CS 240E – Data Structures and Data Management (Enriched)

Module 5: Other Dictionary Implementations

Therese Biedl

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-01-29 10:28

Outline

5

Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Expected height of a BST
- Treaps
- Skip Lists
- Biased Search Requests
- Optimal Static Ordering
- Optimal Static Binary Search Trees
- Dynamic Ordering: MTF
- MTF-heuristic in a BST
- Splay Trees

Outline

Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Expected height of a BST
- Treaps
- Skip Lists
- Biased Search Requests
- Optimal Static Ordering
- Optimal Static Binary Search Trees
- Dynamic Ordering: MTF
- MTF-heuristic in a BST
- Splay Trees

Dictionary ADT: Implementations thus far

A *dictionary* is a collection of key-value pairs (KVPs), supporting operations *search*, *insert*, and *delete*.

Realizations we have seen so far:

- Unordered array or list: $\Theta(1)$ insert, $\Theta(n)$ search and delete
- Ordered array: $\Theta(\log n)$ search, $\Theta(n)$ insert and delete
- **Binary search trees**: $\Theta(height)$ search, insert and delete
- Balanced Binary Search trees (AVL trees):

 $\Theta(\log n)$ search, insert, and delete

Dictionary ADT: Implementations thus far

A *dictionary* is a collection of key-value pairs (KVPs), supporting operations *search*, *insert*, and *delete*.

Realizations we have seen so far:

- Unordered array or list: $\Theta(1)$ insert, $\Theta(n)$ search and delete
- Ordered array: $\Theta(\log n)$ search, $\Theta(n)$ insert and delete
- Binary search trees: $\Theta(height)$ search, insert and delete
- Balanced Binary Search trees (AVL trees):

 $\Theta(\log n)$ search, insert, and delete

Outlook:

- We will see: If the KVPs were inserted in random order, then the expected height of the binary search tree would be $O(\log n)$.
- **Then study:** How can we use randomization within the data structure to mirror what would happen on random input?

Outline

Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Expected height of a BST
- Treaps
- Skip Lists
- Biased Search Requests
- Optimal Static Ordering
- Optimal Static Binary Search Trees
- Dynamic Ordering: MTF
- MTF-heuristic in a BST
- Splay Trees

Expected height of BSTs

Assume we *randomly* choose a permutation of $\{0, ..., n-1\}$ and build a binary search tree in this order:

Theorem: The expected height of the tree is $O(\log n)$. **Proof:**

Expected height vs. average height

This does *not* imply that the average height of a BST is $O(\log n)$.

- Can show: Average height is $\Theta(\sqrt{n})$ (no details).
- Average height (over all BSTs)
 - \neq expected height (over all randomly built BSTs)

Expected height vs. average height

This does *not* imply that the average height of a BST is $O(\log n)$.

- Can show: Average height is $\Theta(\sqrt{n})$ (no details).
- Average height (over all BSTs)
 ≠ expected height (over all randomly built BSTs)
- Difference already obvious for n = 3:
 - Expected height is ¹/₆(2+2+1+1+2+2) ≈ 1.66.
 6 possible permutations.
 - Average height is ¹/₅(2+2+1+2+2) = 1.8.
 5 possible binary search trees.
- Message: Randomization does *not* automatically imply an average-case bound.

(It depends on what we average over and how we randomize.)

Outline

Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Expected height of a BST

Treaps

- Skip Lists
- Biased Search Requests
- Optimal Static Ordering
- Optimal Static Binary Search Trees
- Dynamic Ordering: MTF
- MTF-heuristic in a BST
- Splay Trees

Treaps

Goal: Build a binary search tree that acts as if it had been build in randomly picked insertion order.

Idea: Use binary search tree, but store a priority with each node.

- Priorities are a permutation of $\{0, \ldots, n-1\}$.
- Permutation has been picked *randomly*
- All permutations should be equally likely.
- Priorities are *decreasing* when going downwards (similar to a heap).

```
We call this a treap (= tree + heap).
```


Treaps

We also need an array P where P[i] stores node with priority i.

Treaps

We also need an array P where P[i] stores node with priority i.

Observe: The expected height of a treap is $O(\log n)$.

- Root-item has priority n-1.
- This is picked randomly, so proof for expected height of BST applies.

Treap Insertion

Consider adding a new KVP. What priority should it get?

- We need a random permutation of $\{0,\ldots,n-1\}$
 - Currently we had a random permutation of $\{0, \ldots, n-2\}$.

Treap Insertion

Consider adding a new KVP. What priority should it get?

- We need a random permutation of $\{0,\ldots,n-1\}$
 - Currently we had a random permutation of $\{0, \ldots, n-2\}$.
- Recall: *shuffle* creates a random permutation:

```
 \begin{array}{l} shuffle(A) \\ A: \text{ array of size } n \text{ stores } \langle 0, ...n-1 \rangle \\ 1. \quad \text{for } i \leftarrow 1 \text{ to } n-1 \text{ do} \\ 2. \qquad swap(A[i], A[random(i+1)]) \end{array}
```

Treap Insertion

Consider adding a new KVP. What priority should it get?

- We need a random permutation of $\{0,\ldots,n-1\}$
 - Currently we had a random permutation of $\{0, \ldots, n-2\}$.
- Recall: *shuffle* creates a random permutation:

 $\begin{array}{l} shuffle(A) \\ A: \text{ array of size } n \text{ stores } \langle 0, ...n-1 \rangle \\ 1. \quad \textbf{for } i \leftarrow 1 \text{ to } n-1 \text{ do} \\ 2. \qquad swap(A[i], A[random(i+1)]) \end{array}$

We imitate *shuffle*'s behaviour by *randomly* picking priority for new item.

- $p \leftarrow random(n)$ is in $\{0, \ldots, n-1\}$
- The item that prviously had priority p now gets priority n-1.
- If this violates the heap-property, then rotate to fix it.

Example: *treap::insert*(17)

Example: *treap::insert*(17)

Example: *treap::insert*(17)

Randomly pick priority $5 \in \{0, ..., 7\}$, and change priority of P[5] to 7. These priorities violate order-property.

Fixing incorrect priorities with rotations

- In binary heaps, we fixed increased priorities via fix-up (swaps)
- Does not work here! We must also maintain the BST-order.
- Idea: Rotations maintain the BST-order and fix priorities.

Fixing incorrect priorities with rotations

- In binary heaps, we fixed increased priorities via fix-up (swaps)
- Does not work here! We must also maintain the BST-order.
- Idea: Rotations maintain the BST-order and fix priorities.

Fixing incorrect priorities with rotations

- In binary heaps, we fixed increased priorities via fix-up (swaps)
- Does not work here! We must also maintain the BST-order.
- Idea: Rotations maintain the BST-order and fix priorities.

treap::fix-up-with-rotations(z)

- 1. while $(y \leftarrow z.parent \text{ is not NULL and } z.priority > y.priority)$ do
- 2. **if** z is the left child of y **do** rotate-right(y)
- 3. **else** rotate-left(y)

Example: *treap::insert*(17)

Example: *treap::insert*(17) Fix *upper* violation first (why?)

Example: *treap::insert*(17) Fix *upper* violation first (why?)

Example: *treap::insert*(17) Fix *upper* violation first (why?)

Treap Insertion Code

Recall: P[i] = node with priority *i*.

treap::insert(k, v)
1.
$$n \leftarrow P.size$$
 // current size
2. $z \leftarrow BST::insert(k, v); n++$
3. $p \leftarrow random(n)$
4. if $p < n-1$ do
5. $z' \leftarrow P[p], z'.priority \leftarrow n-1, P[n-1] \leftarrow z'$
6. $fix-up-with-rotations(z')$
7. $z.priority \leftarrow p; P[p] \leftarrow z$
8. $fix-up-with-rotations(z)$

Treaps summary

- Randomized binary search tree, so expected height is $O(\log n)$
- Achieves $O(\log n)$ expected time for search and insert
- delete can be handled similar (but even more exchanges)

Treaps summary

- Randomized binary search tree, so expected height is O(log n)
- Achieves $O(\log n)$ expected time for search and insert
- delete can be handled similar (but even more exchanges)

But not particularly useful in practice

(except when priorities have meaning \rightsquigarrow later)

- Large space overhead (parent-pointers, priorities, P)
- There are ways to avoid some of the space overhead, but in general randomized binary search trees are rarely used.
- We will now see a randomization that works better (but is not a binary search tree)

Outline

Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Expected height of a BST
- Treaps
- Skip Lists
- Biased Search Requests
- Optimal Static Ordering
- Optimal Static Binary Search Trees
- Dynamic Ordering: MTF
- MTF-heuristic in a BST
- Splay Trees

Skip Lists

A hierarchy of ordered linked lists (*levels*) L_0, L_1, \cdots, L_h :

- Each list L_i contains the special keys $-\infty$ and $+\infty$ (sentinels)
- List L₀ contains the KVPs of S in non-decreasing order. (The other lists store only keys and references.)
- Each list is a subsequence of the previous one, i.e., $L_0 \supseteq L_1 \supseteq \cdots \supseteq L_h$
- List *L_h* contains only the sentinels

Skip Lists

A few more definitions:

- *node* = entry in one list vs. KVP = one non-sentinel entry in L_0
- There are (usually) more *nodes* than *KVPs* Here # (non-sentinel) nodes = 14 vs. *n* ← # KVPs = 9.
- *root* = topmost left sentinel is the only field of the skip list.
- Each node *p* has references *p.after* and *p.below*
- Each key k belongs to a tower of nodes
 - Height of tower of k: maximal index i such that $k \in L_i$
 - Height of skip list: maximal index h such that L_h exists

Search in Skip Lists

For each list, find **predecessor** (node before where k would be). This will also be useful for *insert*/*delete*.

```
get-predecessors (k)1. p \leftarrow root2. P \leftarrow stack of nodes, initially containing p3. while p.below \neq NULL do4. p \leftarrow p.below5. while p.after.key < k do p \leftarrow p.after6. P.push(p)7. return P
```

skipList::search (k) 1. $P \leftarrow get-predecessors(k)$ 2. $p_0 \leftarrow P.top() // predecessor of k in L_0$ 3. if $p_{0.after.key} = k$ return KVP at $p_{0.after}$ 4. else return "not found, but would be after p_0 "

Example: Search in Skip Lists

Example: *search*(87)

Example: Search in Skip Lists

Example: *search*(87)

Example: Search in Skip Lists

Example: *search*(87)

Example: Search in Skip Lists

Example: search(87)

added to P

path taken by p

Example: Search in Skip Lists

Example: search(87)

key compared with k

added to P

path taken by p

Final stack returned:

Example: Search in Skip Lists

Example: search(87)

key compared with k

added to P

path taken by p

Final stack returned:

Delete in Skip Lists

It is easy to remove a key since we can find all predecessors. Then eliminate lists if there are multiple ones with only sentinels.

```
skipList::delete(k)
1. P \leftarrow get-predecessors(k)
   while P is non-empty
2
3.
   p \leftarrow P.pop() // predecessor of k in some list
   if p.after.key = k
4.
              p.after \leftarrow p.after.after
5
       else break // no more copies of k
6
   p \leftarrow left sentinel of the root-list
7.
    while p.below.after is the \infty-sentinel
8.
         // top two lists have only sentinels, remove one
         p.below \leftarrow p.below.below
9.
         p.after.below \leftarrow p.after.below.below
10.
```

Example: *skipList::delete*(65)

Example: *skipList::delete*(65) *get-predecessors*(65)

Example: *skipList::delete*(65) *get-predecessors*(65)

Example: *skipList::delete*(65) *get-predecessors*(65) *Height decrease*

Insert in Skip Lists

skipList::insert(k, v)

- There is no choice as to where to put the tower of k.
- Only choice: how tall should we make the tower of k?
 - Choose randomly! Repeatedly toss a coin until you get tails
 - Let i the number of times the coin came up heads
 - We want key k to be in lists L_0, \ldots, L_i , so $i \rightarrow height$ of tower of k

 $Pr(\text{tower of key } k \text{ has height } \geq i) = \left(\frac{1}{2}\right)^i$

Insert in Skip Lists

skipList::insert(k, v)

- There is no choice as to where to put the tower of k.
- Only choice: how tall should we make the tower of k?
 - Choose randomly! Repeatedly toss a coin until you get tails
 - Let i the number of times the coin came up heads
 - We want key k to be in lists L_0, \ldots, L_i , so $i \rightarrow height$ of tower of k

 $Pr(\text{tower of key } k \text{ has height } \geq i) = \left(\frac{1}{2}\right)^i$

- Before we can insert, we must check that these lists exist.
 - Add sentinel-only lists, if needed, until height h satisfies h > i.

Insert in Skip Lists

skipList::insert(k, v)

- There is no choice as to where to put the tower of k.
- Only choice: how tall should we make the tower of k?
 - Choose randomly! Repeatedly toss a coin until you get tails
 - Let i the number of times the coin came up heads
 - We want key k to be in lists L_0, \ldots, L_i , so $i \rightarrow height$ of tower of k

 $Pr(\text{tower of key } k \text{ has height } \geq i) = \left(\frac{1}{2}\right)^i$

- Before we can insert, we must check that these lists exist.
 - Add sentinel-only lists, if needed, until height h satisfies h > i.
- Then do the actual insertion.
 - ▶ Use *get-predecessors*(*k*) to get stack *P*.
 - ► The top *i* items of *P* are the predecessors p₀, p₁, · · · , p_i of where k should be in each list L₀, L₁, · · · , L_i
 - ▶ Insert (k, v) after p_0 in L_0 , and k after p_j in L_j for $1 \le j \le i$

Example: skipList::insert(52, v)Coin tosses: $H,T \Rightarrow i = 1$

Example: skipList::insert(52, v)Coin tosses: $H,T \Rightarrow i = 1$ Have $h = 3 > i \Rightarrow$ no need to add lists

Example: skipList::insert(52, v)Coin tosses: $H,T \Rightarrow i = 1$ Have $h = 3 > i \Rightarrow$ no need to add lists get-predecessors(52)

Example: skipList::insert(52, v)Coin tosses: $H,T \Rightarrow i = 1$ Have $h = 3 > i \Rightarrow$ no need to add lists get-predecessors(52) Insert 52 in lists L_0, \ldots, L_i

Example: skipList::insert(100, v)Coin tosses: H,H,H,T $\Rightarrow i = 3$

Example: skipList::insert(100, v)Coin tosses: H,H,H,T $\Rightarrow i = 3$ *Height increase*

Example: skipList::insert(100, v)Coin tosses: H,H,H,T $\Rightarrow i = 3$ Height increase get-predecessors(100)

Example: skipList::insert(100, v)Coin tosses: H,H,H,T $\Rightarrow i = 3$ *Height increase* get-predecessors(100)Insert 100 in lists L_0, \ldots, L_i

Skip Lists Space

Claim: The expected number of non-sentinels is O(n).

- Set X_k = tower height of key k. Recall $\Pr(X_k \ge i) = \left(\frac{1}{2}\right)^i$.
- Define $|L_i| = \#$ non-sentinels in L_i . Observe $|L_i| = \sum_k \chi_{(X_k \ge i)}$.

$$\begin{pmatrix} \text{Indicator-variable } \chi_Z = \begin{cases} 1 & \text{if } Z \text{ is true} \\ 0 & \text{otherwise} \end{cases} \text{ has } E[\chi_Z] = P(Z \text{ is true}). \end{pmatrix}$$

Skip Lists Space

Claim: The expected number of non-sentinels is O(n).

- Set X_k = tower height of key k. Recall $\Pr(X_k \ge i) = \left(\frac{1}{2}\right)^i$.
- Define $|L_i| = \#$ non-sentinels in L_i . Observe $|L_i| = \sum_k \chi_{(X_k \ge i)}$.

$$\begin{pmatrix} \text{Indicator-variable } \chi_Z = \begin{cases} 1 & \text{if } Z \text{ is true} \\ 0 & \text{otherwise} \end{cases} \text{ has } E[\chi_Z] = P(Z \text{ is true}). \end{pmatrix}$$

What is E[|L_i|]?

Skip Lists Space

Claim: The expected number of non-sentinels is O(n).

- Set X_k = tower height of key k. Recall $\Pr(X_k \ge i) = \left(\frac{1}{2}\right)^i$.
- Define $|L_i| = \#$ non-sentinels in L_i . Observe $|L_i| = \sum_k \chi_{(X_k \ge i)}$.

$$\begin{pmatrix} \text{Indicator-variable } \chi_Z = \begin{cases} 1 & \text{if } Z \text{ is true} \\ 0 & \text{otherwise} \end{cases} \text{ has } E[\chi_Z] = P(Z \text{ is true}). \end{pmatrix}$$

• What is E[|L_i|]?

• What is $E[\#\text{non-sentinels}] = \sum_{i=0}^{h} E[|L_i|]$?

Skip Lists Height

Claim: The expected height is $O(\log n)$.

• Define
$$I_i = \chi_{(L_i \text{ has non-sentinels})} = \begin{cases} 1 & \text{if } |L_i| \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

- Observe: $I_i \leq \min\{1, |L_i|\}$, so $E[I_i] \leq \min\{1, E[|L_i|]\}$.
- Observe: height h = #lists with non-sentinels $= \sum_{i \ge 0} I_i$.
- What is $E[h] = \sum_{i \ge 0} E[I_i]$?

Skip Lists Height

Claim: The expected height is $O(\log n)$.

• Define
$$I_i = \chi_{(L_i \text{ has non-sentinels})} = \begin{cases} 1 & \text{if } |L_i| \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

- Observe: $I_i \leq \min\{1, |L_i|\}$, so $E[I_i] \leq \min\{1, E[|L_i|]\}$.
- Observe: height h = #lists with non-sentinels $= \sum_{i \ge 0} I_i$.
- What is $E[h] = \sum_{i \ge 0} E[I_i]$?

Therefore the expected space is O(n).

Skip Lists: getting predecessors

Claim: *skipList::get-predecessors* has $O(\log n)$ expected run-time.

- How often do we *drop down* (execute $p \leftarrow p.below$)? *height*.
- How often do we *step forward* (execute $p \leftarrow p.after$)?
 - We immediately drop down in L_h , so consider L_i for i < h.

- Key insight: x_1 did *not* exist in L_{i+1} (else would go forward there)
- So the tower of x_1 exactly ended with L_i . What is the probability?

Skip Lists: getting predecessors

Claim: *skipList::get-predecessors* has $O(\log n)$ expected run-time.

- How often do we *drop down* (execute $p \leftarrow p.below$)? *height*.
- How often do we *step forward* (execute $p \leftarrow p.after$)?
 - We immediately drop down in L_h , so consider L_i for i < h.

- Key insight: x_1 did *not* exist in L_{i+1} (else would go forward there)
- ▶ So the tower of x₁ exactly ended with L_i. What is the probability?

• So search, insert, delete have O(log n) expected run-time

Summary of Skip Lists

- O(n) expected space, all operations take $O(\log n)$ expected time.
- Lists make it easy to implement. We can also easily add more operations (e.g. *successor*, *merge*,...)
- As described they are no better than randomized binary search trees.
- But there are numerous improvements on the space:
 - Can save links (hence space) by implementing towers as array.

- Biased coin-flips to determine tower-heights give smaller expected space
- With both ideas, expected space is < 2n (less than for a BST).

Outline

5

Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Expected height of a BST
- Treaps
- Skip Lists

• Biased Search Requests

- Optimal Static Ordering
- Optimal Static Binary Search Trees
- Dynamic Ordering: MTF
- MTF-heuristic in a BST
- Splay Trees

Improving unsorted lists/arrays

Recall unsorted array realization:

0	1	2	3	4
90	30	60	20	50

- search: $\Theta(n)$, insert: $\Theta(1)$, delete: $\Theta(1)$ (after a search)
- Very simple and popular. Can we do something to make search more effective in practice?

Improving unsorted lists/arrays

Recall unsorted array realization:

0	1	2	3	4
90	30	60	20	50

- search: $\Theta(n)$, insert: $\Theta(1)$, delete: $\Theta(1)$ (after a search)
- Very simple and popular. Can we do something to make search more effective in practice?
- No: if items are accessed equally likely.
 We can show that the average-case cost for *search* is then Θ(n).
- Yes: if the search requests are **biased**: some items are accessed much more frequently than others.
 - ▶ 80/20 rule: 80% of outcomes result from 20% of causes.
 - access: insertion or successful search
 - Intuition: Frequently accessed items should be in the front.
 - Two scenarios: Do we know the access distribution beforehand or not?

Outline

5

Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Expected height of a BST
- Treaps
- Skip Lists
- Biased Search Requests

Optimal Static Ordering

- Optimal Static Binary Search Trees
- Dynamic Ordering: MTF
- MTF-heuristic in a BST
- Splay Trees

Example:

Scenario: We know access distribution, and want the best order of a list.

keyABCDEfrequency of access281105

Scenario: We know access distribution, and want the best order of a list. **Example:**

key	A	В	C	D	E
frequency of access	2	8	1	10	5
access-probability	$\frac{2}{26}$	$\frac{8}{26}$	$\frac{1}{26}$	$\frac{10}{26}$	$\frac{5}{26}$

Recall:
$$T^{avg}(n) = \sum_{l \in \mathcal{I}_n} T(l) \cdot (\text{relative frequency of } l)$$

= expected run-time on randomly chosen input
= $\sum_{l \in \mathcal{I}_n} T(l) \cdot \Pr(\text{randomly chosen instance is } l)$

Count cost *i* if search-key (= instance *I*) is at *i*th position (*i* ≥ 1).
So we analyze

expected access
$$cost = \sum_{i \ge 1} i \cdot \underbrace{\Pr(\text{search for key at position } i)}_{access-probability of that key}$$

- Order \overrightarrow{D} \overrightarrow{B} \overrightarrow{E} \overrightarrow{A} \overrightarrow{C} is better! $\frac{10}{26} \cdot 1 + \frac{8}{26} \cdot 2 + \frac{5}{26} \cdot 3 + \frac{2}{26} \cdot 4 + \frac{1}{26} \cdot 5 = \frac{66}{26} \approx 2.54$

Claim: Over all possible static orderings, we minimize the expected access cost by sorting by non-increasing access-probability.

Proof:

• Consider any other ordering. How can we improve its access cost?

Outline

5

Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Expected height of a BST
- Treaps
- Skip Lists
- Biased Search Requests
- Optimal Static Ordering
- Optimal Static Binary Search Trees
- Dynamic Ordering: MTF
- MTF-heuristic in a BST
- Splay Trees
Optimal Static Binary Search Trees

• Can we find the optimal static order for a binary search tree?

The expected access-cost is now ∑_k Pr(k) · (1 + depth of k) since we use (1 + depth of k) comparisons to search for key k.

Optimal Static Binary Search Trees

• Can we find the optimal static order for a binary search tree?

The expected access-cost is now ∑_k Pr(k) · (1 + depth of k) since we use (1 + depth of k) comparisons to search for key k.

Optimal Static Binary Search Trees

• Can we find the optimal static order for a binary search tree?

- The expected access-cost is now $\sum_{k} Pr(k) \cdot (1 + \text{depth of } k)$ since we use (1 + depth of k) comparisons to search for key k.
- Natural greedy-algorithm:
 - Put item with highest access-probability at the root.
 - Split keys into left/right as dictated by the order-property.
 - Recurse in the subtree.

Optimal static binary search trees

The greedy-algorithm does *not* give the optimum!

Optimal static binary search trees

• To find the optimum, use "dynamic programming":

• Many more details in cs341 (though perhaps not for this problem)

Outline

Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Expected height of a BST
- Treaps
- Skip Lists
- Biased Search Requests
- Optimal Static Ordering
- Optimal Static Binary Search Trees

• Dynamic Ordering: MTF

- MTF-heuristic in a BST
- Splay Trees

Dynamic Ordering: MTF

Scenario: We do not know the access probabilities ahead of time.

- Idea: modify the order dynamically, i.e., while we are accessing.
- Rule of thumb (temporal locality): A recently accessed item is likely to be used soon again.
- Move-To-Front heuristic (MTF): Upon a successful search, move the accessed item to the front of the list

• We can also do MTF on an array, but should then insert and search from the *back* so that we have room to grow.

Dynamic Ordering: other ideas

There are other heuristics we could use:

• **Transpose heuristic**: Upon a successful search, swap the accessed item with the item immediately preceding it

Here the changes are more gradual.

Dynamic Ordering: other ideas

There are other heuristics we could use:

• **Transpose heuristic**: Upon a successful search, swap the accessed item with the item immediately preceding it

Here the changes are more gradual.

• Frequency-count heuristic: Keep counters how often items were accessed, and sort in non-decreasing order. Works well in practice, but requires auxiliary space.

Summary of biased search requests

- We are unlikely to know the access-probabilities of items, so optimal static order is mostly of theoretical interest.
- For any dynamic reordering heuristic, some sequence will defeat it (have Θ(n) access-cost for each item).
- MTF and Frequency-count work well in practice.

Summary of biased search requests

- We are unlikely to know the access-probabilities of items, so optimal static order is mostly of theoretical interest.
- For any dynamic reordering heuristic, some sequence will defeat it (have $\Theta(n)$ access-cost for each item).
- MTF and Frequency-count work well in practice.
- For MTF, can also prove theoretical guarantees.
 - MTF is an online algorithm: Decide based on incomplete information.

 - Compare it to the best offline algorithm (has complete information).
 Here, best offline-algorithm builds optimal static ordering.
 Can show: MTF is "2-competitive": cost(MTF) ≤ 2 · cost(OPT).

Summary of biased search requests

- We are unlikely to know the access-probabilities of items, so optimal static order is mostly of theoretical interest.
- For any dynamic reordering heuristic, some sequence will defeat it (have $\Theta(n)$ access-cost for each item).
- MTF and Frequency-count work well in practice.
- For MTF, can also prove theoretical guarantees.
 - MTF is an *online* algorithm: Decide based on incomplete information.
 Compare it to the best *offline* algorithm (has complete information).
 Here, best offline-algorithm builds optimal static ordering.
 Can show: MTF is "2-competitive": cost(MTF) ≤ 2 · cost(OPT).
- There is very little overhead for MTF and other strategies; they should be applied whenever unordered lists or arrays are used $(\rightarrow$ Hashing, text compression).

Outline

Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Expected height of a BST
- Treaps
- Skip Lists
- Biased Search Requests
- Optimal Static Ordering
- Optimal Static Binary Search Trees
- Dynamic Ordering: MTF
- MTF-heuristic in a BST
- Splay Trees

What does 'move-to-front' mean in a binary search tree?

- Front = the place that is easiest to access
- In a binary search tree, that's the root.
- $\Rightarrow\,$ After every access, bring item to the root of BST

What does 'move-to-front' mean in a binary search tree?

- Front = the place that is easiest to access
- In a binary search tree, that's the root.
- $\Rightarrow\,$ After every access, bring item to the root of BST
 - But: order-property must be maintained!
- \Rightarrow Use *rotations*!

(This should remind you of treaps.)

Example: *BST-MTF::search*(18)

16

Example: *BST-MTF::search*(18)

16

Example: BST-MTF::search(18)

This should work well, but we can do better by moving two level at a time.

Outline

Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Expected height of a BST
- Treaps
- Skip Lists
- Biased Search Requests
- Optimal Static Ordering
- Optimal Static Binary Search Trees
- Dynamic Ordering: MTF
- MTF-heuristic in a BST
- Splay Trees

Splay trees

Splay tree overview:

- Binary search tree
- No extra information (such as height, balance, size) needed at nodes
- After search/insert, bring accessed node to the root with rotations
- Move node up two layers at a time (except when near root)
 - ► Use zig-zig-rotation or zig-zag-rotation to move up two levels.

Goal: This has amortized run-time $O(\log n)$.

Zig-zag Rotation = Double Rotation

- Let z be the node that we want to move up.
- Let p and g be its parent and grandparent.
- If they are in zig-zag formation, apply a double-rotation.

Zig-zig Rotation

• If they are in zig-zig formation, apply a new kind of rotation.

First, a left rotation at g. Second, a left rotation at p.

Splay Tree Operations

search and delete similar (rotate the lowest visited node up).

Compare the resulting trees:

Splay trees (zig-zig rotations):

With MTF (single rotations):

This is not more balanced, why do we apply zig-zig-rotations?

Compare the result for a different initial tree:

Splay trees (zig-zig rotations): With MTF (single rotations):

Compare the result for a different initial tree:

Splay trees (zig-zig rotations): With MTF (single rotations):

Compare the result for a different initial tree:

Splay trees (zig-zig rotations): With MTF (single rotations):

Compare the result for a different initial tree:

Compare the result for a different initial tree:

Compare the result for a different initial tree:

Compare the result for a different initial tree:

Compare the result for a different initial tree:

Splay trees (zig-zig rotations): With MTF (single rotations):

Splay tree intuition:

- For any node on search-path, the depth (roughly) halves
- For all nodes, the depth increases by at most 2

Splay tree analysis

Theorem: In a splay tree, all operations take $O(\log n)$ amortized time.

Splay tree analysis

Theorem: In a splay tree, all operations take $O(\log n)$ amortized time. **Proof:** Use potential function $\Phi(t) = \sum_{z} \log (z.size())$

Now compute amortized time of operations (highly non-trivial).

Splay tree analysis

Theorem: In a splay tree, all operations take $O(\log n)$ amortized time. **Proof:** Use potential function $\Phi(t) = \sum_{z} \log (z.size())$

Now compute amortized time of operations (highly non-trivial).

Summary: Splay trees perform well, *without* extra information (such as height or size) at nodes.

T.Biedl (CS-UW)

CS240E - Module 5