
CS 240E – Data Structures
and Data Management (Enriched)

Module 6: Dictionaries for special keys

Therese Biedl
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-02-06 19:12

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 1 / 39

Outline

6 Dictionaries for special keys
Lower bound
Improving binary search
Interpolation Search
Tries

Standard Tries
Variations of Tries
Compressed Tries
Multiway Tries

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025

Outline

6 Dictionaries for special keys
Lower bound
Improving binary search
Interpolation Search
Tries

Standard Tries
Variations of Tries
Compressed Tries
Multiway Tries

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025

Dictionary ADT: Implementations thus far

Realizations we have seen so far:
Balanced Binary Search trees (AVL trees):

Θ(log n) search, insert, and delete (worst-case)
Skip lists:

Θ(log n) search, insert, and delete (expected)
Various other realizations sometimes faster on insert,
but search always takes Ω(log n) time.

Question: Can one do better than Θ(log n) time for search?
Answer: Yes and no! It depends on what we allow .

No: Comparison-based searching lower bound is Ω(log n).
Yes: Non-comparison-based searching can achieve o(log n) (under
restrictions!).

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 2 / 39

Dictionary ADT: Implementations thus far

Realizations we have seen so far:
Balanced Binary Search trees (AVL trees):

Θ(log n) search, insert, and delete (worst-case)
Skip lists:

Θ(log n) search, insert, and delete (expected)
Various other realizations sometimes faster on insert,
but search always takes Ω(log n) time.

Question: Can one do better than Θ(log n) time for search?
Answer: Yes and no! It depends on what we allow .

No: Comparison-based searching lower bound is Ω(log n).
Yes: Non-comparison-based searching can achieve o(log n) (under
restrictions!).

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 2 / 39

Lower bound for search
Theorem: Any comparison-based algorithm requires in the worst case
Ω(log n) comparisons to search among n distinct items.

Proof: Via decision tree for items x0, . . . , xn−1 and search for k
k : x1

k : x0 k : x2

x0 : k x1 : k x2 : k not found

k ∈ (x2,∞)
not found

k ∈ (−∞, x0)

x0 not found

k ∈ (x0, x1)

x1 not found

k ∈ (x1, x2)

x2

≤ >

≤ > ≤ >

> ≤ > ≤ > ≤

How many possible outcomes are there?
What does that tell us about the height of the decision tree?

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 3 / 39

Lower bound for search
Theorem: Any comparison-based algorithm requires in the worst case
Ω(log n) comparisons to search among n distinct items.

Proof: Via decision tree for items x0, . . . , xn−1 and search for k
k : x1

k : x0 k : x2

x0 : k x1 : k x2 : k not found

k ∈ (x2,∞)
not found

k ∈ (−∞, x0)

x0 not found

k ∈ (x0, x1)

x1 not found

k ∈ (x1, x2)

x2

≤ >

≤ > ≤ >

> ≤ > ≤ > ≤

How many possible outcomes are there?
What does that tell us about the height of the decision tree?

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 3 / 39

Outline

6 Dictionaries for special keys
Lower bound
Improving binary search
Interpolation Search
Tries

Standard Tries
Variations of Tries
Compressed Tries
Multiway Tries

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025

Matching the lower bound
We can match lower bound asymptotically in a sorted array

binary-search(A, n, k) // the CS136 version
A: Sorted array of size n, k: key
1. `← 0, r ← n − 1
2. while (` ≤ r)
3. m← b `+r

2 c
4. if (A[m] equals k) then return “found at A[m]”
5. else if (A[m] < k) then `← m + 1
6. else r ← m − 1
7. return “not found, but would be between A[`−1] and A[`]”

This uses ≈ 2 log n key-comparisons in worst-case.
(≤ blog nc+ 1 rounds, ≤ 2 key-comparisons per round)

The lower bound can be improved to ≥ dlog(2n)e = dlog ne+ 1
key-comparisons (no details)

Goal: Improve binary-search to use dlog ne+ 1 key-comparisons.

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 4 / 39

Matching the lower bound
We can match lower bound asymptotically in a sorted array

binary-search(A, n, k) // the CS136 version
A: Sorted array of size n, k: key
1. `← 0, r ← n − 1
2. while (` ≤ r)
3. m← b `+r

2 c
4. if (A[m] equals k) then return “found at A[m]”
5. else if (A[m] < k) then `← m + 1
6. else r ← m − 1
7. return “not found, but would be between A[`−1] and A[`]”

This uses ≈ 2 log n key-comparisons in worst-case.
(≤ blog nc+ 1 rounds, ≤ 2 key-comparisons per round)

The lower bound can be improved to ≥ dlog(2n)e = dlog ne+ 1
key-comparisons (no details)

Goal: Improve binary-search to use dlog ne+ 1 key-comparisons.
T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 4 / 39

Improving binary search
Main ingredient: Do only one comparison per round.

binary-search-optimized(A, n, k)
A: Sorted array of size n, k: key
1. `← 0, r ← n − 1
2. while (` < r)

3. m←≈ `+r
2 // round up or round down? TBD.

4. if (A[m] < k) then `← m + 1
5. else r ← m // this is different!

6. if (k = A[`]) then return “found at A[`]”
7. return “not found”

Non-trivial: This terminates if we choose m the right way.

Actually show: rnew−`new+1︸ ︷︷ ︸
sizenew

≤ 1
2(r−`+1︸ ︷︷ ︸

size

) (if rounded suitably)

I This implies sizenew < sizeold if ` < r
I This implies #rounds ≤ dlog ne

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 5 / 39

Improving binary search
Main ingredient: Do only one comparison per round.

binary-search-optimized(A, n, k)
A: Sorted array of size n, k: key
1. `← 0, r ← n − 1
2. while (` < r)

3. m←≈ `+r
2 // round up or round down? TBD.

4. if (A[m] < k) then `← m + 1
5. else r ← m // this is different!

6. if (k = A[`]) then return “found at A[`]”
7. return “not found”

Non-trivial: This terminates if we choose m the right way.
Actually show: rnew−`new+1︸ ︷︷ ︸

sizenew
≤ 1

2(r−`+1︸ ︷︷ ︸
size

) (if rounded suitably)

I This implies sizenew < sizeold if ` < r
I This implies #rounds ≤ dlog ne

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 5 / 39

Outline

6 Dictionaries for special keys
Lower bound
Improving binary search
Interpolation Search
Tries

Standard Tries
Variations of Tries
Compressed Tries
Multiway Tries

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025

Interpolation Search Motivation

binary-search(A, n, k)
1. `← 0, r ← n − 1
2. while (` ≤ r)
3. m← b `+r

2 c
4. if (A[m] equals k) then return “found at A[m]”
5. else if (A[m] < k) then `← m + 1
6. else r ← m − 1
7. return “not found, but would be between A[`−1] and A[`]”

binary-search: Compare at index b `+r
2 c = ` + d12(r − `− 1)e

` ↓ r

Question: If keys are numbers, where would you expect key k = 100?

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 6 / 39

Interpolation Search Motivation

binary-search(A, n, k)
1. `← 0, r ← n − 1
2. while (` ≤ r)
3. m← b `+r

2 c
4. if (A[m] equals k) then return “found at A[m]”
5. else if (A[m] < k) then `← m + 1
6. else r ← m − 1
7. return “not found, but would be between A[`−1] and A[`]”

binary-search: Compare at index b `+r
2 c = ` + d12(r − `− 1)e

` ↓ r
40 120

Question: If keys are numbers, where would you expect key k = 100?

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 6 / 39

Interpolation Search
Code very similar to binary search, but compare at index

` +
⌈ distance from left key︷ ︸︸ ︷

k − A[`]
A[r]− A[`]︸ ︷︷ ︸

distance between left and right keys

(r − `− 1)︸ ︷︷ ︸
unknown keys in range

⌉

Need a few extra tests to avoid crash during computation of m.

interpolation-search(A, n← A.size, k)
1. `← 0, r ← n − 1
2. while (` ≤ r)
3. if (k < A[`] or k > A[r]) return “not found”
4. if (k = A[r]) then return “found at A[r]”

5. m← ` + d k−A[`])
A[r]−A[`] · (r − `− 1)e

6. if (A[m] equals k) then return “found at A[m]”
7. else if (A[m] < k) then `← m + 1
8. else r ← m − 1

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 7 / 39

Interpolation Search Example

0
0

10
1

20
2

30
3

40
4

50
5

71
6

110
7

112
8

114
9

116
10

118
11

119
12

120
13

interpolation-search(A[0..13],14,71):

` = 0, r = n − 1 = 13, m = ` + d 71−0
120−0(13−0−1)e = ` + 8 = 8

` = 0, r = 7, m = ` + d 71−0
110−0(7−0−1)e = ` + 4 = 4

` = 5, r = 7, m = ` + d 71−50
110−50(7−5−1)e = ` + 1 = 6, found at A[6]

If instead we had A[6] = 72:
` = 5 = r , exit at line 3 with “not found”

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 8 / 39

Interpolation Search Example

0
0

`

10
1

20
2

30
3

40
4

50
5

71
6

110
7

112
8

↑
114

9

116
10

118
11

119
12

120
12

r

interpolation-search(A[0..13],14,71):
` = 0, r = n − 1 = 13, m = ` + d 71−0

120−0(13−0−1)e = ` + 8 = 8

` = 0, r = 7, m = ` + d 71−0
110−0(7−0−1)e = ` + 4 = 4

` = 5, r = 7, m = ` + d 71−50
110−50(7−5−1)e = ` + 1 = 6, found at A[6]

If instead we had A[6] = 72:
` = 5 = r , exit at line 3 with “not found”

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 8 / 39

Interpolation Search Example

0
0

`

10
1

20
2

30
3

40
4

↑
50
5

71
6

110
7

r
112

8

114
9

116
10

118
11

119
12

120
13

interpolation-search(A[0..13],14,71):
` = 0, r = n − 1 = 13, m = ` + d 71−0

120−0(13−0−1)e = ` + 8 = 8
` = 0, r = 7, m = ` + d 71−0

110−0(7−0−1)e = ` + 4 = 4

` = 5, r = 7, m = ` + d 71−50
110−50(7−5−1)e = ` + 1 = 6, found at A[6]

If instead we had A[6] = 72:
` = 5 = r , exit at line 3 with “not found”

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 8 / 39

Interpolation Search Example

0
0

10
1

20
2

30
3

40
4

50
5

`

71
6

↑
110

7

r
112

8

114
9

116
10

118
11

119
12

120
13

interpolation-search(A[0..13],14,71):
` = 0, r = n − 1 = 13, m = ` + d 71−0

120−0(13−0−1)e = ` + 8 = 8
` = 0, r = 7, m = ` + d 71−0

110−0(7−0−1)e = ` + 4 = 4
` = 5, r = 7, m = ` + d 71−50

110−50(7−5−1)e = ` + 1 = 6, found at A[6]

If instead we had A[6] = 72:
` = 5 = r , exit at line 3 with “not found”

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 8 / 39

Interpolation Search Example

0
0

10
1

20
2

30
3

40
4

50
5

`

71
6

↑
110

7

r
112

8

114
9

116
10

118
11

119
12

120
13

interpolation-search(A[0..13],14,71):
` = 0, r = n − 1 = 13, m = ` + d 71−0

120−0(13−0−1)e = ` + 8 = 8
` = 0, r = 7, m = ` + d 71−0

110−0(7−0−1)e = ` + 4 = 4
` = 5, r = 7, m = ` + d 71−50

110−50(7−5−1)e = ` + 1 = 6, found at A[6]

If instead we had A[6] = 72:
` = 5 = r , exit at line 3 with “not found”

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 8 / 39

Interpolation Search Second Example

0
0

`

1
1

↑
2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

1500
10

r

interpolation-search(A[0..10],10):
` = 0, r = n − 1 = 10, m = ` + d 10−0

1500−0(10−0−1)e = ` + 1 = 1

` = 2, r = 10, m = ` + d 10−2
1500−2(10−2−1)e = ` + 1 = 3

` = 4, r = 10, m = ` + d 10−2
1500−4(10−4−1)e = ` + 1 = 5

... in the worst case this can be very slow (Θ(n) time)

But it works well on average:
Can show (difficult): T avg(n) ≤ T avg(

√
n) + Θ(1).

This resolves to T avg(n) ∈ O(log log n).

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 9 / 39

Interpolation Search Second Example

0
0

1
1

2
2

`

3
3

↑
4
4

5
5

6
6

7
7

8
8

9
9

1500
10

r

interpolation-search(A[0..10],10):
` = 0, r = n − 1 = 10, m = ` + d 10−0

1500−0(10−0−1)e = ` + 1 = 1
` = 2, r = 10, m = ` + d 10−2

1500−2(10−2−1)e = ` + 1 = 3

` = 4, r = 10, m = ` + d 10−2
1500−4(10−4−1)e = ` + 1 = 5

... in the worst case this can be very slow (Θ(n) time)

But it works well on average:
Can show (difficult): T avg(n) ≤ T avg(

√
n) + Θ(1).

This resolves to T avg(n) ∈ O(log log n).

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 9 / 39

Interpolation Search Second Example

0
0

1
1

2
2

3
3

4
4

`

5
5

↑
6
6

7
7

8
8

9
9

1500
10

r

interpolation-search(A[0..10],10):
` = 0, r = n − 1 = 10, m = ` + d 10−0

1500−0(10−0−1)e = ` + 1 = 1
` = 2, r = 10, m = ` + d 10−2

1500−2(10−2−1)e = ` + 1 = 3
` = 4, r = 10, m = ` + d 10−2

1500−4(10−4−1)e = ` + 1 = 5

... in the worst case this can be very slow (Θ(n) time)

But it works well on average:
Can show (difficult): T avg(n) ≤ T avg(

√
n) + Θ(1).

This resolves to T avg(n) ∈ O(log log n).

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 9 / 39

Interpolation Search Second Example

0
0

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

1500
10

interpolation-search(A[0..10],10):
` = 0, r = n − 1 = 10, m = ` + d 10−0

1500−0(10−0−1)e = ` + 1 = 1
` = 2, r = 10, m = ` + d 10−2

1500−2(10−2−1)e = ` + 1 = 3
` = 4, r = 10, m = ` + d 10−2

1500−4(10−4−1)e = ` + 1 = 5
... in the worst case this can be very slow (Θ(n) time)

But it works well on average:
Can show (difficult): T avg(n) ≤ T avg(

√
n) + Θ(1).

This resolves to T avg(n) ∈ O(log log n).

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 9 / 39

Interpolation Search Second Example

0
0

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

1500
10

interpolation-search(A[0..10],10):
` = 0, r = n − 1 = 10, m = ` + d 10−0

1500−0(10−0−1)e = ` + 1 = 1
` = 2, r = 10, m = ` + d 10−2

1500−2(10−2−1)e = ` + 1 = 3
` = 4, r = 10, m = ` + d 10−2

1500−4(10−4−1)e = ` + 1 = 5
... in the worst case this can be very slow (Θ(n) time)

But it works well on average:
Can show (difficult): T avg(n) ≤ T avg(

√
n) + Θ(1).

This resolves to T avg(n) ∈ O(log log n).

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 9 / 39

Improving Interpolation Search

Proving T avg(n) ≤ T avg(
√
n) + Θ(1) is very complicated.

I Switch to analyze run-time on randomly chosen input.
I Study expected error, i.e., distance between index of k and where we probed.
I Argue that error is in O(

√
n) in first round.

I Argue that error is in O(1
2i n) after i rounds.

I Study the martingale formed by the errors in the rounds.
I Argue that its expected length is O(log log n).

Instead: Define a variant of interpolatation-search
I Better worst-case run-time.
I Easier to analyze.

Idea: Force the sub-array to have size
√
n

To do so, search for suitable sub-array with repeated probes
(comparison between array-entry and search-key)
Crucial question: how many probes are needed?

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 10 / 39

Improving Interpolation Search

Proving T avg(n) ≤ T avg(
√
n) + Θ(1) is very complicated.

I Switch to analyze run-time on randomly chosen input.
I Study expected error, i.e., distance between index of k and where we probed.
I Argue that error is in O(

√
n) in first round.

I Argue that error is in O(1
2i n) after i rounds.

I Study the martingale formed by the errors in the rounds.
I Argue that its expected length is O(log log n).

Instead: Define a variant of interpolatation-search

I Better worst-case run-time.
I Easier to analyze.

Idea: Force the sub-array to have size
√
n

To do so, search for suitable sub-array with repeated probes
(comparison between array-entry and search-key)
Crucial question: how many probes are needed?

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 10 / 39

Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10 11

↑
`

↑m ↑r

≤ k > k

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First probe at m as before.

If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 = # unknown keys, here N = 10)
Continue probing until > k or out-of-bounds
Recurse in the only sub-array where k can be.
It has ≤ d

√
Ne − 1 unknown keys.

Observe: #{probes in this round} ≤
√
N

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 11 / 39

Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10 11

↑
`

↑m ↑r

≤ k > k≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First probe at m as before.
If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 = # unknown keys, here N = 10)

Continue probing until > k or out-of-bounds
Recurse in the only sub-array where k can be.
It has ≤ d

√
Ne − 1 unknown keys.

Observe: #{probes in this round} ≤
√
N

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 11 / 39

Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10 11

↑
`

↑m ↑r

≤ k > k≤ k

↑
probe

≤ k

↑
probe

> k

use this sub-array

First probe at m as before.
If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 = # unknown keys, here N = 10)
Continue probing until > k or out-of-bounds

Recurse in the only sub-array where k can be.
It has ≤ d

√
Ne − 1 unknown keys.

Observe: #{probes in this round} ≤
√
N

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 11 / 39

Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10 11

↑
`

↑m ↑r

≤ k > k≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First probe at m as before.
If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 = # unknown keys, here N = 10)
Continue probing until > k or out-of-bounds
Recurse in the only sub-array where k can be.
It has ≤ d

√
Ne − 1 unknown keys.

Observe: #{probes in this round} ≤
√
N

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 11 / 39

Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10 11

↑
`

↑m ↑r

≤ k > k≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First probe at m as before.
If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 = # unknown keys, here N = 10)
Continue probing until > k or out-of-bounds
Recurse in the only sub-array where k can be.
It has ≤ d

√
Ne − 1 unknown keys.

Observe: #{probes in this round} ≤
√
N

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 11 / 39

Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10 11

↑
`

↑m ↑r

≤ k > k≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First probe at m as before.
If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 = # unknown keys, here N = 10)
Continue probing until > k or out-of-bounds
Recurse in the only sub-array where k can be.
It has ≤ d

√
Ne − 1 unknown keys.

Observe: #{probes in this round} ≤
√
N

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 11 / 39

Improving Interpolation Search

Interpolation-search-better(A, n, k)
A: sorted array of size n, k: key
1. if (k < A[0] or k > A[n − 1]) return “not found”
2. if (k = A[n − 1]) return“found at index n−1”
3. `← 0, r ← n − 1 // have A[`] ≤ k < A[r]
4. while (N ← (r − `− 1) ≥ 1)
5. m← ` + d k−A[`])

A[r]−A[`] · (r − `− 1)e

6. if (A[m] ≤ k) // probe rightward
7. for h = 1, 2, . . .

8. `← m + (h−1)d
√
Ne, r ′ ← min{r ,m + hd

√
Ne}

9. if (r ′ = r or A[r ′] > k) then r ← r ′ and break
10. else . . . // symmetrically probe leftward

11. if (k = A[`]) return “found at index `”
12. else return “not found”

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 12 / 39

Analysis of interpolation-search-improved

Let T (n) be the total number of probes if there were n unknown keys.
T (n) ≤ T (

√
n) +

√
n since sub-array has ≤

√
n unknowns.

This resolves to O(
√
n)

(see table, or prove T (n) ≤ 2
√
n + O(1) for n ≥ 16.)

Result: The worst-case run-time of
interpolation-search-improved is in O(

√
n).

Average-case run-time?
Rephrase: If array-entries are chosen uniformly at random, what is the
expected number of probes per found?

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 13 / 39

Analysis of interpolation-search-improved

Let T (n) be the total number of probes if there were n unknown keys.
T (n) ≤ T (

√
n) +

√
n since sub-array has ≤

√
n unknowns.

This resolves to O(
√
n)

(see table, or prove T (n) ≤ 2
√
n + O(1) for n ≥ 16.)

Result: The worst-case run-time of
interpolation-search-improved is in O(

√
n).

Average-case run-time?
Rephrase: If array-entries are chosen uniformly at random, what is the
expected number of probes per found?

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 13 / 39

Analysis of interpolation-search-improved
Claim: The number of rounds is dlog log ne+ O(1) in worst case.

Key ingredient: log log
√
n = log log n − 1.

Claim: Expected number of probes per round is at most 2.5.
(Proof later, study consequences first)

#probes ≤ #(rounds) ∗#(probes per round)
≤ 2.5dlog log ne+ O(1) on average

Result: The average-case run-time of
interpolation-search-improved is in O(log log n).

Fewer probes than binary-search-optimized’s dlog ne+1 even for small n.

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 14 / 39

Analysis of interpolation-search-improved
Claim: The number of rounds is dlog log ne+ O(1) in worst case.

Key ingredient: log log
√
n = log log n − 1.

Claim: Expected number of probes per round is at most 2.5.

(Proof later, study consequences first)

#probes ≤ #(rounds) ∗#(probes per round)
≤ 2.5dlog log ne+ O(1) on average

Result: The average-case run-time of
interpolation-search-improved is in O(log log n).

Fewer probes than binary-search-optimized’s dlog ne+1 even for small n.

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 14 / 39

Analysis of interpolation-search-improved
Claim: The number of rounds is dlog log ne+ O(1) in worst case.

Key ingredient: log log
√
n = log log n − 1.

Claim: Expected number of probes per round is at most 2.5.
(Proof later, study consequences first)

#probes ≤ #(rounds) ∗#(probes per round)
≤ 2.5dlog log ne+ O(1) on average

Result: The average-case run-time of
interpolation-search-improved is in O(log log n).

Fewer probes than binary-search-optimized’s dlog ne+1 even for small n.

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 14 / 39

Analysis of interpolation-search-improved
Claim: The number of rounds is dlog log ne+ O(1) in worst case.

Key ingredient: log log
√
n = log log n − 1.

Claim: Expected number of probes per round is at most 2.5.
(Proof later, study consequences first)

#probes ≤ #(rounds) ∗#(probes per round)
≤ 2.5dlog log ne+ O(1) on average

Result: The average-case run-time of
interpolation-search-improved is in O(log log n).

Fewer probes than binary-search-optimized’s dlog ne+1 even for small n.
T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 14 / 39

Expected number of probes
Recall: E [#probes] =

∑
i≥0

i · P(#probes = i) =
∑
i≥1

P(#probes ≥ i).

So must analyze P(#probes ≥ i).
I For i = 1, 2, use P(#probes ≥ i) ≤ 1
I But need a better bound for i ≥ 3

Define some useful random variables:
I idx(k): index of rightmost item that is ≤ k
I offset(k) = idx(k)− `

` r
≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k >k >k

m≈`+µ
probe probe probeµ=E [offset(k)]

idx(k)

E [offset(k)] = ???. V (offset(k)) ≤ ???.
And how do they relate to P(#probes ≥ i)?

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 15 / 39

Expected number of probes
Recall: E [#probes] =

∑
i≥0

i · P(#probes = i) =
∑
i≥1

P(#probes ≥ i).

So must analyze P(#probes ≥ i).
I For i = 1, 2, use P(#probes ≥ i) ≤ 1
I But need a better bound for i ≥ 3

Define some useful random variables:
I idx(k): index of rightmost item that is ≤ k
I offset(k) = idx(k)− `

` r
≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k >k >k

m≈`+µ
probe probe probeµ=E [offset(k)]

idx(k)

E [offset(k)] = ???. V (offset(k)) ≤ ???.
And how do they relate to P(#probes ≥ i)?

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 15 / 39

Expected number of probes
Recall: E [#probes] =

∑
i≥0

i · P(#probes = i) =
∑
i≥1

P(#probes ≥ i).

So must analyze P(#probes ≥ i).
I For i = 1, 2, use P(#probes ≥ i) ≤ 1
I But need a better bound for i ≥ 3

Define some useful random variables:
I idx(k): index of rightmost item that is ≤ k
I offset(k) = idx(k)− `

` r
≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k >k >k

m≈`+µ
probe probe probeµ=E [offset(k)]

idx(k)

E [offset(k)] = ???. V (offset(k)) ≤ ???.
And how do they relate to P(#probes ≥ i)?

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 15 / 39

Expected number of probes
Recall: E [#probes] =

∑
i≥0

i · P(#probes = i) =
∑
i≥1

P(#probes ≥ i).

So must analyze P(#probes ≥ i).
I For i = 1, 2, use P(#probes ≥ i) ≤ 1
I But need a better bound for i ≥ 3

Define some useful random variables:
I idx(k): index of rightmost item that is ≤ k
I offset(k) = idx(k)− `

` r
≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k ≤k >k >k

m≈`+µ
probe probe probeµ=E [offset(k)]

idx(k)

E [offset(k)] = ???. V (offset(k)) ≤ ???.
And how do they relate to P(#probes ≥ i)?
T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 15 / 39

Outline

6 Dictionaries for special keys
Lower bound
Improving binary search
Interpolation Search
Tries

Standard Tries
Variations of Tries
Compressed Tries
Multiway Tries

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025

Words (review)
Scenario: Keys in dictionary are words. Need brief review.

Words (= strings): sequences of characters over alphabet Σ
{be, bear, beer}

Typical alphabets: {0, 1} (→bitstrings), ASCII, {C ,G ,T ,A}
Stored in an array: w [i] gets ith character (for i = 0, 1. . . .)

Convention: Words have end-sentinel $ (sometimes not shown)
w .size = |w | = # non-sentinel characters: |be$|=2.

Should know:
prefix, suffix, substring
Sort words lexicographically: be$ <lex bear$ <lex beer$
This is different from sorting numbers: 001$ <lex 010$ <lex 1$

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 18 / 39

Words (review)
Scenario: Keys in dictionary are words. Need brief review.

Words (= strings): sequences of characters over alphabet Σ
{be, bear, beer}

Typical alphabets: {0, 1} (→bitstrings), ASCII, {C ,G ,T ,A}
Stored in an array: w [i] gets ith character (for i = 0, 1. . . .)

Convention: Words have end-sentinel $ (sometimes not shown)
w .size = |w | = # non-sentinel characters: |be$|=2.

Should know:
prefix, suffix, substring
Sort words lexicographically: be$ <lex bear$ <lex beer$
This is different from sorting numbers: 001$ <lex 010$ <lex 1$

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 18 / 39

Words (review)
Scenario: Keys in dictionary are words. Need brief review.

Words (= strings): sequences of characters over alphabet Σ
{be, bear, beer}

Typical alphabets: {0, 1} (→bitstrings), ASCII, {C ,G ,T ,A}
Stored in an array: w [i] gets ith character (for i = 0, 1. . . .)

Convention: Words have end-sentinel $ (sometimes not shown)
w .size = |w | = # non-sentinel characters: |be$|=2.

Should know:
prefix, suffix, substring
Sort words lexicographically: be$ <lex bear$ <lex beer$
This is different from sorting numbers: 001$ <lex 010$ <lex 1$

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 18 / 39

Tries: Introduction
Trie (also know as radix tree): A dictionary for bitstrings.

Comes from retrieval, but pronounced “try”
A tree based on bitwise comparisons: Edge labelled with
corresponding bit
Similar to radix sort: use individual bits, not the whole key
Due to end-sentinels, all key-value pairs are at leaves.

00$
$

0001$
$

1

0

001$
$

1

0

0100$
$

0

0

011$
$

0110$
$

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

(
Reminder: A more accurate picture would be key = 00$, <other info>•

)
T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 19 / 39

Tries: Search

Follow links that corresponds to current bits in w
Repeat until no such link or w found at a leaf

Similar as for skip lists, we find search-path separately first.

Trie::get-path-to(w)
Output: Stack with all ancestors of where w would be stored
1. P ← empty stack; z ← root; d ← 0; P.push(z)
2. while d ≤ |w |
3. if z has a child-link labelled with w [d]
4. z ← child at this link; d++; P.push(z)
5. else break
6. return P

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 20 / 39

Tries: Search Example
Example: Trie::search(011$)

00$
$

0001$
$

1

0

001$
$

1

0

0100$
$

0

0

011$
$

0110$
$

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Trie::search(w)
1. P ← get-path-to(w), z ← P.top
2. if (z is not a leaf) then
3. return “not found, would be in sub-trie of z”
4. return key-value pair at z

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 21 / 39

Tries: Search Example
Example: Trie::search(011$)

00$
$

0001$
$

1

0

001$
$

1

0

0100$
$

0

0

011$
$

0110$
$

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Trie::search(w)
1. P ← get-path-to(w), z ← P.top
2. if (z is not a leaf) then
3. return “not found, would be in sub-trie of z”
4. return key-value pair at z

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 21 / 39

Tries: Search Example
Example: Trie::search(011$)

00$
$

0001$
$

1

0

001$
$

1

0

0100$
$

0

0

011$
$

0110$
$

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Trie::search(w)
1. P ← get-path-to(w), z ← P.top
2. if (z is not a leaf) then
3. return “not found, would be in sub-trie of z”
4. return key-value pair at z

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 21 / 39

Tries: Search Example
Example: Trie::search(011$)

00$
$

0001$
$

1

0

001$
$

1

0

0100$
$

0

0

011$
$

0110$
$

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Trie::search(w)
1. P ← get-path-to(w), z ← P.top
2. if (z is not a leaf) then
3. return “not found, would be in sub-trie of z”
4. return key-value pair at z

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 21 / 39

Tries: Search Example
Example: Trie::search(011$)

00$
$

0001$
$

1

0

001$
$

1

0

0100$
$

0

0

011$
$

0110$
$

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Trie::search(w)
1. P ← get-path-to(w), z ← P.top
2. if (z is not a leaf) then
3. return “not found, would be in sub-trie of z”
4. return key-value pair at z

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 21 / 39

Tries: Leaf-references
For later applications of tries, we want another search-operation:

prefix-search(w): Find word w ′ in trie for which w is a prefix.

Testing whether w ′ exists is easy (how?)

To find w ′ quickly, we need leaf-references
I Every node z stores reference z .leaf to a leaf in subtree
I Convention: store leaf with longest word

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

0110$
$

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

(not all leaf-references are shown)

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 22 / 39

Tries: Prefix-Search Example
Example: Trie::prefix-search(11$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

0110$
$

0

1

1

0

no
such
child

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Trie::prefix-search(w)
1. P ← get-path-to(w)
2. if number of nodes on P is w .size or less
3. return “no extension of w found”
4. return P.top().leaf

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 23 / 39

Tries: Prefix-Search Example
Example: Trie::prefix-search(11$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

0110$
$

0

1

1

0

no
such
child

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Trie::prefix-search(w)
1. P ← get-path-to(w)
2. if number of nodes on P is w .size or less
3. return “no extension of w found”
4. return P.top().leaf

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 23 / 39

Tries: Prefix-Search Example
Example: Trie::prefix-search(11$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

0110$
$

0

1

1

0

no
such
child

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Trie::prefix-search(w)
1. P ← get-path-to(w)
2. if number of nodes on P is w .size or less
3. return “no extension of w found”
4. return P.top().leaf

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 23 / 39

Tries: Prefix-Search Example
Example: Trie::prefix-search(11$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

0110$
$

0

1

1

0

no
such
child

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Trie::prefix-search(w)
1. P ← get-path-to(w)
2. if number of nodes on P is w .size or less
3. return “no extension of w found”
4. return P.top().leaf

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 23 / 39

Tries: Prefix-Search Example

Example: Trie::prefix-search(10$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

0110$
$

0

1

1

0

no
such
child

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Word 10$ has size 2.
get-path-to(w) returns stack with two nodes.
We need more than w .size nodes on P to have an extension.

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 24 / 39

Tries: Insert
Trie::insert(w)

P ← get-path-to(w) gives ancestors that exist already,
Expand the trie from P.top() by adding necessary nodes that
correspond to extra bits of w .
Update leaf-references (also at P if w is longer than previous leaves)

Example: insert(011101$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

01101$
$

1

0

011101$
$

1

0

1

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

(only updated leaf-references are shown)

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 25 / 39

Tries: Insert
Trie::insert(w)

P ← get-path-to(w) gives ancestors that exist already,
Expand the trie from P.top() by adding necessary nodes that
correspond to extra bits of w .
Update leaf-references (also at P if w is longer than previous leaves)

Example: insert(011101$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

01101$
$

1

0

011101$
$

1

0

1

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

(only updated leaf-references are shown)
T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 25 / 39

Tries: Delete
Trie::delete(w)

P ← get-path-to(w) gives all ancestors.
Let ` be the leaf where w is stored
Delete ` and nodes on P until ancestor has two or more children.
Update leaf-references on rest of P.
(If z ∈ P referred to `, find new z .leaf from other children.)

Example: trie::delete(0001$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

01101$
$

1

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

(only some leaf-references are shown)
T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 26 / 39

Tries: Delete
Trie::delete(w)

P ← get-path-to(w) gives all ancestors.
Let ` be the leaf where w is stored
Delete ` and nodes on P until ancestor has two or more children.
Update leaf-references on rest of P.
(If z ∈ P referred to `, find new z .leaf from other children.)

Example: trie::delete(0001$)

00$
$

0001$
$

1

0

001$
$

1

0

01001$
$

1

0

0

011$
$

01101$
$

1

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

(only some leaf-references are shown)
T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 26 / 39

Binary Tries summary
search(w), prefix-search(w), insert(w), delete(w) all take time Θ(|w |).

Search-time is independent of number n of words stored in the trie!
Search-time is small for short words.

The trie for a given set of words is unique
(except for order of children and ties among leaf-references)

Disadvantages:
Tries can be wasteful with respect to space.

000000$$00000
0

111111$$11111
1

Worst-case space is Θ
(
n · (maximum length of a word)

)
What can we do to save space?

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 27 / 39

Binary Tries summary
search(w), prefix-search(w), insert(w), delete(w) all take time Θ(|w |).

Search-time is independent of number n of words stored in the trie!
Search-time is small for short words.

The trie for a given set of words is unique
(except for order of children and ties among leaf-references)

Disadvantages:
Tries can be wasteful with respect to space.

000000$$00000
0

111111$$11111
1

Worst-case space is Θ
(
n · (maximum length of a word)

)
What can we do to save space?
T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 27 / 39

Variations of Tries: Pruned Tries

Pruned Trie: Stop adding nodes to trie as soon as the key is unique.
A node has a child only if it has at least two descendants.
Saves space if there are only few bitstrings that are long.
Could even store infinite bitstrings (e.g. real numbers)

00$
$

0001$
0

0

01001$
0

011$
$

01101$
0

1

1

0

110$
$

1101$
1

0
111$
1

1

1

A more efficient version of tries, but the operations get a bit more
complicated.

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 28 / 39

Pruned tries and MSD-radix sort

We have (implicitly) seen pruned tries before:
For equal-length bitstrings:
Pruned trie equals recursion tree of MSD radix-sort.

0111
1111
0110
0100
1100
1101
0001
0010

0111
0110
0100
0001
0010

0001
0010

00010

001010

0111
0110
0101

01000
0111
0110

01100
01111

1
10

1111
1100
1101

1111
1100
1101

1100
1101

11000
110110

11111
1

1

0001$
0

0010$
1

0

0100$
0

0110$
0

0111$
1

1

1
0

1100$
0

1101$
10

1111$
11

1

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 29 / 39

Pruned tries can store real numbers

If we have a generator for each bit of a real number, then we can store
them in a pruned trie.

π − 3
0 1/π

0

1/e
1

0
0

√
2− 1

1

1
0

sin(π/5)
0

1/
√

2
0

e − 2
1

101
1

0

1

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 30 / 39

Compressed Tries

Another (important!) variation:
Compress paths of nodes with only one child.
Each node stores an index , corresponding to the level of the node in
the uncompressed trie. (On level d , we searched for link with w [d].)

00$
$

0001$
$

1

0

0

01001$
$

1

0

0

011$
$

01101$
$

1

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1 0

1

2

00$
$

0001$
0

0
2

01001$
0

3

011$
$

01101$
0

1

1

0
2

3

110$
$

1101$
1

0
111$

1

1

Also known as Patricia-Tries:
Practical Algorithm to Retrieve Information Coded in Alphanumeric

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 31 / 39

Compressed Tries: Search
As for tries, follow links that corresponds to current bits in w
Main difference: stored indices say which bits to compare.
Also: must compare w to word found at the leaf (why?)

CompressedTrie::get-path-to(w)
1. P ← empty stack; z ← root; P.push(z)
2. while z is not a leaf and (d ← z .index ≤ w .size) do
3. if (z has a child-link labelled with w [d]) then
4. z ← child at this link; P.push(z)
5. else break
6. return P

CompressedTrie::search(w)
1. P ← get-path-to(w), z ← P.top
2. if (z is not a leaf or word stored at z is not w) then
3. return “not found”
4. return key-value pair at z

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 32 / 39

Compressed Tries: Search Example

Example 1: CompressedTrie::search(1
0

$
1

)

0

1

2

00$
$

0001$
0

0
2

01001$
0

3

011$
$

01101$
0

1

1

0
2

3

110$
$

1101$
1

0
111$

1

1

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 33 / 39

Compressed Tries: Search Example

Example 1: CompressedTrie::search(1
0

$
1

) unsuccessful (d too big)

0

1

2

00$
$

0001$
0

0
2

01001$
0

3

011$
$

01101$
0

1

1

0
2

3

110$
$

1101$
1

0
111$

1

1

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 33 / 39

Compressed Tries: Search Example

Example 1: CompressedTrie::search(1
0

$
1

) unsuccessful (d too big)

0

1

2

00$
$

0001$
0

0
2

01001$
0

3

011$
$

01101$
0

1

1

0
2

3

110$
$

1101$
1

0
111$

1

1

prefix-search(w): Compare w to z .leaf at last visited node z .

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 33 / 39

Compressed Tries: Search Example

Example 2: CompressedTrie::search(0
0

1
1

$
2

)

0

1

2

00$
$

0001$
0

0
2

01001$
0

3

011$
$

01101$
0

1

1

0
2

3

110$
$

1101$
1

0
111$

1

1

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 34 / 39

Compressed Tries: Search Example

Example 2: CompressedTrie::search(0
0

1
1

$
2

) unsuccessful (no $-child)

0

1

2

00$
$

0001$
0

0
2

01001$
0

3

011$
$

01101$
0

1

1

0
2

3

110$
$

1101$
1

0
111$

1

1

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 34 / 39

Compressed Tries: Search Example

Example 2: CompressedTrie::search(0
0

1
1

$
2

) unsuccessful (no $-child)

0

1

2

00$
$

0001$
0

0
2

01001$
0

3

011$
$

01101$
0

1

1

0
2

3

110$
$

1101$
1

0
111$

1

1

prefix-search(w): Compare w to z .leaf at last visited node z .

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 34 / 39

Compressed Tries: Search Example

Example 3: CompressedTrie::search(1
0

0
1

1
2

$
3

)

0

1

2

00$
$

0001$
0

0
2

01001$
0

3

011$
$

01101$
0

1

1

0
2

3

110$
$

1101$
1

0
111$

1

1

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 35 / 39

Compressed Tries: Search Example

Example 3: CompressedTrie::search(1
0

0
1

1
2

$
3

) unsuccessful
(wrong word at leaf)

0

1

2

00$
$

0001$
0

0
2

01001$
0

3

011$
$

01101$
0

1

1

0
2

3

110$
$

1101$
1

0
111$

1

1

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 35 / 39

Compressed Tries: Search Example

Example 3: CompressedTrie::search(1
0

0
1

1
2

$
3

) unsuccessful
(wrong word at leaf)

0

1

2

00$
$

0001$
0

0
2

01001$
0

3

011$
$

01101$
0

1

1

0
2

3

110$
$

1101$
1

0
111$

1

1

prefix-search(w): Compare w to word at reached leaf.

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 35 / 39

Compressed Tries: Summary
search(w) and prefix-search(w) are easy.
insert(w) and delete(w) are conceptually simple:

I Search for path P to word w (say we reach node z)
I Uncompress this path (using characters of z .leaf)
I Insert/Delete w as in an uncompressed trie.
I Compress path from root to where change happened

(Pseudocode gets more complicated and is omitted.)
All operations take O(|w |) time for a word w .

Compressed tries use O(n) space
I We have n leaves.
I Every internal node has two or more children.
I Can show: Therefore more leaves than internal nodes.

Overall, code is more complicated, but space-savings are worth it if words
are unevenly distributed.

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 36 / 39

Multiway Tries: Larger Alphabet

To represent strings over any fixed alphabet Σ
Any node will have at most |Σ|+ 1 children (one child for the
end-of-word character $)
Example: A trie holding strings {bear$, ben$, be$, soul$, soup$}

be$
$

bear$
$

r

a

ben$
$

n

e

b

soul$
$

l

soup$
$

p

u

o

s

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 37 / 39

Compressed Multiway Tries

Variation: Compressed multi-way tries: compress paths as before
Example: A compressed trie holding strings {bear$, ben$, be$, soul$,
soup$}

0

2

be$

$

bear$

a

ben$

n

b

3

soul$

l

soup$

p

s

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 38 / 39

Multiway Tries: Summary
Operations search(w), prefix-search(w), insert(w) and delete(w) are
exactly as for tries for bitstrings.
Run-time O(|w | · (time to find the appropriate child))

Each node now has up to |Σ|+ 1 children. How should they be
stored?

•
$
•
a b...

•
n...

Array?

$|• a|• n|•

List?

a•

$
• n•

Dictionary?

Time/space tradeoff: arrays are fast, lists are space-efficient.
Dictionary best in theory, not worth it in practice unless |Σ| is huge.

In practice, use hashing (→ module 07).

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 39 / 39

Multiway Tries: Summary
Operations search(w), prefix-search(w), insert(w) and delete(w) are
exactly as for tries for bitstrings.
Run-time O(|w | · (time to find the appropriate child))

Each node now has up to |Σ|+ 1 children. How should they be
stored?

•
$
•
a b...

•
n...

Array?

$|• a|• n|•

List?

a•

$
• n•

Dictionary?

Time/space tradeoff: arrays are fast, lists are space-efficient.
Dictionary best in theory, not worth it in practice unless |Σ| is huge.

In practice, use hashing (→ module 07).

T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 39 / 39

Multiway Tries: Summary
Operations search(w), prefix-search(w), insert(w) and delete(w) are
exactly as for tries for bitstrings.
Run-time O(|w | · (time to find the appropriate child))

Each node now has up to |Σ|+ 1 children. How should they be
stored?

•
$
•
a b...

•
n...

Array?

$|• a|• n|•

List?

a•

$
• n•

Dictionary?

Time/space tradeoff: arrays are fast, lists are space-efficient.
Dictionary best in theory, not worth it in practice unless |Σ| is huge.

In practice, use hashing (→ module 07).
T.Biedl (CS-UW) CS240E – Module 6 Winter 2025 39 / 39

	Dictionaries for special keys
	Lower bound
	Dictionary ADT: Implementations thus far
	Lower bound for search

	Improving binary search
	Matching the lower bound
	Improving binary search

	Interpolation Search
	Interpolation Search Motivation
	Interpolation Search
	Interpolation Search Example
	Interpolation Search Second Example
	Improving Interpolation Search
	Improving Interpolation Search
	Improving Interpolation Search
	Analysis of interpolation-search-improved
	Analysis of interpolation-search-improved
	Expected number of probes
	Proof continued...
	Proof continued...

	Tries
	Words (review)
	Tries: Introduction
	Tries: Search
	Tries: Search Example
	Tries: Leaf-references
	Tries: Prefix-Search Example
	Tries: Prefix-Search Example
	Tries: Insert
	Tries: Delete
	Binary Tries summary
	Variations of Tries: Pruned Tries
	Pruned tries and MSD-radix sort
	Pruned tries can store real numbers
	Compressed Tries
	Compressed Tries: Search
	Compressed Tries: Search Example
	Compressed Tries: Search Example
	Compressed Tries: Search Example
	Compressed Tries: Summary
	Multiway Tries: Larger Alphabet
	Compressed Multiway Tries
	Multiway Tries: Summary

