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Dictionary ADT: Implementations thus far

Realizations we have seen so far:
Balanced Binary Search trees (AVL trees):

Θ(log n) search, insert, and delete (worst-case)
Skip lists:

Θ(log n) search, insert, and delete (expected)
Various other realizations sometimes faster on insert,
but search always takes Ω(log n) time.

Question: Can one do better than Θ(log n) time for search?
Answer: Yes and no! It depends on what we allow .

No: Comparison-based searching lower bound is Ω(log n).
Yes: Non-comparison-based searching can achieve o(log n) (under
restrictions!).
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Lower bound for search
Theorem: Any comparison-based algorithm requires in the worst case
Ω(log n) comparisons to search among n distinct items.

Proof: Via decision tree for items x0, . . . , xn−1 and search for k
k : x1

k : x0 k : x2

x0 : k x1 : k x2 : k not found

k ∈ (x2,∞)
not found

k ∈ (−∞, x0)

x0 not found

k ∈ (x0, x1)

x1 not found

k ∈ (x1, x2)

x2

≤ >

≤ > ≤ >

> ≤ > ≤ > ≤

How many possible outcomes are there?
What does that tell us about the height of the decision tree?
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Matching the lower bound
We can match lower bound asymptotically in a sorted array

binary-search(A, n, k) // the CS136 version
A: Sorted array of size n, k: key
1. `← 0, r ← n − 1
2. while (` ≤ r)
3. m← b `+r

2 c
4. if (A[m] equals k) then return “found at A[m]”
5. else if (A[m] < k) then `← m + 1
6. else r ← m − 1
7. return “not found, but would be between A[`−1] and A[`]”

This uses ≈ 2 log n key-comparisons in worst-case.
(≤ blog nc+ 1 rounds, ≤ 2 key-comparisons per round)

The lower bound can be improved to ≥ dlog(2n)e = dlog ne+ 1
key-comparisons (no details)

Goal: Improve binary-search to use dlog ne+ 1 key-comparisons.
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Improving binary search
Main ingredient: Do only one comparison per round.

binary-search-optimized(A, n, k)
A: Sorted array of size n, k: key
1. `← 0, r ← n − 1
2. while (` < r)

3. m←≈ `+r
2 // round up or round down? TBD.

4. if (A[m] < k) then `← m + 1
5. else r ← m // this is different!

6. if (k = A[`]) then return “found at A[`]”
7. return “not found”

Non-trivial: This terminates if we choose m the right way.

Actually show: rnew−`new+1︸ ︷︷ ︸
sizenew

≤ 1
2(r−`+1︸ ︷︷ ︸

size

) (if rounded suitably)

I This implies sizenew < sizeold if ` < r
I This implies #rounds ≤ dlog ne
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Interpolation Search Motivation

binary-search(A, n, k)
1. `← 0, r ← n − 1
2. while (` ≤ r)
3. m← b `+r

2 c
4. if (A[m] equals k) then return “found at A[m]”
5. else if (A[m] < k) then `← m + 1
6. else r ← m − 1
7. return “not found, but would be between A[`−1] and A[`]”

binary-search: Compare at index b `+r
2 c = ` + d12(r − `− 1)e

` ↓ r

Question: If keys are numbers, where would you expect key k = 100?
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Interpolation Search
Code very similar to binary search, but compare at index

` +
⌈ distance from left key︷ ︸︸ ︷

k − A[`]
A[r ]− A[`]︸ ︷︷ ︸

distance between left and right keys

(r − `− 1)︸ ︷︷ ︸
# unknown keys in range

⌉

Need a few extra tests to avoid crash during computation of m.

interpolation-search(A, n← A.size, k)
1. `← 0, r ← n − 1
2. while (` ≤ r)
3. if (k < A[`] or k > A[r ]) return “not found”
4. if (k = A[r ]) then return “found at A[r ]”

5. m← ` + d k−A[`])
A[r ]−A[`] · (r − `− 1)e

6. if (A[m] equals k) then return “found at A[m]”
7. else if (A[m] < k) then `← m + 1
8. else r ← m − 1
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Interpolation Search Example

0
0

10
1

20
2

30
3

40
4

50
5

71
6

110
7

112
8

114
9

116
10

118
11

119
12

120
13

interpolation-search(A[0..13],14,71):

` = 0, r = n − 1 = 13, m = ` + d 71−0
120−0(13−0−1)e = ` + 8 = 8

` = 0, r = 7, m = ` + d 71−0
110−0(7−0−1)e = ` + 4 = 4

` = 5, r = 7, m = ` + d 71−50
110−50(7−5−1)e = ` + 1 = 6, found at A[6]

If instead we had A[6] = 72:
` = 5 = r , exit at line 3 with “not found”
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0
0

`

10
1

20
2

30
3

40
4

↑
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5
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6
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7

r
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8
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9

116
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11

119
12

120
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Interpolation Search Second Example

0
0

`

1
1

↑
2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

1500
10

r

interpolation-search(A[0..10],10):
` = 0, r = n − 1 = 10, m = ` + d 10−0

1500−0(10−0−1)e = ` + 1 = 1

` = 2, r = 10, m = ` + d 10−2
1500−2(10−2−1)e = ` + 1 = 3

` = 4, r = 10, m = ` + d 10−2
1500−4(10−4−1)e = ` + 1 = 5

... in the worst case this can be very slow (Θ(n) time)

But it works well on average:
Can show (difficult): T avg(n) ≤ T avg(

√
n) + Θ(1).

This resolves to T avg(n) ∈ O(log log n).
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Improving Interpolation Search

Proving T avg(n) ≤ T avg(
√
n) + Θ(1) is very complicated.

I Switch to analyze run-time on randomly chosen input.
I Study expected error, i.e., distance between index of k and where we probed.
I Argue that error is in O(

√
n) in first round.

I Argue that error is in O( 1
2i n) after i rounds.

I Study the martingale formed by the errors in the rounds.
I Argue that its expected length is O(log log n).



Instead: Define a variant of interpolatation-search
I Better worst-case run-time.
I Easier to analyze.

Idea: Force the sub-array to have size
√
n

To do so, search for suitable sub-array with repeated probes
(comparison between array-entry and search-key)
Crucial question: how many probes are needed?
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Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10 11

↑
`

↑m ↑r

≤ k > k

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First probe at m as before.

If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 = # unknown keys, here N = 10)
Continue probing until > k or out-of-bounds
Recurse in the only sub-array where k can be.
It has ≤ d

√
Ne − 1 unknown keys.

Observe: #{probes in this round} ≤
√
N
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Improving Interpolation Search

Interpolation-search-better(A, n, k)
A: sorted array of size n, k: key
1. if (k < A[0] or k > A[n − 1]) return “not found”
2. if (k = A[n − 1]) return“found at index n−1”
3. `← 0, r ← n − 1 // have A[`] ≤ k < A[r ]
4. while (N ← (r − `− 1) ≥ 1)
5. m← ` + d k−A[`])

A[r ]−A[`] · (r − `− 1)e

6. if (A[m] ≤ k) // probe rightward
7. for h = 1, 2, . . .

8. `← m + (h−1)d
√
Ne, r ′ ← min{r ,m + hd

√
Ne}

9. if (r ′ = r or A[r ′] > k) then r ← r ′ and break
10. else . . . // symmetrically probe leftward

11. if (k = A[`]) return “found at index `”
12. else return “not found”
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Analysis of interpolation-search-improved

Let T (n) be the total number of probes if there were n unknown keys.
T (n) ≤ T (

√
n) +

√
n since sub-array has ≤

√
n unknowns.

This resolves to O(
√
n)

(see table, or prove T (n) ≤ 2
√
n + O(1) for n ≥ 16.)

Result: The worst-case run-time of
interpolation-search-improved is in O(

√
n).

Average-case run-time?
Rephrase: If array-entries are chosen uniformly at random, what is the
expected number of probes per found?
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Analysis of interpolation-search-improved
Claim: The number of rounds is dlog log ne+ O(1) in worst case.

Key ingredient: log log
√
n = log log n − 1.

Claim: Expected number of probes per round is at most 2.5.
(Proof later, study consequences first)

#probes ≤ #(rounds) ∗#(probes per round)
≤ 2.5dlog log ne+ O(1) on average

Result: The average-case run-time of
interpolation-search-improved is in O(log log n).

Fewer probes than binary-search-optimized’s dlog ne+1 even for small n.
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Expected number of probes
Recall: E [#probes] =

∑
i≥0

i · P(#probes = i) =
∑
i≥1

P(#probes ≥ i).

So must analyze P(#probes ≥ i).
I For i = 1, 2, use P(#probes ≥ i) ≤ 1
I But need a better bound for i ≥ 3

Define some useful random variables:
I idx(k): index of rightmost item that is ≤ k
I offset(k) = idx(k)− `

` r
≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k >k >k

m≈`+µ
probe probe probeµ=E [offset(k)]

idx(k)

E [offset(k)] = ???. V (offset(k)) ≤ ???.
And how do they relate to P(#probes ≥ i)?
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Outline

6 Dictionaries for special keys
Lower bound
Improving binary search
Interpolation Search
Tries

Standard Tries
Variations of Tries
Compressed Tries
Multiway Tries
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Words (review)
Scenario: Keys in dictionary are words. Need brief review.

Words (= strings): sequences of characters over alphabet Σ
{be, bear, beer}

Typical alphabets: {0, 1} (→bitstrings), ASCII, {C ,G ,T ,A}
Stored in an array: w [i ] gets ith character (for i = 0, 1. . . . )

Convention: Words have end-sentinel $ (sometimes not shown)
w .size = |w | = # non-sentinel characters: |be$|=2.

Should know:
prefix, suffix, substring
Sort words lexicographically: be$ <lex bear$ <lex beer$
This is different from sorting numbers: 001$ <lex 010$ <lex 1$
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Tries: Introduction
Trie (also know as radix tree): A dictionary for bitstrings.

Comes from retrieval, but pronounced “try”
A tree based on bitwise comparisons: Edge labelled with
corresponding bit
Similar to radix sort: use individual bits, not the whole key
Due to end-sentinels, all key-value pairs are at leaves.

00$
$

0001$
$

1

0

001$
$

1

0

0100$
$

0

0

011$
$

0110$
$

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

(
Reminder: A more accurate picture would be key = 00$, <other info>•

)
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Tries: Search

Follow links that corresponds to current bits in w
Repeat until no such link or w found at a leaf

Similar as for skip lists, we find search-path separately first.

Trie::get-path-to(w)
Output: Stack with all ancestors of where w would be stored
1. P ← empty stack; z ← root; d ← 0; P.push(z)
2. while d ≤ |w |
3. if z has a child-link labelled with w [d ]
4. z ← child at this link; d++; P.push(z)
5. else break
6. return P
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Tries: Search Example
Example: Trie::search(011$)

00$
$

0001$
$

1

0

001$
$

1

0

0100$
$

0

0

011$
$

0110$
$

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Trie::search(w)
1. P ← get-path-to(w), z ← P.top
2. if (z is not a leaf) then
3. return “not found, would be in sub-trie of z”
4. return key-value pair at z
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Tries: Leaf-references
For later applications of tries, we want another search-operation:

prefix-search(w): Find word w ′ in trie for which w is a prefix.

Testing whether w ′ exists is easy (how?)

To find w ′ quickly, we need leaf-references
I Every node z stores reference z .leaf to a leaf in subtree
I Convention: store leaf with longest word

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

0110$
$

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

(not all leaf-references are shown)
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Tries: Prefix-Search Example
Example: Trie::prefix-search(11$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

0110$
$

0

1

1

0

no
such
child

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Trie::prefix-search(w)
1. P ← get-path-to(w)
2. if number of nodes on P is w .size or less
3. return “no extension of w found”
4. return P.top().leaf

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 23 / 39



Tries: Prefix-Search Example
Example: Trie::prefix-search(11$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

0110$
$

0

1

1

0

no
such
child

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Trie::prefix-search(w)
1. P ← get-path-to(w)
2. if number of nodes on P is w .size or less
3. return “no extension of w found”
4. return P.top().leaf

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 23 / 39



Tries: Prefix-Search Example
Example: Trie::prefix-search(11$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

0110$
$

0

1

1

0

no
such
child

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Trie::prefix-search(w)
1. P ← get-path-to(w)
2. if number of nodes on P is w .size or less
3. return “no extension of w found”
4. return P.top().leaf

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 23 / 39



Tries: Prefix-Search Example
Example: Trie::prefix-search(11$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

0110$
$

0

1

1

0

no
such
child

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Trie::prefix-search(w)
1. P ← get-path-to(w)
2. if number of nodes on P is w .size or less
3. return “no extension of w found”
4. return P.top().leaf

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 23 / 39



Tries: Prefix-Search Example

Example: Trie::prefix-search(10$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

0110$
$

0

1

1

0

no
such
child

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Word 10$ has size 2.
get-path-to(w) returns stack with two nodes.
We need more than w .size nodes on P to have an extension.
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Tries: Insert
Trie::insert(w)

P ← get-path-to(w) gives ancestors that exist already,
Expand the trie from P.top() by adding necessary nodes that
correspond to extra bits of w .
Update leaf-references (also at P if w is longer than previous leaves)

Example: insert(011101$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

01101$
$

1

0

011101$
$

1

0

1

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

(only updated leaf-references are shown)
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Tries: Delete
Trie::delete(w)

P ← get-path-to(w) gives all ancestors.
Let ` be the leaf where w is stored
Delete ` and nodes on P until ancestor has two or more children.
Update leaf-references on rest of P.
(If z ∈ P referred to `, find new z .leaf from other children.)

Example: trie::delete(0001$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

01101$
$

1

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

(only some leaf-references are shown)
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Binary Tries summary
search(w), prefix-search(w), insert(w), delete(w) all take time Θ(|w |).

Search-time is independent of number n of words stored in the trie!
Search-time is small for short words.

The trie for a given set of words is unique
(except for order of children and ties among leaf-references)

Disadvantages:
Tries can be wasteful with respect to space.

000000$$00000
0

111111$$11111
1

Worst-case space is Θ
(
n · (maximum length of a word)

)
What can we do to save space?

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 27 / 39



Binary Tries summary
search(w), prefix-search(w), insert(w), delete(w) all take time Θ(|w |).

Search-time is independent of number n of words stored in the trie!
Search-time is small for short words.

The trie for a given set of words is unique
(except for order of children and ties among leaf-references)

Disadvantages:
Tries can be wasteful with respect to space.

000000$$00000
0

111111$$11111
1

Worst-case space is Θ
(
n · (maximum length of a word)

)
What can we do to save space?
T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 27 / 39



Variations of Tries: Pruned Tries

Pruned Trie: Stop adding nodes to trie as soon as the key is unique.
A node has a child only if it has at least two descendants.
Saves space if there are only few bitstrings that are long.
Could even store infinite bitstrings (e.g. real numbers)

00$
$

0001$
0

0

01001$
0

011$
$

01101$
0

1

1

0

110$
$

1101$
1

0
111$
1

1

1

A more efficient version of tries, but the operations get a bit more
complicated.
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Pruned tries and MSD-radix sort

We have (implicitly) seen pruned tries before:
For equal-length bitstrings:
Pruned trie equals recursion tree of MSD radix-sort.

0111
1111
0110
0100
1100
1101
0001
0010

0111
0110
0100
0001
0010

0001
0010

00010

001010

0111
0110
0101

01000
0111
0110

01100
01111

1
10

1111
1100
1101

1111
1100
1101

1100
1101

11000
110110

11111
1

1

0001$
0

0010$
1

0

0100$
0

0110$
0

0111$
1

1

1
0

1100$
0

1101$
10

1111$
11

1
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Pruned tries can store real numbers

If we have a generator for each bit of a real number, then we can store
them in a pruned trie.

π − 3
0 1/π

0

1/e
1

0
0

√
2− 1

1

1
0

sin(π/5)
0

1/
√

2
0

e − 2
1

101
1

0

1
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Compressed Tries

Another (important!) variation:
Compress paths of nodes with only one child.
Each node stores an index , corresponding to the level of the node in
the uncompressed trie. (On level d , we searched for link with w [d ].)

00$
$

0001$
$

1

0

0

01001$
$

1

0

0

011$
$

01101$
$

1

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1 0

1

2

00$
$

0001$
0

0
2

01001$
0

3

011$
$

01101$
0

1

1

0
2

3

110$
$

1101$
1

0
111$

1

1

Also known as Patricia-Tries:
Practical Algorithm to Retrieve Information Coded in Alphanumeric
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Compressed Tries: Search
As for tries, follow links that corresponds to current bits in w
Main difference: stored indices say which bits to compare.
Also: must compare w to word found at the leaf (why?)

CompressedTrie::get-path-to(w)
1. P ← empty stack; z ← root; P.push(z)
2. while z is not a leaf and (d ← z .index ≤ w .size) do
3. if (z has a child-link labelled with w [d ]) then
4. z ← child at this link; P.push(z)
5. else break
6. return P

CompressedTrie::search(w)
1. P ← get-path-to(w), z ← P.top
2. if (z is not a leaf or word stored at z is not w) then
3. return “not found”
4. return key-value pair at z
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Compressed Tries: Search Example

Example 1: CompressedTrie::search( 1
0

$
1

)

0

1

2

00$
$

0001$
0

0
2

01001$
0

3

011$
$

01101$
0

1

1

0
2

3

110$
$

1101$
1

0
111$

1

1
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prefix-search(w): Compare w to z .leaf at last visited node z .
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Compressed Tries: Search Example

Example 2: CompressedTrie::search( 0
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prefix-search(w): Compare w to z .leaf at last visited node z .

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 34 / 39



Compressed Tries: Search Example

Example 3: CompressedTrie::search( 1
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Compressed Tries: Search Example
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prefix-search(w): Compare w to word at reached leaf.
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Compressed Tries: Summary
search(w) and prefix-search(w) are easy.
insert(w) and delete(w) are conceptually simple:

I Search for path P to word w (say we reach node z)
I Uncompress this path (using characters of z .leaf)
I Insert/Delete w as in an uncompressed trie.
I Compress path from root to where change happened

(Pseudocode gets more complicated and is omitted.)
All operations take O(|w |) time for a word w .

Compressed tries use O(n) space
I We have n leaves.
I Every internal node has two or more children.
I Can show: Therefore more leaves than internal nodes.

Overall, code is more complicated, but space-savings are worth it if words
are unevenly distributed.
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Multiway Tries: Larger Alphabet

To represent strings over any fixed alphabet Σ
Any node will have at most |Σ|+ 1 children (one child for the
end-of-word character $)
Example: A trie holding strings {bear$, ben$, be$, soul$, soup$}

be$
$

bear$
$

r

a

ben$
$

n

e

b

soul$
$

l

soup$
$

p

u

o

s
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Compressed Multiway Tries

Variation: Compressed multi-way tries: compress paths as before
Example: A compressed trie holding strings {bear$, ben$, be$, soul$,
soup$}

0

2

be$

$

bear$

a

ben$

n

b

3

soul$

l

soup$

p

s
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Multiway Tries: Summary
Operations search(w), prefix-search(w), insert(w) and delete(w) are
exactly as for tries for bitstrings.
Run-time O(|w | · (time to find the appropriate child))

Each node now has up to |Σ|+ 1 children. How should they be
stored?

•
$
•
a b...

•
n...

Array?

$|• a|• n|•

List?

a•

$
• n•

Dictionary?

Time/space tradeoff: arrays are fast, lists are space-efficient.
Dictionary best in theory, not worth it in practice unless |Σ| is huge.

In practice, use hashing (→ module 07).
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