
CS 240E – Data Structures
and Data Management (Enriched)

Module 5: Other Dictionary Implementations

Therese Biedl
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-01-29 10:28

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 1 / 48

Outline

5 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Expected height of a BST
Treaps
Skip Lists
Biased Search Requests
Optimal Static Ordering
Optimal Static Binary Search Trees
Dynamic Ordering: MTF
MTF-heuristic in a BST
Splay Trees

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025

Outline

5 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Expected height of a BST
Treaps
Skip Lists
Biased Search Requests
Optimal Static Ordering
Optimal Static Binary Search Trees
Dynamic Ordering: MTF
MTF-heuristic in a BST
Splay Trees

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025

Dictionary ADT: Implementations thus far
A dictionary is a collection of key-value pairs (KVPs), supporting
operations search, insert, and delete.

Realizations we have seen so far:
Unordered array or list: Θ(1) insert, Θ(n) search and delete
Ordered array: Θ(log n) search, Θ(n) insert and delete
Binary search trees: Θ(height) search, insert and delete
Balanced Binary Search trees (AVL trees):

Θ(log n) search, insert, and delete

Outlook:
We will see: If the KVPs were inserted in random order, then the
expected height of the binary search tree would be O(log n).
Then study: How can we use randomization within the data
structure to mirror what would happen on random input?

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 2 / 48

Dictionary ADT: Implementations thus far
A dictionary is a collection of key-value pairs (KVPs), supporting
operations search, insert, and delete.

Realizations we have seen so far:
Unordered array or list: Θ(1) insert, Θ(n) search and delete
Ordered array: Θ(log n) search, Θ(n) insert and delete
Binary search trees: Θ(height) search, insert and delete
Balanced Binary Search trees (AVL trees):

Θ(log n) search, insert, and delete
Outlook:

We will see: If the KVPs were inserted in random order, then the
expected height of the binary search tree would be O(log n).
Then study: How can we use randomization within the data
structure to mirror what would happen on random input?

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 2 / 48

Outline

5 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Expected height of a BST
Treaps
Skip Lists
Biased Search Requests
Optimal Static Ordering
Optimal Static Binary Search Trees
Dynamic Ordering: MTF
MTF-heuristic in a BST
Splay Trees

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025

Expected height of BSTs
Assume we randomly choose a permutation of {0, . . . , n − 1} and build a
binary search tree in this order:

0

1

2

{0, 1, 2}

0

2

1

{0, 2, 1}

1

0 2

{1, 0, 2}
{1, 2, 0}

2

0

1

{2, 0, 1}

2

1

0

{2, 1, 0}

Theorem: The expected height of the tree is O(log n).
Proof:

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 3 / 48

Expected height vs. average height

This does not imply that the average height of a BST is O(log n).
Can show: Average height is Θ(

√
n) (no details).

Average height (over all BSTs)
6= expected height (over all randomly built BSTs)

Difference already obvious for n = 3:
I Expected height is 1

6 (2 + 2 + 1 + 1 + 2 + 2) ≈ 1.66.
6 possible permutations.

I Average height is 1
5 (2 + 2 + 1 + 2 + 2) = 1.8.

5 possible binary search trees.

Message: Randomization does not automatically imply an
average-case bound.
(It depends on what we average over and how we randomize.)

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 5 / 48

Expected height vs. average height

This does not imply that the average height of a BST is O(log n).
Can show: Average height is Θ(

√
n) (no details).

Average height (over all BSTs)
6= expected height (over all randomly built BSTs)
Difference already obvious for n = 3:

I Expected height is 1
6 (2 + 2 + 1 + 1 + 2 + 2) ≈ 1.66.

6 possible permutations.
I Average height is 1

5 (2 + 2 + 1 + 2 + 2) = 1.8.
5 possible binary search trees.

Message: Randomization does not automatically imply an
average-case bound.
(It depends on what we average over and how we randomize.)

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 5 / 48

Outline

5 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Expected height of a BST
Treaps
Skip Lists
Biased Search Requests
Optimal Static Ordering
Optimal Static Binary Search Trees
Dynamic Ordering: MTF
MTF-heuristic in a BST
Splay Trees

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025

Treaps

Goal: Build a binary search tree that acts as if it had been build in
randomly picked insertion order.

Idea: Use binary search tree, but store a priority with each node.

Priorities are a permutation of
{0, . . . , n−1}.
Permutation has been picked randomly
All permutations should be equally
likely.
Priorities are decreasing when going
downwards (similar to a heap).

10
6

4
4

6
1

14
5

13
2

18
3

16
0

We call this a treap (= tree + heap).

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 6 / 48

Treaps

We also need an array P where P[i] stores node with priority i .

10
6

4
4

6
1

14
5

13
2

18
3

16
0

P : •
0

•
1

•
2

•
3

•
4

•
5

•
6

Observe: The expected height of a treap is O(log n).
Root-item has priority n − 1.
This is picked randomly, so proof for expected height of BST applies.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 7 / 48

Treaps

We also need an array P where P[i] stores node with priority i .

10
6

4
4

6
1

14
5

13
2

18
3

16
0

P : •
0

•
1

•
2

•
3

•
4

•
5

•
6

Observe: The expected height of a treap is O(log n).
Root-item has priority n − 1.
This is picked randomly, so proof for expected height of BST applies.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 7 / 48

Treap Insertion
Consider adding a new KVP. What priority should it get?

We need a random permutation of {0, . . . , n − 1}
I Currently we had a random permutation of {0, . . . , n − 2}.

Recall: shuffle creates a random permutation:
shuffle(A)
A: array of size n stores 〈0, ...n−1〉
1. for i ← 1 to n − 1 do
2. swap(A[i],A[random(i + 1)])

We imitate shuffle’s behaviour by randomly picking priority for new item.
p ← random(n) is in {0, . . . , n−1}
The item that prviously had priority p now gets priority n − 1.
If this violates the heap-property, then rotate to fix it.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 8 / 48

Treap Insertion
Consider adding a new KVP. What priority should it get?

We need a random permutation of {0, . . . , n − 1}
I Currently we had a random permutation of {0, . . . , n − 2}.

Recall: shuffle creates a random permutation:
shuffle(A)
A: array of size n stores 〈0, ...n−1〉
1. for i ← 1 to n − 1 do
2. swap(A[i],A[random(i + 1)])

We imitate shuffle’s behaviour by randomly picking priority for new item.
p ← random(n) is in {0, . . . , n−1}
The item that prviously had priority p now gets priority n − 1.
If this violates the heap-property, then rotate to fix it.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 8 / 48

Treap Insertion
Consider adding a new KVP. What priority should it get?

We need a random permutation of {0, . . . , n − 1}
I Currently we had a random permutation of {0, . . . , n − 2}.

Recall: shuffle creates a random permutation:
shuffle(A)
A: array of size n stores 〈0, ...n−1〉
1. for i ← 1 to n − 1 do
2. swap(A[i],A[random(i + 1)])

We imitate shuffle’s behaviour by randomly picking priority for new item.
p ← random(n) is in {0, . . . , n−1}
The item that prviously had priority p now gets priority n − 1.
If this violates the heap-property, then rotate to fix it.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 8 / 48

Treap Insertions Example
Example: treap::insert(17)

Randomly pick priority 5 ∈ {0, . . . , 7}, and change priority of P[5] to 7.
These priorities violate order-property.

10
6

4
4

6
1

14
5

13
2

18
3

16
0

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 9 / 48

Treap Insertions Example
Example: treap::insert(17)

Randomly pick priority 5 ∈ {0, . . . , 7}, and change priority of P[5] to 7.
These priorities violate order-property.

10
6

4
4

6
1

14
5

13
2

18
3

16
0

17
?

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 9 / 48

Treap Insertions Example
Example: treap::insert(17)
Randomly pick priority 5 ∈ {0, . . . , 7}, and change priority of P[5] to 7.
These priorities violate order-property.

10
6

4
4

6
1

14
7

13
2

18
3

16
0

17
5

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 9 / 48

Fixing incorrect priorities with rotations
In binary heaps, we fixed increased priorities via fix-up (swaps)
Does not work here! We must also maintain the BST-order.
Idea: Rotations maintain the BST-order and fix priorities.

y
p

A

z
q

B C

z
q

y
p

A B

C

if q > p and z is right child

treap::fix-up-with-rotations(z)
1. while (y ← z .parent is not NULL and z .priority > y .priority) do
2. ifz is the left child of y do rotate-right(y)
3. else rotate-left(y)

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 10 / 48

Fixing incorrect priorities with rotations
In binary heaps, we fixed increased priorities via fix-up (swaps)
Does not work here! We must also maintain the BST-order.
Idea: Rotations maintain the BST-order and fix priorities.

y
p

A

z
q

B C

z
q

y
p

A B

C

if q > p and z is right child

treap::fix-up-with-rotations(z)
1. while (y ← z .parent is not NULL and z .priority > y .priority) do
2. ifz is the left child of y do rotate-right(y)
3. else rotate-left(y)

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 10 / 48

Fixing incorrect priorities with rotations
In binary heaps, we fixed increased priorities via fix-up (swaps)
Does not work here! We must also maintain the BST-order.
Idea: Rotations maintain the BST-order and fix priorities.

y
p

A

z
q

B C

z
q

y
p

A B

C

if q > p and z is right child

treap::fix-up-with-rotations(z)
1. while (y ← z .parent is not NULL and z .priority > y .priority) do
2. ifz is the left child of y do rotate-right(y)
3. else rotate-left(y)

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 10 / 48

Treap Insertions Example

Example: treap::insert(17)

Fix upper violation first (why?)

10
6

4
4

6
1

14
7

13
2

18
3

16
0

17
5

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 11 / 48

Treap Insertions Example

Example: treap::insert(17)
Fix upper violation first (why?)

14
7

10
6

4
4

6
1

13
2

18
3

16
0

17
5

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 11 / 48

Treap Insertions Example

Example: treap::insert(17)
Fix upper violation first (why?)

14
7

10
6

4
4

6
1

13
2

18
3

17
5

16
0

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 11 / 48

Treap Insertions Example

Example: treap::insert(17)
Fix upper violation first (why?)

14
7

10
6

4
4

6
1

13
2

17
5

16
0

18
3

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 11 / 48

Treap Insertion Code

Recall: P[i] = node with priority i .

treap::insert(k, v)
1. n← P.size // current size
2. z ← BST::insert(k, v); n++
3. p ← random(n)
4. if p < n − 1 do
5. z ′ ← P[p], z ′.priority← n − 1,P[n − 1]← z ′

6. fix-up-with-rotations(z ′)
7. z .priority← p; P[p]← z
8. fix-up-with-rotations(z)

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 12 / 48

Treaps summary

Randomized binary search tree, so expected height is O(log n)
Achieves O(log n) expected time for search and insert
delete can be handled similar (but even more exchanges)

But not particularly useful in practice
(except when priorities have meaning later)

Large space overhead (parent-pointers, priorities, P)
There are ways to avoid some of the space overhead, but in general
randomized binary search trees are rarely used.
We will now see a randomization that works better (but is not a
binary search tree)

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 13 / 48

Treaps summary

Randomized binary search tree, so expected height is O(log n)
Achieves O(log n) expected time for search and insert
delete can be handled similar (but even more exchanges)

But not particularly useful in practice
(except when priorities have meaning later)

Large space overhead (parent-pointers, priorities, P)
There are ways to avoid some of the space overhead, but in general
randomized binary search trees are rarely used.
We will now see a randomization that works better (but is not a
binary search tree)

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 13 / 48

Outline

5 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Expected height of a BST
Treaps
Skip Lists
Biased Search Requests
Optimal Static Ordering
Optimal Static Binary Search Trees
Dynamic Ordering: MTF
MTF-heuristic in a BST
Splay Trees

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025

Skip Lists

A hierarchy of ordered linked lists (levels) L0, L1, · · · , Lh:
Each list Li contains the special keys −∞ and +∞ (sentinels)
List L0 contains the KVPs of S in non-decreasing order.
(The other lists store only keys and references.)
Each list is a subsequence of the previous one, i.e.,
L0 ⊇ L1 ⊇ · · · ⊇ Lh
List Lh contains only the sentinels

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 14 / 48

Skip Lists

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

A few more definitions:
node = entry in one list vs. KVP = one non-sentinel entry in L0
There are (usually) more nodes than KVPs
Here # (non-sentinel) nodes = 14 vs. n← # KVPs = 9.
root = topmost left sentinel is the only field of the skip list.
Each node p has references p.after and p.below
Each key k belongs to a tower of nodes

I Height of tower of k: maximal index i such that k ∈ Li
I Height of skip list: maximal index h such that Lh exists

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 15 / 48

Search in Skip Lists
For each list, find predecessor (node before where k would be).
This will also be useful for insert/delete.

get-predecessors (k)
1. p ← root
2. P ← stack of nodes, initially containing p
3. while p.below 6= NULL do
4. p ← p.below
5. while p.after .key < k do p ← p.after
6. P.push(p)
7. return P

skipList::search (k)
1. P ← get-predecessors(k)
2. p0 ← P.top() // predecessor of k in L0
3. if p0.after .key = k return KVP at p0.after
4. else return “not found, but would be after p0”

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 16 / 48

Example: Search in Skip Lists
Example: search(87)

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

key compared with k

added to P

path taken by p

Final stack returned: (83,v)
83
65
−∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 17 / 48

Example: Search in Skip Lists
Example: search(87)

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

key compared with k

added to P

path taken by p

Final stack returned: (83,v)
83
65
−∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 17 / 48

Example: Search in Skip Lists
Example: search(87)

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

key compared with k

added to P

path taken by p

Final stack returned: (83,v)
83
65
−∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 17 / 48

Example: Search in Skip Lists
Example: search(87)

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

key compared with k

added to P

path taken by p

Final stack returned: (83,v)
83
65
−∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 17 / 48

Example: Search in Skip Lists
Example: search(87)

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

key compared with k

added to P

path taken by p

Final stack returned: (83,v)
83
65
−∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 17 / 48

Example: Search in Skip Lists
Example: search(87)

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

key compared with k

added to P

path taken by p

Final stack returned: (83,v)
83
65
−∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 17 / 48

Delete in Skip Lists

It is easy to remove a key since we can find all predecessors.
Then eliminate lists if there are multiple ones with only sentinels.

skipList::delete(k)
1. P ← get-predecessors(k)
2. while P is non-empty
3. p ← P.pop() // predecessor of k in some list
4. if p.after .key = k
5. p.after ← p.after .after
6. else break // no more copies of k

7. p ← left sentinel of the root-list
8. while p.below .after is the ∞-sentinel

// top two lists have only sentinels, remove one
9. p.below ← p.below .below
10. p.after .below ← p.after .below .below

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 18 / 48

Example: Delete in Skip Lists

Example: skipList::delete(65)

get-predecessors(65)
Height decrease

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 19 / 48

Example: Delete in Skip Lists

Example: skipList::delete(65)
get-predecessors(65)

Height decrease

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 19 / 48

Example: Delete in Skip Lists

Example: skipList::delete(65)
get-predecessors(65)

Height decrease

−∞L0 (23,v) (37,v) (44,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 83 94 ∞

−∞L2 ∞

−∞L3 ∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 19 / 48

Example: Delete in Skip Lists

Example: skipList::delete(65)
get-predecessors(65)
Height decrease

−∞L0 (23,v) (37,v) (44,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 83 94 ∞

−∞L2 ∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 19 / 48

Insert in Skip Lists
skipList::insert(k, v)

There is no choice as to where to put the tower of k.
Only choice: how tall should we make the tower of k?

I Choose randomly ! Repeatedly toss a coin until you get tails
I Let i the number of times the coin came up heads
I We want key k to be in lists L0, . . . , Li , so i → height of tower of k

Pr(tower of key k has height ≥ i) =
(1
2
)i

Before we can insert, we must check that these lists exist.
I Add sentinel-only lists, if needed, until height h satisfies h > i .

Then do the actual insertion.
I Use get-predecessors(k) to get stack P.
I The top i items of P are the predecessors p0, p1, · · · , pi of where k

should be in each list L0, L1, · · · , Li
I Insert (k, v) after p0 in L0, and k after pj in Lj for 1 ≤ j ≤ i

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 20 / 48

Insert in Skip Lists
skipList::insert(k, v)

There is no choice as to where to put the tower of k.
Only choice: how tall should we make the tower of k?

I Choose randomly ! Repeatedly toss a coin until you get tails
I Let i the number of times the coin came up heads
I We want key k to be in lists L0, . . . , Li , so i → height of tower of k

Pr(tower of key k has height ≥ i) =
(1
2
)i

Before we can insert, we must check that these lists exist.
I Add sentinel-only lists, if needed, until height h satisfies h > i .

Then do the actual insertion.
I Use get-predecessors(k) to get stack P.
I The top i items of P are the predecessors p0, p1, · · · , pi of where k

should be in each list L0, L1, · · · , Li
I Insert (k, v) after p0 in L0, and k after pj in Lj for 1 ≤ j ≤ i

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 20 / 48

Insert in Skip Lists
skipList::insert(k, v)

There is no choice as to where to put the tower of k.
Only choice: how tall should we make the tower of k?

I Choose randomly ! Repeatedly toss a coin until you get tails
I Let i the number of times the coin came up heads
I We want key k to be in lists L0, . . . , Li , so i → height of tower of k

Pr(tower of key k has height ≥ i) =
(1
2
)i

Before we can insert, we must check that these lists exist.
I Add sentinel-only lists, if needed, until height h satisfies h > i .

Then do the actual insertion.
I Use get-predecessors(k) to get stack P.
I The top i items of P are the predecessors p0, p1, · · · , pi of where k

should be in each list L0, L1, · · · , Li
I Insert (k, v) after p0 in L0, and k after pj in Lj for 1 ≤ j ≤ i

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 20 / 48

Example: Insert in Skip Lists
Example: skipList::insert(52, v)
Coin tosses: H,T ⇒ i = 1

Have h = 3 > i ⇒ no need to add lists
get-predecessors(52)
Insert 52 in lists L0, . . . , Li

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 21 / 48

Example: Insert in Skip Lists
Example: skipList::insert(52, v)
Coin tosses: H,T ⇒ i = 1
Have h = 3 > i ⇒ no need to add lists

get-predecessors(52)
Insert 52 in lists L0, . . . , Li

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 21 / 48

Example: Insert in Skip Lists
Example: skipList::insert(52, v)
Coin tosses: H,T ⇒ i = 1
Have h = 3 > i ⇒ no need to add lists
get-predecessors(52)

Insert 52 in lists L0, . . . , Li

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 21 / 48

Example: Insert in Skip Lists
Example: skipList::insert(52, v)
Coin tosses: H,T ⇒ i = 1
Have h = 3 > i ⇒ no need to add lists
get-predecessors(52)
Insert 52 in lists L0, . . . , Li

−∞L0 (23,v) (37,v) (44,v) (52,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 52 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 21 / 48

Example 2: Insert in Skip Lists

Example: skipList::insert(100, v)
Coin tosses: H,H,H,T ⇒ i = 3

Height increase
get-predecessors(100)
Insert 100 in lists L0, . . . , Li

−∞L0 (23,v) (37,v) (44,v) (52,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 52 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 22 / 48

Example 2: Insert in Skip Lists

Example: skipList::insert(100, v)
Coin tosses: H,H,H,T ⇒ i = 3
Height increase

get-predecessors(100)
Insert 100 in lists L0, . . . , Li

−∞L0 (23,v) (37,v) (44,v) (52,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 52 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

−∞L4 ∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 22 / 48

Example 2: Insert in Skip Lists

Example: skipList::insert(100, v)
Coin tosses: H,H,H,T ⇒ i = 3
Height increase
get-predecessors(100)

Insert 100 in lists L0, . . . , Li

−∞L0 (23,v) (37,v) (44,v) (52,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 52 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

−∞L4 ∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 22 / 48

Example 2: Insert in Skip Lists

Example: skipList::insert(100, v)
Coin tosses: H,H,H,T ⇒ i = 3
Height increase
get-predecessors(100)
Insert 100 in lists L0, . . . , Li

−∞L0 (23,v) (37,v) (44,v) (52,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) (100,v) ∞

−∞L1 37 52 65 83 94 100 ∞

−∞L2 65 100 ∞

−∞L3 100 ∞

−∞L4 ∞

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 22 / 48

Skip Lists Space

Claim: The expected number of non-sentinels is O(n).

Set Xk = tower height of key k. Recall Pr(Xk ≥ i) =
(
1
2

)i
.

Define |Li | = #non-sentinels in Li . Observe |Li | =
∑

k χ(Xk≥i).(
Indicator-variable χZ =

{
1 if Z is true
0 otherwise

}
has E [χZ] = P(Z is true).

)

What is E [|Li |]?

What is E [#non-sentinels] =
∑h

i=0 E [|Li |]?

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 23 / 48

Skip Lists Space

Claim: The expected number of non-sentinels is O(n).

Set Xk = tower height of key k. Recall Pr(Xk ≥ i) =
(
1
2

)i
.

Define |Li | = #non-sentinels in Li . Observe |Li | =
∑

k χ(Xk≥i).(
Indicator-variable χZ =

{
1 if Z is true
0 otherwise

}
has E [χZ] = P(Z is true).

)
What is E [|Li |]?

What is E [#non-sentinels] =
∑h

i=0 E [|Li |]?

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 23 / 48

Skip Lists Space

Claim: The expected number of non-sentinels is O(n).

Set Xk = tower height of key k. Recall Pr(Xk ≥ i) =
(
1
2

)i
.

Define |Li | = #non-sentinels in Li . Observe |Li | =
∑

k χ(Xk≥i).(
Indicator-variable χZ =

{
1 if Z is true
0 otherwise

}
has E [χZ] = P(Z is true).

)
What is E [|Li |]?

What is E [#non-sentinels] =
∑h

i=0 E [|Li |]?

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 23 / 48

Skip Lists Height
Claim: The expected height is O(log n).

Define Ii = χ(Li has non-sentinels) =
{

1 if |Li | ≥ 1
0 otherwise

Observe: Ii ≤ min{1, |Li |}, so E [Ii] ≤ min{1,E [|Li |]}.
Observe: height h = #lists with non-sentinels =

∑
i≥0 Ii .

What is E [h] =
∑

i≥0 E [Ii]?

Therefore the expected space is O(n).

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 24 / 48

Skip Lists Height
Claim: The expected height is O(log n).

Define Ii = χ(Li has non-sentinels) =
{

1 if |Li | ≥ 1
0 otherwise

Observe: Ii ≤ min{1, |Li |}, so E [Ii] ≤ min{1,E [|Li |]}.
Observe: height h = #lists with non-sentinels =

∑
i≥0 Ii .

What is E [h] =
∑

i≥0 E [Ii]?

Therefore the expected space is O(n).

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 24 / 48

Skip Lists: getting predecessors
Claim: skipList::get-predecessors has O(log n) expected run-time.

How often do we drop down (execute p ← p.below)? height.
How often do we step forward (execute p ← p.after)?

I We immediately drop down in Lh, so consider Li for i < h.

Li p x1 x2 y
Li+1 p′ y ′

I Key insight: x1 did not exist in Li+1 (else would go forward there)
I So the tower of x1 exactly ended with Li . What is the probability?

So search, insert, delete have O(log n) expected run-time

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 25 / 48

Skip Lists: getting predecessors
Claim: skipList::get-predecessors has O(log n) expected run-time.

How often do we drop down (execute p ← p.below)? height.
How often do we step forward (execute p ← p.after)?

I We immediately drop down in Lh, so consider Li for i < h.

Li p x1 x2 y
Li+1 p′ y ′

I Key insight: x1 did not exist in Li+1 (else would go forward there)
I So the tower of x1 exactly ended with Li . What is the probability?

So search, insert, delete have O(log n) expected run-time

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 25 / 48

Summary of Skip Lists

O(n) expected space, all operations take O(log n) expected time.

Lists make it easy to implement. We can also easily add more
operations (e.g. successor, merge,...)

As described they are no better than randomized binary search trees.

But there are numerous improvements on the space:
I Can save links (hence space) by implementing towers as array.

−∞ (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞
• • • • • •
• • •
• •

I Biased coin-flips to determine tower-heights give smaller expected space
I With both ideas, expected space is < 2n (less than for a BST).

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 26 / 48

Outline

5 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Expected height of a BST
Treaps
Skip Lists
Biased Search Requests
Optimal Static Ordering
Optimal Static Binary Search Trees
Dynamic Ordering: MTF
MTF-heuristic in a BST
Splay Trees

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025

Improving unsorted lists/arrays

Recall unsorted array realization: 90
0

30
1

60
2

20
3

50
4

search: Θ(n), insert: Θ(1), delete: Θ(1) (after a search)

Very simple and popular. Can we do something to make search more
effective in practice?

No: if items are accessed equally likely.
We can show that the average-case cost for search is then Θ(n).

Yes: if the search requests are biased:
some items are accessed much more frequently than others.

I 80/20 rule: 80% of outcomes result from 20% of causes.
I access: insertion or successful search
I Intuition: Frequently accessed items should be in the front.
I Two scenarios: Do we know the access distribution beforehand or not?

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 27 / 48

Improving unsorted lists/arrays

Recall unsorted array realization: 90
0

30
1

60
2

20
3

50
4

search: Θ(n), insert: Θ(1), delete: Θ(1) (after a search)

Very simple and popular. Can we do something to make search more
effective in practice?

No: if items are accessed equally likely.
We can show that the average-case cost for search is then Θ(n).

Yes: if the search requests are biased:
some items are accessed much more frequently than others.

I 80/20 rule: 80% of outcomes result from 20% of causes.
I access: insertion or successful search
I Intuition: Frequently accessed items should be in the front.
I Two scenarios: Do we know the access distribution beforehand or not?

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 27 / 48

Outline

5 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Expected height of a BST
Treaps
Skip Lists
Biased Search Requests
Optimal Static Ordering
Optimal Static Binary Search Trees
Dynamic Ordering: MTF
MTF-heuristic in a BST
Splay Trees

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025

Optimal Static Ordering
Scenario: We know access distribution, and want the best order of a list.

Example: key A B C D E
frequency of access 2 8 1 10 5

access-probability 2
26

8
26

1
26

10
26

5
26

Recall: T avg (n) =
∑

I∈In T (I) · (relative frequency of I)
= expected run-time on randomly chosen input
=

∑
I∈In T (I) · Pr(randomly chosen instance is I)

Count cost i if search-key (= instance I) is at ith position (i ≥ 1).
So we analyze

expected access cost =
∑
i≥1

i · Pr
(
search for key at position i

)︸ ︷︷ ︸
access-probability of that key

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 28 / 48

Optimal Static Ordering
Scenario: We know access distribution, and want the best order of a list.

Example: key A B C D E
frequency of access 2 8 1 10 5
access-probability 2

26
8
26

1
26

10
26

5
26

Recall: T avg (n) =
∑

I∈In T (I) · (relative frequency of I)
= expected run-time on randomly chosen input
=

∑
I∈In T (I) · Pr(randomly chosen instance is I)

Count cost i if search-key (= instance I) is at ith position (i ≥ 1).
So we analyze

expected access cost =
∑
i≥1

i · Pr
(
search for key at position i

)︸ ︷︷ ︸
access-probability of that key

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 28 / 48

Optimal Static Ordering
Order A B C D E has expected access cost
2
26 · 1 + 8

26 · 2 + 1
26 · 3 + 10

26 · 4 + 5
26 · 5 = 86

26 ≈ 3.31

Order D B E A C is better!
10
26 · 1 + 8

26 · 2 + 5
26 · 3 + 2

26 · 4 + 1
26 · 5 = 66

26 ≈ 2.54

Claim: Over all possible static orderings, we minimize the expected access
cost by sorting by non-increasing access-probability.

Proof:
Consider any other ordering. How can we improve its access cost?

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 29 / 48

Optimal Static Ordering
Order A B C D E has expected access cost
2
26 · 1 + 8

26 · 2 + 1
26 · 3 + 10

26 · 4 + 5
26 · 5 = 86

26 ≈ 3.31

Order D B E A C is better!
10
26 · 1 + 8

26 · 2 + 5
26 · 3 + 2

26 · 4 + 1
26 · 5 = 66

26 ≈ 2.54

Claim: Over all possible static orderings, we minimize the expected access
cost by sorting by non-increasing access-probability.

Proof:
Consider any other ordering. How can we improve its access cost?

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 29 / 48

Outline

5 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Expected height of a BST
Treaps
Skip Lists
Biased Search Requests
Optimal Static Ordering
Optimal Static Binary Search Trees
Dynamic Ordering: MTF
MTF-heuristic in a BST
Splay Trees

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025

Optimal Static Binary Search Trees
Can we find the optimal static order for a binary search tree?

ki A B C D E
Pr(ki) 5

26
8
26

1
26

10
26

2
26

D
10

B
8

A
5

C
1

E
2

1 · 1026 + 2 · 8
26 + 2 · 2

26 + 3 · 5
26 + 3 · 1

26 = 48
26

The expected access-cost is now
∑

k Pr(k) · (1 + depth of k)

since we use (1 + depth of k) comparisons to search for key k.

Natural greedy-algorithm:
I Put item with highest access-probability at the root.
I Split keys into left/right as dictated by the order-property.
I Recurse in the subtree.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 30 / 48

Optimal Static Binary Search Trees
Can we find the optimal static order for a binary search tree?

ki A B C D E
Pr(ki) 5

26
8
26

1
26

10
26

2
26

D
10

B
8

A
5

C
1

E
2

1 · 1026 + 2 · 8
26 + 2 · 2

26 + 3 · 5
26 + 3 · 1

26 = 48
26

The expected access-cost is now
∑

k Pr(k) · (1 + depth of k)

since we use (1 + depth of k) comparisons to search for key k.

Natural greedy-algorithm:
I Put item with highest access-probability at the root.
I Split keys into left/right as dictated by the order-property.
I Recurse in the subtree.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 30 / 48

Optimal Static Binary Search Trees
Can we find the optimal static order for a binary search tree?

ki A B C D E
Pr(ki) 5

26
8
26

1
26

10
26

2
26

D
10

B
8

A
5

C
1

E
2

1 · 1026 + 2 · 8
26 + 2 · 2

26 + 3 · 5
26 + 3 · 1

26 = 48
26

The expected access-cost is now
∑

k Pr(k) · (1 + depth of k)

since we use (1 + depth of k) comparisons to search for key k.

Natural greedy-algorithm:
I Put item with highest access-probability at the root.
I Split keys into left/right as dictated by the order-property.
I Recurse in the subtree.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 30 / 48

Optimal static binary search trees
The greedy-algorithm does not give the optimum!

ki A B C D E
Pr(ki) 5

26
8
26

1
26

10
26

2
26

B
8

A
5

D
10

C
1

E
2

1 · 8
26 + 2 · 5

26 + 2 · 1026 + 3 · 1
26 + 3 · 2

26 = 47
26

To find the optimum, use “dynamic programming”: I Effectively try all possible binary search trees
I This would take exponential time if done in a

straightfoward way.
I Key idea: We can store and re-use solutions of

subproblems to achieve polynomial run-time

Many more details in cs341 (though perhaps not for this problem)

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 31 / 48

Optimal static binary search trees
The greedy-algorithm does not give the optimum!

ki A B C D E
Pr(ki) 5

26
8
26

1
26

10
26

2
26

B
8

A
5

D
10

C
1

E
2

1 · 8
26 + 2 · 5

26 + 2 · 1026 + 3 · 1
26 + 3 · 2

26 = 47
26

To find the optimum, use “dynamic programming”: I Effectively try all possible binary search trees
I This would take exponential time if done in a

straightfoward way.
I Key idea: We can store and re-use solutions of

subproblems to achieve polynomial run-time

Many more details in cs341 (though perhaps not for this problem)

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 31 / 48

Outline

5 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Expected height of a BST
Treaps
Skip Lists
Biased Search Requests
Optimal Static Ordering
Optimal Static Binary Search Trees
Dynamic Ordering: MTF
MTF-heuristic in a BST
Splay Trees

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025

Dynamic Ordering: MTF
Scenario: We do not know the access probabilities ahead of time.

Idea: modify the order dynamically, i.e., while we are accessing.
Rule of thumb (temporal locality): A recently accessed item is likely
to be used soon again.

Move-To-Front heuristic (MTF): Upon a successful search, move
the accessed item to the front of the list

A B C D E
↓ search(D)

D A B C E
↓ insert(F)

F D A B C E

We can also do MTF on an array, but should then insert and search
from the back so that we have room to grow.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 32 / 48

Dynamic Ordering: other ideas

There are other heuristics we could use:
Transpose heuristic: Upon a successful search, swap the accessed
item with the item immediately preceding it

A B C D E
↓ search(D)

A B D C E
↓ insert(F)

F A B D C E

Here the changes are more gradual.

Frequency-count heuristic: Keep counters how often items were
accessed, and sort in non-decreasing order.
Works well in practice, but requires auxiliary space.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 33 / 48

Dynamic Ordering: other ideas

There are other heuristics we could use:
Transpose heuristic: Upon a successful search, swap the accessed
item with the item immediately preceding it

A B C D E
↓ search(D)

A B D C E
↓ insert(F)

F A B D C E

Here the changes are more gradual.
Frequency-count heuristic: Keep counters how often items were
accessed, and sort in non-decreasing order.
Works well in practice, but requires auxiliary space.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 33 / 48

Summary of biased search requests

We are unlikely to know the access-probabilities of items, so optimal
static order is mostly of theoretical interest.

For any dynamic reordering heuristic, some sequence will defeat it
(have Θ(n) access-cost for each item).

MTF and Frequency-count work well in practice.

For MTF, can also prove theoretical guarantees. I MTF is an online algorithm: Decide based on incomplete information.
I Compare it to the best offline algorithm (has complete information).
I Here, best offline-algorithm builds optimal static ordering.
I Can show: MTF is “2-competitive”: cost(MTF) ≤ 2 · cost(OPT).

There is very little overhead for MTF and other strategies; they
should be applied whenever unordered lists or arrays are used
(→ Hashing, text compression).

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 34 / 48

Summary of biased search requests

We are unlikely to know the access-probabilities of items, so optimal
static order is mostly of theoretical interest.

For any dynamic reordering heuristic, some sequence will defeat it
(have Θ(n) access-cost for each item).

MTF and Frequency-count work well in practice.

For MTF, can also prove theoretical guarantees. I MTF is an online algorithm: Decide based on incomplete information.
I Compare it to the best offline algorithm (has complete information).
I Here, best offline-algorithm builds optimal static ordering.
I Can show: MTF is “2-competitive”: cost(MTF) ≤ 2 · cost(OPT).

There is very little overhead for MTF and other strategies; they
should be applied whenever unordered lists or arrays are used
(→ Hashing, text compression).

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 34 / 48

Summary of biased search requests

We are unlikely to know the access-probabilities of items, so optimal
static order is mostly of theoretical interest.

For any dynamic reordering heuristic, some sequence will defeat it
(have Θ(n) access-cost for each item).

MTF and Frequency-count work well in practice.

For MTF, can also prove theoretical guarantees. I MTF is an online algorithm: Decide based on incomplete information.
I Compare it to the best offline algorithm (has complete information).
I Here, best offline-algorithm builds optimal static ordering.
I Can show: MTF is “2-competitive”: cost(MTF) ≤ 2 · cost(OPT).

There is very little overhead for MTF and other strategies; they
should be applied whenever unordered lists or arrays are used
(→ Hashing, text compression).

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 34 / 48

Outline

5 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Expected height of a BST
Treaps
Skip Lists
Biased Search Requests
Optimal Static Ordering
Optimal Static Binary Search Trees
Dynamic Ordering: MTF
MTF-heuristic in a BST
Splay Trees

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025

MTF-heuristic for binary search trees
What does ‘move-to-front’ mean in a binary search tree?

Front = the place that is easiest to access
In a binary search tree, that’s the root.

⇒ After every access, bring item to the root of BST

But: order-property must be maintained!
⇒ Use rotations!

(This should remind you of treaps.)

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 35 / 48

MTF-heuristic for binary search trees
What does ‘move-to-front’ mean in a binary search tree?

Front = the place that is easiest to access
In a binary search tree, that’s the root.

⇒ After every access, bring item to the root of BST

But: order-property must be maintained!
⇒ Use rotations!

(This should remind you of treaps.)

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 35 / 48

MTF-heuristic for binary search trees

Example: BST-MTF::search(18)

30

20

10

5 15

12 17

16 19

18

25

50

40

35

60

55

52 57

65

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 36 / 48

MTF-heuristic for binary search trees

Example: BST-MTF::search(18)

30

20

10

5 15

12 17

16 18

19

25

50

40

35

60

55

52 57

65

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 36 / 48

MTF-heuristic for binary search trees

Example: BST-MTF::search(18)

30

20

10

5 15

12 18

17

16

19

25

50

40

35

60

55

52 57

65

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 36 / 48

MTF-heuristic for binary search trees

Example: BST-MTF::search(18)

30

20

10

5 18

15

12 17

16

19

25

50

40

35

60

55

52 57

65

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 36 / 48

MTF-heuristic for binary search trees

Example: BST-MTF::search(18)

30

20

18

10

5 15

12 17

16

19

25

50

40

35

60

55

52 57

65

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 36 / 48

MTF-heuristic for binary search trees

Example: BST-MTF::search(18)

30

18

10

5 15

12 17

16

20

19 25

50

40

35

60

55

52 57

65

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 36 / 48

MTF-heuristic for binary search trees

Example: BST-MTF::search(18)

18

10

5 15

12 17

16

30

20

19 25

50

40

35

60

55

52 57

65

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 36 / 48

MTF-heuristic for binary search trees

Example: BST-MTF::search(18)

18

10

5 15

12 17

16

30

20

19 25

50

40

35

60

55

52 57

65

This should work well, but we can do better by moving two level at a time.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 36 / 48

Outline

5 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Expected height of a BST
Treaps
Skip Lists
Biased Search Requests
Optimal Static Ordering
Optimal Static Binary Search Trees
Dynamic Ordering: MTF
MTF-heuristic in a BST
Splay Trees

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025

Splay trees

Splay tree overview:
Binary search tree
No extra information (such as height, balance, size) needed at nodes
After search/insert, bring accessed node to the root with rotations
Move node up two layers at a time (except when near root)

I Use zig-zig-rotation or zig-zag-rotation to move up two levels.

Goal: This has amortized run-time O(log n).

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 37 / 48

Zig-zag Rotation = Double Rotation

Let z be the node that we want to move up.
Let p and g be its parent and grandparent.
If they are in zig-zag formation, apply a double-rotation.

g

A

p

z

B C

D

z

g

A B

p

C D

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 38 / 48

Zig-zig Rotation

If they are in zig-zig formation, apply a new kind of rotation.

g

A

p

B

z

C D

z

p

g

A B

C

D

First, a left rotation at g . Second, a left rotation at p.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 39 / 48

Splay Tree Operations

SplayTree::insert(k, v)
1. z ← BST::insert(k, v)
2. while (z is not the root)
3. p ← z .parent
4. if (z is the left child of p)
5. if (p is the root) rotate-right(p)
6. else g ← p.parent
7. case g

p

z

: : // Zig-zig rotation
rotate-right(g)
rotate-right(p)

8. g

p

z

: : // Zig-zag rotation
rotate-right(p)
rotate-left(g)

9. else ... // symmetric , z is right child

search and delete similar (rotate the lowest visited node up).

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 40 / 48

Splay Tree Insert
Example: SplayTree::search(18)

30

20

10

5 15

12 17

16 19

18

25

50

40

35

60

55

52 57

65

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 41 / 48

Splay Tree Insert
Example: SplayTree::search(18)

30

20

10

5 15

12 18

17

16

19

25

50

40

35

60

55

52 57

65

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 41 / 48

Splay Tree Insert
Example: SplayTree::search(18)

30

20

18

15

10

5 12

17

16

19

25

50

40

35

60

55

52 57

65

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 41 / 48

Splay Tree Insert
Example: SplayTree::search(18)

18

15

10

5 12

17

16

20

19 30

25 50

40

35

60

55

52 57

65

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 41 / 48

Zig-zig rotations vs. single rotations

Compare the resulting trees:

Splay trees (zig-zig rotations):

18

15

10

5 12

17

16

20

19 30

25 50

40

35

60

55

52 57

65

With MTF (single rotations):

18

10

5 15

12 17

16

30

20

19 25

50

40

35

60

55

52 57

65

This is not more balanced, why do we apply zig-zig-rotations?

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 42 / 48

Zig-zig rotations vs. single rotations
Compare the result for a different initial tree:

Splay trees (zig-zig rotations):

70

60

50

40

30

20

10

With MTF (single rotations):

70

60

50

40

30

20

10

Splay tree intuition:
For any node on search-path, the depth (roughly) halves
For all nodes, the depth increases by at most 2

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 43 / 48

Zig-zig rotations vs. single rotations
Compare the result for a different initial tree:

Splay trees (zig-zig rotations):

70

60

50

40

10

20

30

With MTF (single rotations):

70

60

50

40

30

10

20

Splay tree intuition:
For any node on search-path, the depth (roughly) halves
For all nodes, the depth increases by at most 2

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 43 / 48

Zig-zig rotations vs. single rotations
Compare the result for a different initial tree:

Splay trees (zig-zig rotations):

70

60

50

40

10

20

30

With MTF (single rotations):

70

60

50

40

10

30

20

Splay tree intuition:
For any node on search-path, the depth (roughly) halves
For all nodes, the depth increases by at most 2

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 43 / 48

Zig-zig rotations vs. single rotations
Compare the result for a different initial tree:

Splay trees (zig-zig rotations):

70

60

10

40

20

30

50

With MTF (single rotations):

70

60

50

10

40

30

20

Splay tree intuition:
For any node on search-path, the depth (roughly) halves
For all nodes, the depth increases by at most 2

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 43 / 48

Zig-zig rotations vs. single rotations
Compare the result for a different initial tree:

Splay trees (zig-zig rotations):

70

60

10

40

20

30

50

With MTF (single rotations):

70

60

10

50

40

30

20

Splay tree intuition:
For any node on search-path, the depth (roughly) halves
For all nodes, the depth increases by at most 2

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 43 / 48

Zig-zig rotations vs. single rotations
Compare the result for a different initial tree:

Splay trees (zig-zig rotations):

10

60

40

20

30

50

70

With MTF (single rotations):

70

10

60

50

40

30

20

Splay tree intuition:
For any node on search-path, the depth (roughly) halves
For all nodes, the depth increases by at most 2

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 43 / 48

Zig-zig rotations vs. single rotations
Compare the result for a different initial tree:

Splay trees (zig-zig rotations):

10

60

40

20

30

50

70

With MTF (single rotations):

10

70

60

50

40

30

20

Splay tree intuition:
For any node on search-path, the depth (roughly) halves
For all nodes, the depth increases by at most 2

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 43 / 48

Zig-zig rotations vs. single rotations
Compare the result for a different initial tree:

Splay trees (zig-zig rotations):

10

60

40

20

30

50

70

With MTF (single rotations):

10

70

60

50

40

30

20
Splay tree intuition:

For any node on search-path, the depth (roughly) halves
For all nodes, the depth increases by at most 2

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 43 / 48

Splay tree analysis
Theorem: In a splay tree, all operations take O(log n) amortized time.

Proof: Use potential function Φ(t) =
∑

z log
(
z .size()

)
20
3.16

10
2.8

5 15
2.32

12 17
1.58

16 19

25

20
3.32

10
3

5 15
2.58

12 17
2

16 19
1

18

25

20
3.32

10
3

5 15
2.58

12 18
2

17
1

16

19

25

Now compute amortized time of operations (highly non-trivial).

Summary: Splay trees perform well, without extra information (such as
height or size) at nodes.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 44 / 48

Splay tree analysis
Theorem: In a splay tree, all operations take O(log n) amortized time.
Proof: Use potential function Φ(t) =

∑
z log

(
z .size()

)
20
3.16

10
2.8

5 15
2.32

12 17
1.58

16 19

25

20
3.32

10
3

5 15
2.58

12 17
2

16 19
1

18

25

20
3.32

10
3

5 15
2.58

12 18
2

17
1

16

19

25

Now compute amortized time of operations (highly non-trivial).

Summary: Splay trees perform well, without extra information (such as
height or size) at nodes.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 44 / 48

Splay tree analysis
Theorem: In a splay tree, all operations take O(log n) amortized time.
Proof: Use potential function Φ(t) =

∑
z log

(
z .size()

)
20
3.16

10
2.8

5 15
2.32

12 17
1.58

16 19

25

20
3.32

10
3

5 15
2.58

12 17
2

16 19
1

18

25

20
3.32

10
3

5 15
2.58

12 18
2

17
1

16

19

25

Now compute amortized time of operations (highly non-trivial).

Summary: Splay trees perform well, without extra information (such as
height or size) at nodes.

T.Biedl (CS-UW) CS240E – Module 5 Winter 2025 44 / 48

	Dictionaries with Lists revisited
	Dictionary ADT: Implementations thus far
	Dictionary ADT: Implementations thus far

	Expected height of a BST
	Expected height of BSTs
	Proof continued...
	Expected height vs. average height

	Treaps
	Treaps
	Treaps
	Treap Insertion
	Treap Insertions Example
	Fixing incorrect priorities with rotations
	Treap Insertions Example
	Treap Insertion Code
	Treaps summary

	Skip Lists
	Skip Lists
	Skip Lists
	Search in Skip Lists
	Example: Search in Skip Lists
	Delete in Skip Lists
	Example: Delete in Skip Lists
	Insert in Skip Lists
	Example: Insert in Skip Lists
	Example 2: Insert in Skip Lists
	Skip Lists Space
	Skip Lists Height
	Skip Lists: getting predecessors
	Summary of Skip Lists

	Biased Search Requests
	Improving unsorted lists/arrays

	Optimal Static Ordering
	Optimal Static Ordering
	Optimal Static Ordering

	Optimal Static Binary Search Trees
	Optimal Static Binary Search Trees
	Optimal static binary search trees

	Dynamic Ordering: MTF
	Dynamic Ordering: MTF
	Dynamic Ordering: other ideas
	Summary of biased search requests

	MTF-heuristic in a BST
	MTF-heuristic for binary search trees
	MTF-heuristic for binary search trees

	Splay Trees
	Splay trees
	Zig-zag Rotation = Double Rotation
	Zig-zig Rotation
	Splay Tree Operations
	Splay Tree Insert
	Zig-zig rotations vs. single rotations
	Zig-zig rotations vs. single rotations
	Splay tree analysis
	Proof continued...
	Proof continued...
	Proof continued...
	Proof continued...

