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ADT Dictionary (review)

Dictionary: A collection of items, each of which contains
a key
some data (the “value”)

and is called a key-value pair (KVP). Keys can be compared and are
(typically) unique.

Operations:
search(k) (also called lookup(k))
insert(k, v)
delete(k) (also called remove(k))
optional: successor, merge, is-empty, size, etc.

Examples: symbol table, license plate database
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Elementary Realizations (review)
Common assumptions:

Dictionary has n KVPs
Each KVP uses constant space
(if not, the “value” could be a pointer)
Keys can be compared in constant time

We commonly make one more assumption (to keep pseudo-code simple):
Dictionary is non-empty both before and after operation.
(In a real-life implementation you would have to treat these special cases.)

Easy realizations:

search insert delete
unsorted list/array Θ(n) Θ(1) Θ(1)
sorted array Θ(log n) Θ(n) Θ(n)
binary search tree Θ(height) Θ(height) Θ(height)
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Overview of balanced binary search trees

We will see numerous variants of binary search trees.
The operations then have the following run-times:

Θ(log n) worst-case time (AVL-trees)
Θ(log n) amortized time (Scapegoat trees)
and no rotations.
Θ(log n) expected time (Treaps)
Θ(log n) expected time (Skip lists)
and space is smaller. (It’s not even a tree.)
Θ(log n) amortized time (Splay trees)
and space is smaller, and can handle biased requests.

(We will see “rotations”, “amortized” and “biased requests” later.)
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General strategy for balanced binary search trees

Use a binary search tree, but impose structural condition

Argue that structural condition implies O(log n) ... height
(where ... might be worst-case / avg-case / expected )

With this, search takes O(log n) ... time

insert and delete may destroy the structural condition

If so: show how to restore structural condition in O(height) time

With this, insert and delete takes O(log n) ... time
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Lazy deletion
General trick for ADT Dictionary: Reduce delete to search and insert.

delete(x) does not actually remove x from data structure.
I Instead, have a flag at each item that is either “deleted” or “present”
I insert sets the flag to “present”
I delete calls search, then sets the flag to “deleted”
I search ignores “deleted” items (but keeps searching)

Keep track of how many items are “deleted”.
If at least half are “deleted”: completely rebuild

I Run-time: O(n ∗ insert) (where n = # “present”)
I But: This only happens if we had n calls to delete since last rebuild.

All other calls to delete take O(search) time.
⇒ delete then takes O(search + insert) time in average over operations.

Lazy deletion wastes space; occasional operation is very slow.
Most realizations actually can do delete directly.
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AVL Trees

Introduced by Adel’son-Vel’skĭı and Landis in 1962, an AVL Tree is a BST
with an additional height-balance property at every node:

The heights of the left and right subtree differ by at most 1.

Rephrase: If node v has left subtree L and right subtree R, then

balance(v) := height(R)− height(L) must be in {−1, 0, 1}

balance(v) = −1 means v is left-heavy
balance(v) = +1 means v is right-heavy

Need to store at each node v the height of the subtree rooted at it(
There are ways to implement AVL-trees where we only store balance(v),
so fewer bits. But the code gets more complicated (no details).

)
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AVL tree example

(The lower numbers indicate the height of the subtree.)

22
4

10
3

4
1

6
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0
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AVL tree example
Alternative: store balance (instead of height) at each node.

22
-1

10
+1

4
+1

6
0

14
+1

13
0

18
-1

16
0

31
+1

28
0

37
+1

46
0

Saves space (2 bits vs. 1 integer per node)
Pseudo-code gets a lot more complicated  not done here
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Height of an AVL tree
Theorem: An AVL tree on n nodes has Θ(log n) height.
⇒ search, BST::insert, BST::delete all cost Θ(log n) in the worst case!

Proof:
Define N(h) to be the least number of nodes in a height-h AVL tree.
What is a recurrence relation for N(h)?
What does this recurrence relation resolve to?
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AVL insertion

To perform AVL::insert(k, v):
First, insert (k, v) with the usual BST insertion.

We assume that this returns the new leaf z where the key was stored.

Then, move up the tree from z .(
We assume for this that we have parent-links. This can be
avoided if BST::insert returns the full path to z .

)
Update height (easy to do in constant time):

set-height-from-subtrees(u)
1. u.height ← 1 + max{u.left.height, u.right.height}

If the height difference becomes ±2 at node z , then z is unbalanced.
Must re-structure the tree to rebalance.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 11 / 38



AVL Insertion Example
Example: AVL::insert(8)
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Changing structure without changing order

Note: There are many different BSTs with the same keys.

20

A

40

30

B C

D

20

A

30

B

40

C D

30

20

A B

40

C D

40

30

20

A B

C

D

40

20

A

30

B C

D

Goal: Change the structure locally nodes without changing the order .

Longterm goal: Restructure such the subtree becomes balanced.
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Right Rotation

This is a right rotation on node z :

z

c

g

A B

C

D

c

g

A B

z

C D

Note: Only O(1) links are changed. Useful to fix left-left imbalance.
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Right Rotation

This is a right rotation on node z :

z

c

g

A B

C

D

c

g

A B

z

C D

Note: Only O(1) links are changed. Useful to fix left-left imbalance.
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Right Rotation Pseudocode

rotate-right(z)
1. c ← z .left

2. // fix links connecting to above
3. c.parent ← (p ← z .parent)
4. if p = NULL then root ← c else
5. if p.left = z then p.left ← c else p.right ← c

6. // actual rotation
7. z .left ← c.right, c.right.parent ← z
8. c.right ← z , z .parent ← c

9. set-height-from-subtrees(z), set-height-from-subtrees(c)
10. return c // returns new root of subtree

Run-time: O(1)
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Left Rotation

Symmetrically, this is a left rotation on node z :

z

A

c

B

g

C D

c

z

A B

g

C D

Again, only O(1) links need to be changed. Useful to fix right-right
imbalance.

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 16 / 38



Double Right Rotation

This is a double right rotation on node z :

z

c

A

g

B C

D

z

g

c

A B

C

D

g

c

A B

z

C D

First, a left rotation at c.

Second, a right rotation at z .
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Double Right Rotation

This is a double right rotation on node z :

z

c

A

g

B C

D

z

g

c

A B

C

D

g

c

A B

z

C D

First, a left rotation at c.
Second, a right rotation at z .

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 17 / 38



Double Left Rotation

Symmetrically, there is a double left rotation on node z :

z

A

c

g

B C

D

g

z

A B

c

C D

First, a right rotation at c.
Second, a left rotation at z .
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AVL Insertion Example revisited
Example: AVL::insert(8)

22
4?

10
3?

4
2

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0
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AVL insertion revisited

Imbalance at z : do (single or double) rotation
Choose c as child where subtree has bigger height.

AVL::insert(k, v)
1. z ← BST::insert(k, v) // leaf where k is now stored

2. while (z is not NULL)
3. if (|z .left.height − z .right.height| > 1) then
4. Let c be taller child of z
5. Let g be taller child of c (so grandchild of z)
6. z ← restructure(g , c, z) // see later
7. break // can argue that we are done
8. set-height-from-subtrees(z)
9. z ← z .parent

Can argue: For insertion one rotation restores all heights of subtrees.
⇒ No further imbalances, can stop checking.
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Fixing a slightly-unbalanced AVL tree

restructure(g , c, z)
node g is child of c which is child of z

1. case



z

c

g

: :
// Right rotation
u ← rotate-right(z)

z

c

g

: : // Double-right rotation
rotate-left(c)
u ← rotate-right(z)

z

c

g

: : // Double-left rotation
rotate-right(c)
u ← rotate-left(z)

z

c

g

: : // Left rotation
u ← rotate-left(z)

2. return u

Rule: The middle key of g , c, z becomes the new root.
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AVL Insertion Example revisited

Example: AVL::insert(8)
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AVL Insertion: Second example
Example: AVL::insert(45)
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Correctness of rotations

Claim: If we perform restructure(g , c, z) during AVL::insert, then the
returned subtree is balanced, and its height is restored.

Proof: By symmetry, assume that c is the left child of z .
Case 1: g was the left child of c

z
h+1

c
h

g
h−1

g̃
h−2

c̃
h−2

c
h

g
h−1

z
h

g̃
h−2

c̃
h−2
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Correctness of rotations

Case 2: g is the right child of c.

z
h+1

c
h

g̃
h−2

g
h−1

h−2
or

h−3

h−2
or

h−3

c̃
h−2

g
h

c
h−1

g̃
h−2

h−2
or

h−3

z
h−1

h−2
or

h−3

c̃
h−2
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AVL Tree Summary
search: Just like in BSTs, costs Θ(height)

insert: BST::insert, then check & update along path to new leaf
total cost Θ(height)
restructure will be called at most once.

delete: BST::delete, then check & update along path to deleted node
(we did not see details of how to do this)

total cost Θ(height)
restructure may be called Θ(height) times.

Worst-case cost for all operations is Θ(height) = Θ(log n).

In practice, the constant is quite large.
Other realizations of ADT Dictionary are better in practice (→ later)
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Scapegoat trees

Can we have balanced binary search trees without rotations?
(A later application will need such a tree.)
This sounds impossible—we must sometimes restructure the tree.
Idea: Rather than doing a small local change, occasionally rebuild an
entire (large) subtree.

With the right setup, this will lead to O(log n) height and O(log n)
amortized time for all operations.
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Scapegoat trees
Fix a constant α with 1

2 < α < 1. A scapegoat tree is a binary search
tree where any node v with a parent satisfies

v .size ≤ α · v .parent.size.

40
7

30
3

20
2

10
1

50
3

80
2

60
1

(
Lower number = subtree-size.
In our examples, α = 2

3 .

)

v .size needed during updates  must be stored
Any subtree is a constant fraction smaller  height O(log n).
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Scapegoat tree operations

search: As for a binary search tree. O(height) = O(log n).
For insert and delete, occasionally restructure a subtree into a
perfectly (size-)balanced tree:

|size(z .left)− size(z .right)| ≤ 1 for all nodes z .

Do this at the highest node where the size-condition of scapegoat
trees is violated
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Scapegoat Tree Insertion Example

Example: Scapegoat::insert(60)

20
4

10
1

70
2

30
1
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Scapegoat Tree Insertion Example

Example: Scapegoat::insert(60)

20
5

10
1

70
3

30
2

60
1
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Scapegoat Tree Insertion Example

Example: Scapegoat::insert(50)
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1
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4

30
3

60
2
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1
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Scapegoat Tree Insertion Example

Example: Scapegoat::insert(50)

20
6

10
1 ?

30
?

50
?

60
?

70
?
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Scapegoat Tree Insertion Example

Example: Scapegoat::insert(40)

20
7

10
1

60
5

30
3

50
2

40
1

70
1
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Scapegoat Tree Insertion Example

Example: Scapegoat::insert(40)

40
7

20
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Scapegoat tree insertion

scapegoatTree::insert(k, v)
1. z ← BST::insert(k, v)
2. S ← stack initialized with z
3. while (p ← z .parent 6= NULL) // update sizes, get path
4. increase p.size
5. S.push(p)
6. z ← p
7. while (S.size ≥ 2) // size-condition violated?
8. p ← P.pop()
9. if (p.size < α ·max{p.left.size, p.right.size})
10. rebuild subtree at p into perfectly balanced tree
11. return

Rebuilding at p (line 10) can be done in O(p.size) time (exercise).
This restores scapegoat tree (we rebuild at the highest violation).
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Detour: Amortized analysis

As for dynamic arrays and lazy deletion, we have the following pattern:
usually the operation is fast,
the occasional operation is quite slow.

The worst-case run-time bound here would not reflect that overall this
works quite well.

Instead, try to find an amortized run-time bound. Informally, this is a
bound that holds if we add the bounds up over all operations.

k∑
i=1

T actual(Oi ) ≤
k∑

i=1
T amort(Oi ).
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Detour: Amortized analysis

For dynamic arrays and lazy deletion, a direct argument works.
40 20

insert
40 20 90

insert
40 20 90 60

resize
40 20 90 60

n/2 fast inserts takes Θ(1) time each.
Then one slow insert takes Θ(n).
Averaging out therefore Θ(1) per operation.

This is doing math with asymptotic notation—dangerous.

More systematic method: Use a potential function
A function Φ(·) that depends on the current status.

I E.g.: Φ(t) = max{0, 2 · size− capacity} for dynamic arrays.
I t (≈ time) means “after executing t operations”

Requirement: Φ(0) = 0, Φ(i) ≥ 0 for all i .
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Potential function method
Define time units: how much can be done in one unit of time?

I Needed so that we do not do math with asymptotic notation.
I Dynamic arrays: “Set time units such that

T actual(insert) ≤ 1 and T actual(resize) ≤ n.”

Define a potential function Φ and verify Φ(0) = 0,Φ(i) ≥ 0.
I Finding Φ is non-trivial ( later)

Define T amort(Ot) = T actual(Ot) + Φ(t)− Φ(t − 1)

I Often we just write T amort(O) = T actual(O) + Φnew − Φold

I Easy to show:
∑

i T actual(Oi ) ≤
∑

i T amort(Oi ) holds.

Find asymptotic upper bounds for T amort(O) for each operation.
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Example: Dynamic arrays
40 20

insert
40 20 90

insert
40 20 90 60

resize
40 20 90 60

Set time units such that T actual(insert) ≤ 1 and T actual(resize) ≤ n.

Potential function Φ(t) = max{0, 2 · size− capacity}

insert increases size, does not change capacity
⇒ Φnew − Φold ≤ 2 and T amort(insert) ≤ 1 + 2 = 3 ∈ O(1)

resize happens only if size = capacity = n
⇒ Φold = 2n − n = n.
⇒ Φnew = 2n − 2n = 0 since the new capacity is 2n.

T amort(resize) ≤ n + 0− n = 0 ∈ O(1)

Result: The amortized run-time of dynamic arrays is O(1).

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 35 / 38



Example: Dynamic arrays
40 20

insert
40 20 90

insert
40 20 90 60

resize
40 20 90 60

Set time units such that T actual(insert) ≤ 1 and T actual(resize) ≤ n.

Potential function Φ(t) = max{0, 2 · size− capacity}

insert increases size, does not change capacity
⇒ Φnew − Φold ≤ 2 and T amort(insert) ≤ 1 + 2 = 3 ∈ O(1)

resize happens only if size = capacity = n
⇒ Φold = 2n − n = n.
⇒ Φnew = 2n − 2n = 0 since the new capacity is 2n.

T amort(resize) ≤ n + 0− n = 0 ∈ O(1)

Result: The amortized run-time of dynamic arrays is O(1).

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 35 / 38



Example: Dynamic arrays
40 20

insert
40 20 90

insert
40 20 90 60

resize
40 20 90 60

Set time units such that T actual(insert) ≤ 1 and T actual(resize) ≤ n.

Potential function Φ(t) = max{0, 2 · size− capacity}

insert increases size, does not change capacity
⇒ Φnew − Φold ≤ 2 and T amort(insert) ≤ 1 + 2 = 3 ∈ O(1)

resize happens only if size = capacity = n
⇒ Φold = 2n − n = n.
⇒ Φnew = 2n − 2n = 0 since the new capacity is 2n.

T amort(resize) ≤ n + 0− n = 0 ∈ O(1)

Result: The amortized run-time of dynamic arrays is O(1).

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 35 / 38



Example: Dynamic arrays
40 20

insert
40 20 90

insert
40 20 90 60

resize
40 20 90 60

Set time units such that T actual(insert) ≤ 1 and T actual(resize) ≤ n.

Potential function Φ(t) = max{0, 2 · size− capacity}

insert increases size, does not change capacity
⇒ Φnew − Φold ≤ 2 and T amort(insert) ≤ 1 + 2 = 3 ∈ O(1)

resize happens only if size = capacity = n
⇒ Φold = 2n − n = n.
⇒ Φnew = 2n − 2n = 0 since the new capacity is 2n.

T amort(resize) ≤ n + 0− n = 0 ∈ O(1)

Result: The amortized run-time of dynamic arrays is O(1).

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 35 / 38



Example: Dynamic arrays
40 20

insert
40 20 90

insert
40 20 90 60

resize
40 20 90 60

Set time units such that T actual(insert) ≤ 1 and T actual(resize) ≤ n.

Potential function Φ(t) = max{0, 2 · size− capacity}

insert increases size, does not change capacity
⇒ Φnew − Φold ≤ 2 and T amort(insert) ≤ 1 + 2 = 3 ∈ O(1)

resize happens only if size = capacity = n
⇒ Φold = 2n − n = n.
⇒ Φnew = 2n − 2n = 0 since the new capacity is 2n.

T amort(resize) ≤ n + 0− n = 0 ∈ O(1)

Result: The amortized run-time of dynamic arrays is O(1).

T.Biedl (CS-UW) CS240E – Module 4 Winter 2025 35 / 38



Potential function method

How to find a suitable potential function?
(No recipe, but some guidelines.)

Study the expensive operation: What gets smaller?
40 20 90 60

resize
40 20 90 60

I Dynamic arrays: resize increases capacity.
We want the potential function to get smaller.
So potential function should have term “−capacity”.

Study condition Φ(·) ≥ 0 and Φ(0) = 0.
I Dynamic arrays: Usually have capacity ≤ 2 · size.

So usually 2 · size− capactiy ≥ 0,
I We added a max{0, . . . } term so that also Φ(0) = 0.

Compute the amortized time and see whether you get good bounds.
Lather, rinse, repeat.
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Amortized analysis of scapegoat trees
Expensive operation: Rebuild subtree at p.

n′` n′r

p

n`

nr

p

Claim: If we rebuild at p, then |nold
r − nold

` | ≥ (2α− 1)np.
Proof:

Idea: Potential function should involve
∑

z |z .left.size− z .right.size|.
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Amortized analysis of scapegoat trees
Use Φ(t) = c ·

∑
z max{|z .left− z .right| − 1, 0} for some constant c.

insert and delete increases sizes at ancestors by 1
and does not increase other contributions.

T amort(insert) = T actual (insert) + Φnew − Φold

≤ log n + c#{ancestors} ∈ O(log n)

rebuild decreases contribution at p by (2α− 1)np
and does not increase other contributions.

T amort(rebuild) = T actual (rebuild) + Φnew − Φold

≤ np + c(−(2α− 1)np)

With c = 1/(2α− 1), this is at most 0 and rebuild is free.

Result: Scapegoat trees realize ADT Dictionary with O(log n) amortized
time for all operations and no rotations.
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