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Direct Addressing
Special situation: For a known M ∈ N, every key k is an integer with
0 ≤ k < M.

We can then implement a dictionary easily: Use an array A of size M that
stores (k, v) via A[k]← v .

0

1

dog2

3

4

5

cat6

7

pig8

search(k): Check whether A[k] is NULL
insert(k, v): A[k]← v
delete(k): A[k]← NULL

Each operation is Θ(1).
Total space is Θ(M).

What sorting algorithm does this remind you of?
Bucket Sort
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Hashing Details

universe U of keys {0, . . . ,M−1}
h

k h(k)

T
0

(k, v)h(k)

M−1

Assumption: We know that all keys come from some universe U.
(Typically U = non-negative integers, sometimes |U| finite.)
We pick a table-size M.
We pick a hash function h : U → {0, 1, . . . ,M − 1}.
(Commonly used: h(k) = k mod M. We will see other choices later.)

Store dictionary in hash table, i.e., an array T of size M.
An item with key k wants to be stored in slot h(k), i.e., at T [h(k)].
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Hashing example
U = N, M = 11, h(k) = k mod 11.
The hash table stores keys 7, 13, 43, 45, 49, 92. (Values are not shown).

0

451

132

3

924

495

6

77

8

9

4310
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Collisions
Generally hash function h is not injective, so many keys can map to
the same integer.

I For example, h(46) = 2 = h(13) if h(k) = k mod 11.
We get collisions: we want to insert (k, v) into the table,
but T [h(k)] is already occupied.

There are many strategies to resolve collisions:

multiple items at location
(Chaining)

alternate slots in array
(Open addressing)

many alternate slots
(Probe sequence)

Linear probing . . . Double hashing

one alternate slot
(Cuckoo hashing)
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Chaining example
M = 11, h(k) = k mod 11

insert()

h

0

1 45
2 13
3

4 92
5 49
6

7 7
8

9

10 43
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Chaining example
M = 11, h(k) = k mod 11

insert(41)

h(41) = 8
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1 45
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5 49
6

7 7
8

9

10 43

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 6 / 1



Chaining example
M = 11, h(k) = k mod 11

insert(41)

h(41) = 8

0

1 45
2 13
3

4 92
5 49
6

7 7
8 41
9

10 43

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 6 / 1



Chaining example
M = 11, h(k) = k mod 11
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h(46) = 2
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Chaining example
M = 11, h(k) = k mod 11

insert(46)

h(46) = 2

0

1 45
2 46 13
3

4 92
5 49
6

7 7
8 41
9

10 43
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Chaining example
M = 11, h(k) = k mod 11

insert(16)

h(16) = 5

0

1 45
2 46 13
3

4 92
5 49
6

7 7
8 41
9

10 43
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Chaining example
M = 11, h(k) = k mod 11

insert(16)

h(16) = 5

0

1 45
2 46 13
3

4 92
5 16 49
6

7 7
8 41
9

10 43
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Chaining example
M = 11, h(k) = k mod 11

insert(79)

h(79) = 2

0

1 45
2 79 46 13
3

4 92
5 16 49
6

7 7
8 41
9

10 43

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 6 / 1



Complexity of chaining

Run-times: insert takes time Θ(1).
search and delete have run-time Θ

(
1 + size of bucket T [h(k)]

)
.

The average bucket-size is n
M =: α.

(α is also called the load factor.)

However, this does not imply that the average-case cost of search and
delete is Θ(1 + α).

I Consider the case where all keys hash to the same slot
I The average bucket-size is still α
I But the operations take Θ(n) time on average

To get meaningful average-case bounds, we need some assumptions
on the hash-functions and the keys!
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Complexity of chaining

To analyze what happens ‘on average’, switch to randomized hashing.
How can we randomize?

Assume that the hash-function is chosen randomly.
I We will later see examples how to do this.

To be able to analyze, we assume the following:

Uniform Hashing Assumption: Any possible hash-function
is equally likely to be chosen as hash-function.

(This is not at all realistic, but the assumption makes analysis possible.)
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Complexity of chaining

UHA implies that the distribution of keys is unimportant.
Claim 1: Hash-values are uniform.
Formally: P

(
h(k) = i

)
= 1

M for any key k and slot i .

Claim 2: Hash-values of any two keys are independent of each other.

Back to complexity of chaining:
Each bucket has expected length n

M ≤ α
I n other keys are in this slot with probability 1

M

Each key in dictionary is expected to collide with n−1
M other keys

I n − 1 other keys are in same slot with probability 1
M

Expected cost of search and delete is hence Θ(1 + α)
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Load factor and re-hashing
For hashing with chaining (and also other collision resolution
strategies), the run-time bound depends on α

(Recall: load factor α = n/M.)
We keep the load factor small by rehashing when needed:

0

T

1 45
2 79 46 13
3

4 92
5 16 49
6

7 7
8 41
9

10 43

0 46 92
T

1
2
3 49
4
5
6
7 7
8
9

10
11
12
13 13
14
15
16 16
17
18 41
19
20 43
21
22 45

I Keep track of n and M throughout operations
I If α gets too large, create new (roughly twice as big) hash-table, new

hash-function(s) and re-insert all items in the new table.
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Hashing with Chaining summary

For Hashing with Chaining: Rehash so that α ∈ Θ(1) throughout
Rehashing costs Θ(M + n) time (plus the time to find a new hash
function).
Rehashing happens rarely enough that we can ignore this term when
amortizing over all operations.
We should also re-hash when α gets too small, so that M ∈ Θ(n)
throughout, and the space is always Θ(n).

Summary: The amortized expected cost for hashing with chaining is O(1)
and the space is Θ(n)

(assuming uniform hashing and α ∈ Θ(1) throughout)

Theoretically perfect, but too slow in practice.
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Open addressing
Main idea: Avoid the links needed for chaining by permitting only one
item per slot, but allowing a key k to be in multiple slots.

search and insert follow a probe sequence of possible locations for key k:
〈h(k, 0), h(k, 1), h(k, 2), . . . h(k,M−1)〉 until an empty spot is found.

0 1 2 3 4 5 6 7 8 9 10

key-value pair (k, v)

preferred slot: h(k, 0)
next-best: h(k, 1)

h(k, 2)

Simplest method for open addressing: linear probing
h(k, j) = (h(k) + j) mod M, for some hash function h.
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

h

0

451

132

3

924

495

6

77

8

9

4310
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(41)

h(41, 0) = 8

0

451

132

3

924

495

6

77

418

9

4310
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(84)

h(84, 0) = 7

0

451

132

3

924

495

6

77

418

9

4310
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(84)

h(84, 1) = 8

0

451

132

3

924

495

6

77

418

9

4310
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(84)

h(84, 2) = 9

0

451

132

3

924

495

6

77

418

849

4310
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(20)

h(20, 0) = 9

0

451

132

3

924

495

6

77

418

849

4310
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(20)

h(20, 1) = 10

0

451

132

3

924

495

6

77

418

849

4310

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 13 / 1



Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(20)

h(20, 2) = 0

200

451

132

3

924

495

6

77

418

849

4310
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Probe sequence operations
Use lazy deletion (cannot handle updates after delete efficiently).

probe-sequence::insert(T , (k, v))
1. for (j = 0; j < M; j++)
2. if T [h(k, j)] is NULL or “deleted”
3. T [h(k, j)] = (k, v)
4. return “success”
5. return “failure to insert” // need to re-hash

probe-sequence-search(T , k)
1. for (j = 0; j < M; j++)
2. if T [h(k, j)] is NULL return “item not found”
3. if T [h(k, j)] has key k return T [h(k, j)]
4. // key is incorrect or “deleted”
5. // try next probe, i.e., continue for-loop
6. return “item not found”
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Independent hash functions

Some hashing methods require two hash functions h0, h1.
These hash functions should be independent in the sense that the
random variables P(h0(k) = i) and P(h1(k) = j) are independent.
Using two modular hash-functions often leads to dependencies.

Better idea: Use multiplication method for second hash function:
I Fix some floating-point number A with 0 < A < 1

h(k) =
⌊
M ·

(
A · k︸︷︷︸

multiply
− bA · kc︸ ︷︷ ︸

integral part

)
︸ ︷︷ ︸
fractional part, in [0, 1)

⌋

︸ ︷︷ ︸
integer in [0,M)

.

I Our examples use ϕ=
√
5−1
2 ≈ 0.618033988749.... as A.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 15 / 1



Independent hash functions

Some hashing methods require two hash functions h0, h1.
These hash functions should be independent in the sense that the
random variables P(h0(k) = i) and P(h1(k) = j) are independent.
Using two modular hash-functions often leads to dependencies.
Better idea: Use multiplication method for second hash function:

I Fix some floating-point number A with 0 < A < 1

h(k) =
⌊
M ·

(
A · k︸︷︷︸

multiply
− bA · kc︸ ︷︷ ︸

integral part

)
︸ ︷︷ ︸
fractional part, in [0, 1)

⌋

︸ ︷︷ ︸
integer in [0,M)

.

I Our examples use ϕ=
√
5−1
2 ≈ 0.618033988749.... as A.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 15 / 1



Double Hashing

Assume we have two hash independent functions h0, h1.
Assume further that h1(k) 6= 0 and that h1(k) is relative prime with
the table-size M for all keys k.

I Choose M prime.
I Modify standard hash-functions to ensure h1(k) 6= 0

E.g. modified multiplication method: h(k) = 1 + b(M−1)(kA−bkAc)c

Double hashing: open addressing with probe sequence

h(k, j) =
(
h0(k) + j · h1(k)

)
mod M

search, insert, delete work just like for linear probing,
but with this different probe sequence.
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Double hashing example

M = 11, h0(k) = k mod 11, h1(k) = b10(ϕk − bϕkc)c+ 1

0

451

132

3

924

495

6

77

8

9

4310
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Double hashing example

M = 11, h0(k) = k mod 11, h1(k) = b10(ϕk − bϕkc)c+ 1

insert(41)

h0(41) = 8

h(41, 0) = 8
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Double hashing example

M = 11, h0(k) = k mod 11, h1(k) = b10(ϕk − bϕkc)c+ 1

insert(194)

h0(194) = 7

h(194, 0) = 7

0
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924

495
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Double hashing example

M = 11, h0(k) = k mod 11, h1(k) = b10(ϕk − bϕkc)c+ 1

insert(194)

h0(194) = 7

h(194, 0) = 7

h1(194) = 9

h(194, 1) = 5
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Double hashing example

M = 11, h0(k) = k mod 11, h1(k) = b10(ϕk − bϕkc)c+ 1

insert(194)

h0(194) = 7

h(194, 0) = 7

h1(194) = 9

h(194, 1) = 5

h(194, 2) = 3
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132
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924

495

6

77

418

9

4310
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Analysis of uniform probing
Analyzing linear probing and double hashing is difficult (no details).
Instead, analyze an idealized setup: uniform probing

P(slot i is occupied) = 1
M

As before, α = n
M is the load factor.

Claim 1: The expected run-time of search is O( 1
1−α).

Claim 2: The expected-luck average-instance run-time of a successful
search is O( 1

α) ln
(

1
1−α

)
.
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Cuckoo hashing

We use two independent hash functions h0, h1 and two tables T0,T1.

Main idea: An item with key
k can only be at T0[h0(k)] or
T1[h1(k)].

search and delete then always
take constant time.
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929

10

T0 T1
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Cuckoo Hashing Insertion
insert always initially puts the new item into T0[h0(k)]

Evict item that may have been there already.
If so, evicted item inserted at alternate position
This may lead to a loop of evictions.

I Can show: If insertion is possible, then there are at most 2n evictions.
I So abort after too many attempts.

cuckoo::insert(k, v)
1. (kinsert , vinsert)← new key-value pair with (k, v)
2. i ← 0
3. do at most 2n times:
4. (kevict , vevict)← Ti [hi (kinsert)] // save old KVP
5. Ti [hi (kinsert)]← (kinsert , vinsert) // put in new KVP
6. if (kevict , vevict) is NULL return “success”
7. else // repeat in other table
8. (kinsert , vinsert)← (kevict , vevict); i ← 1− i
9. return “failure to insert” // need to re-hash
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

()

i =
k =

h0(k) =
h1(k) =
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(51)

i = 0
k = 51

h0(k) = 7
h1(k) = 5
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(51)

i = 0
k = 51

h0(k) = 7
h1(k) = 5
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(95)

i = 0
k = 95

h0(k) = 7
h1(k) = 7
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(95)

i = 1
k = 51

h0(k) = 7
h1(k) = 5
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insert(95)

i = 1
k = 51

h0(k) = 7
h1(k) = 5
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(26)

i = 0
k = 26

h0(k) = 4
h1(k) = 0
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(26)

i = 1
k = 59

h0(k) = 4
h1(k) = 5
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(26)

i = 0
k = 51

h0(k) = 7
h1(k) = 5
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(26)

i = 1
k = 95

h0(k) = 4
h1(k) = 7
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(26)

i = 1
k = 95

h0(k) = 4
h1(k) = 7
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

search(59)

i = 1
k =

h0(59) = 4
h1(59) = 5
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

delete(59)

i = 1
k =

h0(59) = 4
h1(59) = 5
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Cuckoo hashing discussions

Can show: expected number of evictions during insert is O(1).
I So in practice, stop evictions much earlier than 2n rounds.

This crucially requires load factor α < 1
2 .

I Here α = n/(size of T0 + size of T1)
So cuckoo hashing is wasteful on space.
In fact, space is ω(n) if insert forces lots of re-hashing.
Can show: expected space is O(n).

There are many possible variations:
The two hash-tables could be combined into one.
Be more flexible when inserting: Always consider both possible
positions.
Use k > 2 allowed locations (i.e., k hash-functions).
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Complexity of open addressing strategies

For any open addressing scheme, we must have α ≤ 1 (why?).
For the analysis, we require 0 < α < 1 (not arbitrarily close).
Cuckoo hashing requires 0 < α < 1/2 (not arbitrarily close).

Under these restrictions (and the universal hashing assumption):
All strategies have O(1) expected time for search, insert, delete.
Cuckoo Hashing has O(1) worst-case time for search, delete.
Probe sequences use O(n) worst-case space,
Cuckoo Hashing uses O(n) expected space.

But for any hash-function the worst-case run-time is Θ(n) for insert.

In practice, double hashing seems the most popular, or cuckoo hashing if
there are many more searches than insertions.
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Hash functions

Every hash function must do badly for some inputs:
If the universe is big enough (|U| ≥ M(n − 1) + 1), then there are n
keys that all hash to the same value.

universe U of keys {0, . . . ,M−1}
h •

•

• •

•

•

•

If we insert this set of keys, then we have Θ(n) run-time.
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Choosing a good hash function

Analysis works only under uniform hashing assumption: Hash
function is randomly chosen among all possible hash-functions.

Satisfying this is impossible: There are too many hash functions; we
would not know how to look up h(k).

Two ways to compromise:
1 Deterministic: hope for good performance by choosing a

hash-function that is
I unrelated to any possible patterns in the data, and
I depends on all parts of the key.

2 Randomized: Choose randomly among a limited set of functions.
I But aim for P(two keys collide) = 1

M w.r.t. key-distribution.
I This is enough to prove the expected run-time bounds for chaining
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Deterministic hash functions

We saw two basic methods for integer keys:

Modular method: h(k) = k mod M.
I We should choose M to be a prime.
I This means finding a suitable prime quickly when re-hashing.
I This can be done in O(M log log n) time (no details).

Multiplication method: h(k) = bM(kA− bkAc)c,
for some floating-point number A with 0 < A < 1.

I Multiplying with A is used to scramble the keys.
So A should be irrational to avoid patterns in the keys.

I Experiments show that good scrambling is achieved when A is the
golden ratio ϕ=

√
5−1
2 ≈ 0.618033988749.....

I How many bits should we use?
I Won’t the computation be terribly slow?
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Multiplication method
h(k) = bM(kA− bkAc)c
Consider what happens at bit-level:

A = 0.a1a2a3 . . .
k = b1b2 . . . b6
(both in base 2)

(leading bits) (bits of fractional part)
A · k = 0 0 0 .. 0 0

+a1· 0 b1b2b3 .. b5 b6
+a2· 0 0 b1b2b3 .. b5 b6
+a3· 0 0 0 b1b2 b3 .. b5 b6

... . . . . . . . . . . . . . . . . . .
+a5· 0 0 0 0 0 b1 b2 b3 .. b5 b6
+a6· 0 0 0 0 0 0 b1 b2 b3 .. b5 b6
+a7· 0 0 0 0 0 0 0 b1 b2 b3 .. b5 b6
+a8· 0 0 0 0 0 0 0 0 b1 b2 b3 .. b5 b6

... ←h(k)→ . . . . . . . . . . . . . . . . . .

Use M = 2`. Then h(k) = first ` bits of fractional part.
Only log |U|+ ` bits of A influence h(k).
Computing h(k) = multiplication plus bit-shift.
This may actually be faster than taking “modulo a prime number”.
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Randomly chosen hash-functions

Ideally we would choose randomly among all hash functions. But this
is impossible.

Idea: Fix a family H of hash-functions that are easy to compute.
Then choose uniformly among them.
Example:

I U = Z5, M = 2
I hb(k) = ((k + b) mod 5) mod 2
I H = {hb : b ∈ Z5}
I Choose b ∈ Z5 randomly to get

hash-function

keys
H 0 1 2 3 4
h0 0 1 0 1 0
h1 1 0 1 0 0
h2 0 1 0 0 1
h3 1 0 0 1 0
h4 0 0 1 0 1

But how do we measure whether these are “good”?
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Universal hash-functions
For analysis, we needed uniform hash-values:,

P(h(k) = i) = 1
M

But this is not good enough.

keys
H 0 1 2 3 4
h0 0 0 0 0 0
h1 1 1 1 1 1

- P(h(k) = i) = 1
2 for i = 0, 1 and any k

- But these hash-functions are terrible!
- Problem: hash-values not independent

Also want: Small probability of collisions (H is universal):

P
(
h(k) = h(k ′)

)
≤ 1

M for any two keys k 6= k ′

This is enough for analyzing hashing with chaining as before.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 31 / 1



Carter-Wegman hash-function

HCW =
{

ha,b(k) =
(

(a · k + b) mod p︸ ︷︷ ︸
fa,b(k)

)
mod M : a, b ∈ Zp, a 6= 0

}

(where p prime, universe of keys is {0, . . . , p−1} =: Zp, M < p)

Example: (p = 5,M = 2):

keys
0 1 2 3 4

f1,0 0 1 2 3 4
f2,0 0 2 4 1 3
f1,2 2 3 4 0 1
f2,1 1 3 0 2 4
...

...
...

...
...

...

keys
0 1 2 3 4

h1,0 0 1 0 1 0
h2,0 0 0 0 1 1
h1,2 0 1 0 0 1
h2,1 1 1 0 0 0
...

...
...

...
...

...

Observe: fa,b is a permutation of Zp.
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Carter-Wegman’s universal hashing

Requires: all keys are in {0, . . . , p − 1} for some (big) prime p.
At initialization, and whenever we re-hash:

I Choose M < p arbitrarily, power of 2 is ok.
I Choose (and store) two random numbers a, b

F b = random(p)
F a = 1 + random(p − 1) (so a 6= 0)

I Use as hash-function ha,b(k) =
(
(ak + b) mod p

)
mod M

h(k) can be computed quickly.

Theorem: HCW is universal: P(h(k) = h(k ′)) ≤ 1
M .

So hashing with chaining and randomly chosen hash function in HCW has
expected run-time O(1).
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Multi-dimensional Data
What if the keys are multi-dimensional, such as strings?

Standard approach is to flatten string w to integer f (w) ∈ N, e.g.

A · P · P · L · E → (65, 80, 80, 76, 69) (ASCII)
→ 65R4 + 80R3 + 80R2 + 76R1 + 69R0

(for some radix R, e.g. R = 255)

We combine this with a modular hash function: h(w) = f (w) mod M

To compute this in O(|w |) time without overflow, use Horner’s rule and
apply mod early. For exampe, h(APPLE ) is

(((((((
65R+80

)
mod M

)
R+80

)
mod M

)
R+76

)
mod M

)
R+69

)
mod M
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Hashing vs. Balanced Search Trees

Advantages of Balanced Search Trees
O(log n) worst-case operation cost
Does not require any assumptions, special functions,
or known properties of input distribution
Predictable space usage (exactly n nodes)
Never need to rebuild the entire structure
Supports ordered dictionary operations (successor, select, rank etc.)

Advantages of Hash Tables
O(1) operation cost (if hash-function random and load factor small)
We can choose space-time tradeoff via load factor
Cuckoo hashing achieves O(1) worst-case for search & delete
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