 1962, an AVL Tree is a BST
with an additional height-balance property at every node:

The heights of the left and right subtree differ by at most 1.

Rephrase: If node v has left subtree L and right subtree R, then

balance(v) := height(R)− height(L) must be in {−1, 0, 1}

balance(v) = −1 means v is left-heavy
balance(v) = +1 means v is right-heavy

Need to store at each node v the height of the subtree rooted at it(
There are ways to implement AVL-trees where we only store balance(v),
so fewer bits. But the code gets more complicated (no details).

)

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 7 / 38

AVL Trees

Introduced by Adel’son-Vel’skĭı and Landis in 1962, an AVL Tree is a BST
with an additional height-balance property at every node:

The heights of the left and right subtree differ by at most 1.

Rephrase: If node v has left subtree L and right subtree R, then

balance(v) := height(R)− height(L) must be in {−1, 0, 1}

balance(v) = −1 means v is left-heavy
balance(v) = +1 means v is right-heavy

Need to store at each node v the height of the subtree rooted at it(
There are ways to implement AVL-trees where we only store balance(v),
so fewer bits. But the code gets more complicated (no details).

)

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 7 / 38

AVL tree example

(The lower numbers indicate the height of the subtree.)

22
4

10
3

4
1

6
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 8 / 38

AVL tree example
Alternative: store balance (instead of height) at each node.

22
-1

10
+1

4
+1

6
0

14
+1

13
0

18
-1

16
0

31
+1

28
0

37
+1

46
0

Saves space (2 bits vs. 1 integer per node)
Pseudo-code gets a lot more complicated not done here
T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 9 / 38

Height of an AVL tree
Theorem: An AVL tree on n nodes has Θ(log n) height.
⇒ search, BST::insert, BST::delete all cost Θ(log n) in the worst case!

Proof:
Define N(h) to be the least number of nodes in a height-h AVL tree.
What is a recurrence relation for N(h)?
What does this recurrence relation resolve to?

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 10 / 38

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Scapegoat Trees
Amortized analysis
Analysis of scapegoat trees

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025

AVL insertion

To perform AVL::insert(k, v):
First, insert (k, v) with the usual BST insertion.

We assume that this returns the new leaf z where the key was stored.

Then, move up the tree from z .(
We assume for this that we have parent-links. This can be
avoided if BST::insert returns the full path to z .

)
Update height (easy to do in constant time):

set-height-from-subtrees(u)
1. u.height ← 1 + max{u.left.height, u.right.height}

If the height difference becomes ±2 at node z , then z is unbalanced.
Must re-structure the tree to rebalance.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 11 / 38

AVL Insertion Example
Example: AVL::insert(8)

22
4

10
3

4
1

6
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 12 / 38

AVL Insertion Example
Example: AVL::insert(8)

22
4?

10
3?

4
1?

6
0?

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 12 / 38

AVL Insertion Example
Example: AVL::insert(8)

22
4?

10
3?

4
1?

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 12 / 38

AVL Insertion Example
Example: AVL::insert(8)

22
4?

10
3?

4
2

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 12 / 38

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Scapegoat Trees
Amortized analysis
Analysis of scapegoat trees

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025

Changing structure without changing order

Note: There are many different BSTs with the same keys.

20

A

40

30

B C

D

20

A

30

B

40

C D

30

20

A B

40

C D

40

30

20

A B

C

D

40

20

A

30

B C

D

Goal: Change the structure locally nodes without changing the order .

Longterm goal: Restructure such the subtree becomes balanced.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 13 / 38

Right Rotation

This is a right rotation on node z :

z

c

g

A B

C

D

c

g

A B

z

C D

Note: Only O(1) links are changed. Useful to fix left-left imbalance.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 14 / 38

Right Rotation

This is a right rotation on node z :

z

c

g

A B

C

D

c

g

A B

z

C D

Note: Only O(1) links are changed. Useful to fix left-left imbalance.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 14 / 38

Right Rotation Pseudocode

rotate-right(z)
1. c ← z .left

2. // fix links connecting to above
3. c.parent ← (p ← z .parent)
4. if p = NULL then root ← c else
5. if p.left = z then p.left ← c else p.right ← c

6. // actual rotation
7. z .left ← c.right, c.right.parent ← z
8. c.right ← z , z .parent ← c

9. set-height-from-subtrees(z), set-height-from-subtrees(c)
10. return c // returns new root of subtree

Run-time: O(1)

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 15 / 38

Left Rotation

Symmetrically, this is a left rotation on node z :

z

A

c

B

g

C D

c

z

A B

g

C D

Again, only O(1) links need to be changed. Useful to fix right-right
imbalance.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 16 / 38

Double Right Rotation

This is a double right rotation on node z :

z

c

A

g

B C

D

z

g

c

A B

C

D

g

c

A B

z

C D

First, a left rotation at c.

Second, a right rotation at z .

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 17 / 38

Double Right Rotation

This is a double right rotation on node z :

z

c

A

g

B C

D

z

g

c

A B

C

D

g

c

A B

z

C D

First, a left rotation at c.
Second, a right rotation at z .

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 17 / 38

Double Left Rotation

Symmetrically, there is a double left rotation on node z :

z

A

c

g

B C

D

g

z

A B

c

C D

First, a right rotation at c.
Second, a left rotation at z .

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 18 / 38

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Scapegoat Trees
Amortized analysis
Analysis of scapegoat trees

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025

AVL Insertion Example revisited
Example: AVL::insert(8)

22
4?

10
3?

4
2

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 19 / 38

AVL insertion revisited

Imbalance at z : do (single or double) rotation
Choose c as child where subtree has bigger height.

AVL::insert(k, v)
1. z ← BST::insert(k, v) // leaf where k is now stored

2. while (z is not NULL)
3. if (|z .left.height − z .right.height| > 1) then
4. Let c be taller child of z
5. Let g be taller child of c (so grandchild of z)
6. z ← restructure(g , c, z) // see later
7. break // can argue that we are done
8. set-height-from-subtrees(z)
9. z ← z .parent

Can argue: For insertion one rotation restores all heights of subtrees.
⇒ No further imbalances, can stop checking.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 20 / 38

Fixing a slightly-unbalanced AVL tree

restructure(g , c, z)
node g is child of c which is child of z

1. case

z

c

g

: :
// Right rotation
u ← rotate-right(z)

z

c

g

: : // Double-right rotation
rotate-left(c)
u ← rotate-right(z)

z

c

g

: : // Double-left rotation
rotate-right(c)
u ← rotate-left(z)

z

c

g

: : // Left rotation
u ← rotate-left(z)

2. return u

Rule: The middle key of g , c, z becomes the new root.
T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 21 / 38

AVL Insertion Example revisited

Example: AVL::insert(8)
22
4?

10
3?

4
2

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 22 / 38

AVL Insertion Example revisited

Example: AVL::insert(8)
22
4

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 22 / 38

AVL Insertion: Second example
Example: AVL::insert(45)

22
4

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 23 / 38

AVL Insertion: Second example
Example: AVL::insert(45)

22
4?

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2?

28
0

37
1?

46
0?

45
0

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 23 / 38

AVL Insertion: Second example
Example: AVL::insert(45)

22
4?

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2?

28
0

37
1?

46
1

45
0

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 23 / 38

AVL Insertion: Second example
Example: AVL::insert(45)

22
4?

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2?

28
0

37
1?

46
1

45
0

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 23 / 38

AVL Insertion: Second example
Example: AVL::insert(45)

22
4

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

45
1

37
0

46
0

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 23 / 38

Correctness of rotations

Claim: If we perform restructure(g , c, z) during AVL::insert, then the
returned subtree is balanced, and its height is restored.

Proof: By symmetry, assume that c is the left child of z .
Case 1: g was the left child of c

z
h+1

c
h

g
h−1

g̃
h−2

c̃
h−2

c
h

g
h−1

z
h

g̃
h−2

c̃
h−2

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 24 / 38

Correctness of rotations

Case 2: g is the right child of c.

z
h+1

c
h

g̃
h−2

g
h−1

h−2
or

h−3

h−2
or

h−3

c̃
h−2

g
h

c
h−1

g̃
h−2

h−2
or

h−3

z
h−1

h−2
or

h−3

c̃
h−2

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 25 / 38

AVL Tree Summary
search: Just like in BSTs, costs Θ(height)

insert: BST::insert, then check & update along path to new leaf
total cost Θ(height)
restructure will be called at most once.

delete: BST::delete, then check & update along path to deleted node
(we did not see details of how to do this)

total cost Θ(height)
restructure may be called Θ(height) times.

Worst-case cost for all operations is Θ(height) = Θ(log n).

In practice, the constant is quite large.
Other realizations of ADT Dictionary are better in practice (→ later)

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 26 / 38

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Scapegoat Trees
Amortized analysis
Analysis of scapegoat trees

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025

Scapegoat trees

Can we have balanced binary search trees without rotations?
(A later application will need such a tree.)
This sounds impossible—we must sometimes restructure the tree.
Idea: Rather than doing a small local change, occasionally rebuild an
entire (large) subtree.

With the right setup, this will lead to O(log n) height and O(log n)
amortized time for all operations.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 27 / 38

Scapegoat trees
Fix a constant α with 1

2 < α < 1. A scapegoat tree is a binary search
tree where any node v with a parent satisfies

v .size ≤ α · v .parent.size.

40
7

30
3

20
2

10
1

50
3

80
2

60
1

(
Lower number = subtree-size.
In our examples, α = 2

3 .

)

v .size needed during updates must be stored
Any subtree is a constant fraction smaller height O(log n).
T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 28 / 38

Scapegoat tree operations

search: As for a binary search tree. O(height) = O(log n).
For insert and delete, occasionally restructure a subtree into a
perfectly (size-)balanced tree:

|size(z .left)− size(z .right)| ≤ 1 for all nodes z .

Do this at the highest node where the size-condition of scapegoat
trees is violated

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 29 / 38

Scapegoat Tree Insertion Example

Example: Scapegoat::insert(60)

20
4

10
1

70
2

30
1

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 30 / 38

Scapegoat Tree Insertion Example

Example: Scapegoat::insert(60)

20
5

10
1

70
3

30
2

60
1

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 30 / 38

Scapegoat Tree Insertion Example

Example: Scapegoat::insert(50)

20
6

10
1

70
4

30
3

60
2

50
1

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 30 / 38

Scapegoat Tree Insertion Example

Example: Scapegoat::insert(50)

20
6

10
1 ?

30
?

50
?

60
?

70
?

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 30 / 38

Scapegoat Tree Insertion Example

Example: Scapegoat::insert(50)

20
6

10
1

60
4

30
2

50
1

70
1

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 30 / 38

Scapegoat Tree Insertion Example

Example: Scapegoat::insert(40)

20
7

10
1

60
5

30
3

50
2

40
1

70
1

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 30 / 38

Scapegoat Tree Insertion Example

Example: Scapegoat::insert(40)

40
7

20
3

10
1

30
1

60
3

50
1

70
1

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 30 / 38

Scapegoat tree insertion

scapegoatTree::insert(k, v)
1. z ← BST::insert(k, v)
2. S ← stack initialized with z
3. while (p ← z .parent 6= NULL) // update sizes, get path
4. increase p.size
5. S.push(p)
6. z ← p
7. while (S.size ≥ 2) // size-condition violated?
8. p ← P.pop()
9. if (p.size < α ·max{p.left.size, p.right.size})
10. rebuild subtree at p into perfectly balanced tree
11. return

Rebuilding at p (line 10) can be done in O(p.size) time (exercise).
This restores scapegoat tree (we rebuild at the highest violation).

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 31 / 38

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Scapegoat Trees
Amortized analysis
Analysis of scapegoat trees

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025

Detour: Amortized analysis

As for dynamic arrays and lazy deletion, we have the following pattern:
usually the operation is fast,
the occasional operation is quite slow.

The worst-case run-time bound here would not reflect that overall this
works quite well.

Instead, try to find an amortized run-time bound. Informally, this is a
bound that holds if we add the bounds up over all operations.

k∑
i=1

T actual(Oi) ≤
k∑

i=1
T amort(Oi).

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 32 / 38

Detour: Amortized analysis

For dynamic arrays and lazy deletion, a direct argument works.
40 20

insert
40 20 90

insert
40 20 90 60

resize
40 20 90 60

n/2 fast inserts takes Θ(1) time each.
Then one slow insert takes Θ(n).
Averaging out therefore Θ(1) per operation.

This is doing math with asymptotic notation—dangerous.

More systematic method: Use a potential function
A function Φ(·) that depends on the current status.

I E.g.: Φ(t) = max{0, 2 · size− capacity} for dynamic arrays.
I t (≈ time) means “after executing t operations”

Requirement: Φ(0) = 0, Φ(i) ≥ 0 for all i .

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 33 / 38

Detour: Amortized analysis

For dynamic arrays and lazy deletion, a direct argument works.
40 20

insert
40 20 90

insert
40 20 90 60

resize
40 20 90 60

n/2 fast inserts takes Θ(1) time each.
Then one slow insert takes Θ(n).
Averaging out therefore Θ(1) per operation.

This is doing math with asymptotic notation—dangerous.

More systematic method: Use a potential function
A function Φ(·) that depends on the current status.

I E.g.: Φ(t) = max{0, 2 · size− capacity} for dynamic arrays.
I t (≈ time) means “after executing t operations”

Requirement: Φ(0) = 0, Φ(i) ≥ 0 for all i .

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 33 / 38

Potential function method
Define time units: how much can be done in one unit of time?

I Needed so that we do not do math with asymptotic notation.
I Dynamic arrays: “Set time units such that

T actual(insert) ≤ 1 and T actual(resize) ≤ n.”

Define a potential function Φ and verify Φ(0) = 0,Φ(i) ≥ 0.
I Finding Φ is non-trivial (later)

Define T amort(Ot) = T actual(Ot) + Φ(t)− Φ(t − 1)

I Often we just write T amort(O) = T actual(O) + Φnew − Φold

I Easy to show:
∑

i T actual(Oi) ≤
∑

i T amort(Oi) holds.

Find asymptotic upper bounds for T amort(O) for each operation.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 34 / 38

Example: Dynamic arrays
40 20

insert
40 20 90

insert
40 20 90 60

resize
40 20 90 60

Set time units such that T actual(insert) ≤ 1 and T actual(resize) ≤ n.

Potential function Φ(t) = max{0, 2 · size− capacity}

insert increases size, does not change capacity
⇒ Φnew − Φold ≤ 2 and T amort(insert) ≤ 1 + 2 = 3 ∈ O(1)

resize happens only if size = capacity = n
⇒ Φold = 2n − n = n.
⇒ Φnew = 2n − 2n = 0 since the new capacity is 2n.

T amort(resize) ≤ n + 0− n = 0 ∈ O(1)

Result: The amortized run-time of dynamic arrays is O(1).

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 35 / 38

Example: Dynamic arrays
40 20

insert
40 20 90

insert
40 20 90 60

resize
40 20 90 60

Set time units such that T actual(insert) ≤ 1 and T actual(resize) ≤ n.

Potential function Φ(t) = max{0, 2 · size− capacity}

insert increases size, does not change capacity
⇒ Φnew − Φold ≤ 2 and T amort(insert) ≤ 1 + 2 = 3 ∈ O(1)

resize happens only if size = capacity = n
⇒ Φold = 2n − n = n.
⇒ Φnew = 2n − 2n = 0 since the new capacity is 2n.

T amort(resize) ≤ n + 0− n = 0 ∈ O(1)

Result: The amortized run-time of dynamic arrays is O(1).

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 35 / 38

Example: Dynamic arrays
40 20

insert
40 20 90

insert
40 20 90 60

resize
40 20 90 60

Set time units such that T actual(insert) ≤ 1 and T actual(resize) ≤ n.

Potential function Φ(t) = max{0, 2 · size− capacity}

insert increases size, does not change capacity
⇒ Φnew − Φold ≤ 2 and T amort(insert) ≤ 1 + 2 = 3 ∈ O(1)

resize happens only if size = capacity = n
⇒ Φold = 2n − n = n.
⇒ Φnew = 2n − 2n = 0 since the new capacity is 2n.

T amort(resize) ≤ n + 0− n = 0 ∈ O(1)

Result: The amortized run-time of dynamic arrays is O(1).

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 35 / 38

Example: Dynamic arrays
40 20

insert
40 20 90

insert
40 20 90 60

resize
40 20 90 60

Set time units such that T actual(insert) ≤ 1 and T actual(resize) ≤ n.

Potential function Φ(t) = max{0, 2 · size− capacity}

insert increases size, does not change capacity
⇒ Φnew − Φold ≤ 2 and T amort(insert) ≤ 1 + 2 = 3 ∈ O(1)

resize happens only if size = capacity = n
⇒ Φold = 2n − n = n.
⇒ Φnew = 2n − 2n = 0 since the new capacity is 2n.

T amort(resize) ≤ n + 0− n = 0 ∈ O(1)

Result: The amortized run-time of dynamic arrays is O(1).

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 35 / 38

Example: Dynamic arrays
40 20

insert
40 20 90

insert
40 20 90 60

resize
40 20 90 60

Set time units such that T actual(insert) ≤ 1 and T actual(resize) ≤ n.

Potential function Φ(t) = max{0, 2 · size− capacity}

insert increases size, does not change capacity
⇒ Φnew − Φold ≤ 2 and T amort(insert) ≤ 1 + 2 = 3 ∈ O(1)

resize happens only if size = capacity = n
⇒ Φold = 2n − n = n.
⇒ Φnew = 2n − 2n = 0 since the new capacity is 2n.

T amort(resize) ≤ n + 0− n = 0 ∈ O(1)

Result: The amortized run-time of dynamic arrays is O(1).

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 35 / 38

Potential function method

How to find a suitable potential function?
(No recipe, but some guidelines.)

Study the expensive operation: What gets smaller?
40 20 90 60

resize
40 20 90 60

I Dynamic arrays: resize increases capacity.
We want the potential function to get smaller.
So potential function should have term “−capacity”.

Study condition Φ(·) ≥ 0 and Φ(0) = 0.
I Dynamic arrays: Usually have capacity ≤ 2 · size.

So usually 2 · size− capactiy ≥ 0,
I We added a max{0, . . . } term so that also Φ(0) = 0.

Compute the amortized time and see whether you get good bounds.
Lather, rinse, repeat.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 36 / 38

Potential function method

How to find a suitable potential function?
(No recipe, but some guidelines.)

Study the expensive operation: What gets smaller?
40 20 90 60

resize
40 20 90 60

I Dynamic arrays: resize increases capacity.
We want the potential function to get smaller.
So potential function should have term “−capacity”.

Study condition Φ(·) ≥ 0 and Φ(0) = 0.
I Dynamic arrays: Usually have capacity ≤ 2 · size.

So usually 2 · size− capactiy ≥ 0,
I We added a max{0, . . . } term so that also Φ(0) = 0.

Compute the amortized time and see whether you get good bounds.
Lather, rinse, repeat.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 36 / 38

Potential function method

How to find a suitable potential function?
(No recipe, but some guidelines.)

Study the expensive operation: What gets smaller?
40 20 90 60

resize
40 20 90 60

I Dynamic arrays: resize increases capacity.
We want the potential function to get smaller.
So potential function should have term “−capacity”.

Study condition Φ(·) ≥ 0 and Φ(0) = 0.
I Dynamic arrays: Usually have capacity ≤ 2 · size.

So usually 2 · size− capactiy ≥ 0,
I We added a max{0, . . . } term so that also Φ(0) = 0.

Compute the amortized time and see whether you get good bounds.
Lather, rinse, repeat.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 36 / 38

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Scapegoat Trees
Amortized analysis
Analysis of scapegoat trees

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025

Amortized analysis of scapegoat trees
Expensive operation: Rebuild subtree at p.

n′` n′r

p

n`

nr

p

Claim: If we rebuild at p, then |nold
r − nold

` | ≥ (2α− 1)np.
Proof:

Idea: Potential function should involve
∑

z |z .left.size− z .right.size|.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 37 / 38

Amortized analysis of scapegoat trees
Expensive operation: Rebuild subtree at p.

n′` n′r

p

n`

nr

p

Claim: If we rebuild at p, then |nold
r − nold

` | ≥ (2α− 1)np.
Proof:

Idea: Potential function should involve
∑

z |z .left.size− z .right.size|.
T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 37 / 38

Amortized analysis of scapegoat trees
Use Φ(t) = c ·

∑
z max{|z .left− z .right| − 1, 0} for some constant c.

insert and delete increases sizes at ancestors by 1
and does not increase other contributions.

T amort(insert) = T actual (insert) + Φnew − Φold

≤ log n + c#{ancestors} ∈ O(log n)

rebuild decreases contribution at p by (2α− 1)np
and does not increase other contributions.

T amort(rebuild) = T actual (rebuild) + Φnew − Φold

≤ np + c(−(2α− 1)np)

With c = 1/(2α− 1), this is at most 0 and rebuild is free.

Result: Scapegoat trees realize ADT Dictionary with O(log n) amortized
time for all operations and no rotations.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 38 / 38

Amortized analysis of scapegoat trees
Use Φ(t) = c ·

∑
z max{|z .left− z .right| − 1, 0} for some constant c.

insert and delete increases sizes at ancestors by 1
and does not increase other contributions.

T amort(insert) = T actual (insert) + Φnew − Φold

≤ log n + c#{ancestors} ∈ O(log n)

rebuild decreases contribution at p by (2α− 1)np
and does not increase other contributions.

T amort(rebuild) = T actual (rebuild) + Φnew − Φold

≤ np + c(−(2α− 1)np)

With c = 1/(2α− 1), this is at most 0 and rebuild is free.

Result: Scapegoat trees realize ADT Dictionary with O(log n) amortized
time for all operations and no rotations.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 38 / 38

Amortized analysis of scapegoat trees
Use Φ(t) = c ·

∑
z max{|z .left− z .right| − 1, 0} for some constant c.

insert and delete increases sizes at ancestors by 1
and does not increase other contributions.

T amort(insert) = T actual (insert) + Φnew − Φold

≤ log n + c#{ancestors} ∈ O(log n)

rebuild decreases contribution at p by (2α− 1)np
and does not increase other contributions.

T amort(rebuild) = T actual (rebuild) + Φnew − Φold

≤ np + c(−(2α− 1)np)

With c = 1/(2α− 1), this is at most 0 and rebuild is free.

Result: Scapegoat trees realize ADT Dictionary with O(log n) amortized
time for all operations and no rotations.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 38 / 38

Amortized analysis of scapegoat trees
Use Φ(t) = c ·

∑
z max{|z .left− z .right| − 1, 0} for some constant c.

insert and delete increases sizes at ancestors by 1
and does not increase other contributions.

T amort(insert) = T actual (insert) + Φnew − Φold

≤ log n + c#{ancestors} ∈ O(log n)

rebuild decreases contribution at p by (2α− 1)np
and does not increase other contributions.

T amort(rebuild) = T actual (rebuild) + Φnew − Φold

≤ np + c(−(2α− 1)np)

With c = 1/(2α− 1), this is at most 0 and rebuild is free.

Result: Scapegoat trees realize ADT Dictionary with O(log n) amortized
time for all operations and no rotations.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 38 / 38

	Dictionaries and Balanced Search Trees
	ADT Dictionary
	ADT Dictionary (review)
	Elementary Realizations (review)
	Overview of balanced binary search trees
	General strategy for balanced binary search trees
	Lazy deletion

	AVL Trees
	AVL Trees
	AVL tree example
	AVL tree example
	Height of an AVL tree

	Insertion in AVL Trees
	AVL insertion
	AVL Insertion Example

	Restructuring a BST: Rotations
	Changing structure without changing order
	Right Rotation
	Right Rotation Pseudocode
	Left Rotation
	Double Right Rotation
	Double Left Rotation

	AVL insertion revisited
	AVL Insertion Example revisited
	AVL insertion revisited
	Fixing a slightly-unbalanced AVL tree
	AVL Insertion Example revisited
	AVL Insertion: Second example
	Correctness of rotations
	Correctness of rotations
	AVL Tree Summary

	Scapegoat Trees
	Scapegoat trees
	Scapegoat trees
	Scapegoat tree operations
	Scapegoat Tree Insertion Example
	Scapegoat tree insertion

	Amortized analysis
	Detour: Amortized analysis
	Detour: Amortized analysis
	Potential function method
	Example: Dynamic arrays
	Potential function method

	Analysis of scapegoat trees
	Amortized analysis of scapegoat trees
	Amortized analysis of scapegoat trees

