
CS 240E – Data Structures
and Data Management (Enriched)

Module 7: Dictionaries via Hashing

Therese Biedl
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025
version 2025-02-16 16:49

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 1 / 1

Outline

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025

Outline

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025

Direct Addressing
Special situation: For a known M ∈ N, every key k is an integer with
0 ≤ k < M.

We can then implement a dictionary easily: Use an array A of size M that
stores (k, v) via A[k]← v .

0

1

dog2

3

4

5

cat6

7

pig8

search(k): Check whether A[k] is NULL
insert(k, v): A[k]← v
delete(k): A[k]← NULL

Each operation is Θ(1).
Total space is Θ(M).

What sorting algorithm does this remind you of?
Bucket Sort

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 2 / 1

Direct Addressing
Special situation: For a known M ∈ N, every key k is an integer with
0 ≤ k < M.

We can then implement a dictionary easily: Use an array A of size M that
stores (k, v) via A[k]← v .

0

1

dog2

3

4

5

cat6

7

pig8

search(k): Check whether A[k] is NULL
insert(k, v): A[k]← v
delete(k): A[k]← NULL

Each operation is Θ(1).
Total space is Θ(M).

What sorting algorithm does this remind you of?

Bucket Sort

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 2 / 1

Direct Addressing
Special situation: For a known M ∈ N, every key k is an integer with
0 ≤ k < M.

We can then implement a dictionary easily: Use an array A of size M that
stores (k, v) via A[k]← v .

0

1

dog2

3

4

5

cat6

7

pig8

search(k): Check whether A[k] is NULL
insert(k, v): A[k]← v
delete(k): A[k]← NULL

Each operation is Θ(1).
Total space is Θ(M).

What sorting algorithm does this remind you of?
Bucket Sort

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 2 / 1

Hashing Details

universe U of keys {0, . . . ,M−1}
h

k h(k)

T
0

(k, v)h(k)

M−1

Assumption: We know that all keys come from some universe U.
(Typically U = non-negative integers, sometimes |U| finite.)
We pick a table-size M.
We pick a hash function h : U → {0, 1, . . . ,M − 1}.
(Commonly used: h(k) = k mod M. We will see other choices later.)

Store dictionary in hash table, i.e., an array T of size M.
An item with key k wants to be stored in slot h(k), i.e., at T [h(k)].
T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 3 / 1

Hashing example
U = N, M = 11, h(k) = k mod 11.
The hash table stores keys 7, 13, 43, 45, 49, 92. (Values are not shown).

0

451

132

3

924

495

6

77

8

9

4310

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 4 / 1

Collisions
Generally hash function h is not injective, so many keys can map to
the same integer.

I For example, h(46) = 2 = h(13) if h(k) = k mod 11.
We get collisions: we want to insert (k, v) into the table,
but T [h(k)] is already occupied.

There are many strategies to resolve collisions:

multiple items at location
(Chaining)

alternate slots in array
(Open addressing)

many alternate slots
(Probe sequence)

Linear probing . . . Double hashing

one alternate slot
(Cuckoo hashing)

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 5 / 1

Collisions
Generally hash function h is not injective, so many keys can map to
the same integer.

I For example, h(46) = 2 = h(13) if h(k) = k mod 11.
We get collisions: we want to insert (k, v) into the table,
but T [h(k)] is already occupied.
There are many strategies to resolve collisions:

multiple items at location
(Chaining)

alternate slots in array
(Open addressing)

many alternate slots
(Probe sequence)

Linear probing . . . Double hashing

one alternate slot
(Cuckoo hashing)

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 5 / 1

Outline

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025

Chaining example
M = 11, h(k) = k mod 11

insert()

h

0

1 45
2 13
3

4 92
5 49
6

7 7
8

9

10 43

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 6 / 1

Chaining example
M = 11, h(k) = k mod 11

insert(41)

h(41) = 8

0

1 45
2 13
3

4 92
5 49
6

7 7
8

9

10 43

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 6 / 1

Chaining example
M = 11, h(k) = k mod 11

insert(41)

h(41) = 8

0

1 45
2 13
3

4 92
5 49
6

7 7
8 41
9

10 43

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 6 / 1

Chaining example
M = 11, h(k) = k mod 11

insert(46)

h(46) = 2

0

1 45
2 13
3

4 92
5 49
6

7 7
8 41
9

10 43

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 6 / 1

Chaining example
M = 11, h(k) = k mod 11

insert(46)

h(46) = 2

0

1 45
2 46 13
3

4 92
5 49
6

7 7
8 41
9

10 43

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 6 / 1

Chaining example
M = 11, h(k) = k mod 11

insert(16)

h(16) = 5

0

1 45
2 46 13
3

4 92
5 49
6

7 7
8 41
9

10 43

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 6 / 1

Chaining example
M = 11, h(k) = k mod 11

insert(16)

h(16) = 5

0

1 45
2 46 13
3

4 92
5 16 49
6

7 7
8 41
9

10 43

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 6 / 1

Chaining example
M = 11, h(k) = k mod 11

insert(79)

h(79) = 2

0

1 45
2 79 46 13
3

4 92
5 16 49
6

7 7
8 41
9

10 43

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 6 / 1

Complexity of chaining

Run-times: insert takes time Θ(1).
search and delete have run-time Θ

(
1 + size of bucket T [h(k)]

)
.

The average bucket-size is n
M =: α.

(α is also called the load factor.)

However, this does not imply that the average-case cost of search and
delete is Θ(1 + α).

I Consider the case where all keys hash to the same slot
I The average bucket-size is still α
I But the operations take Θ(n) time on average

To get meaningful average-case bounds, we need some assumptions
on the hash-functions and the keys!

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 7 / 1

Complexity of chaining

Run-times: insert takes time Θ(1).
search and delete have run-time Θ

(
1 + size of bucket T [h(k)]

)
.

The average bucket-size is n
M =: α.

(α is also called the load factor.)

However, this does not imply that the average-case cost of search and
delete is Θ(1 + α).

I Consider the case where all keys hash to the same slot
I The average bucket-size is still α
I But the operations take Θ(n) time on average

To get meaningful average-case bounds, we need some assumptions
on the hash-functions and the keys!

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 7 / 1

Complexity of chaining

To analyze what happens ‘on average’, switch to randomized hashing.
How can we randomize?

Assume that the hash-function is chosen randomly.
I We will later see examples how to do this.

To be able to analyze, we assume the following:

Uniform Hashing Assumption: Any possible hash-function
is equally likely to be chosen as hash-function.

(This is not at all realistic, but the assumption makes analysis possible.)

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 8 / 1

Complexity of chaining

To analyze what happens ‘on average’, switch to randomized hashing.
How can we randomize?
Assume that the hash-function is chosen randomly.

I We will later see examples how to do this.
To be able to analyze, we assume the following:

Uniform Hashing Assumption: Any possible hash-function
is equally likely to be chosen as hash-function.

(This is not at all realistic, but the assumption makes analysis possible.)

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 8 / 1

Complexity of chaining

UHA implies that the distribution of keys is unimportant.
Claim 1: Hash-values are uniform.
Formally: P

(
h(k) = i

)
= 1

M for any key k and slot i .

Claim 2: Hash-values of any two keys are independent of each other.

Back to complexity of chaining:
Each bucket has expected length n

M ≤ α
I n other keys are in this slot with probability 1

M

Each key in dictionary is expected to collide with n−1
M other keys

I n − 1 other keys are in same slot with probability 1
M

Expected cost of search and delete is hence Θ(1 + α)

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 9 / 1

Complexity of chaining

UHA implies that the distribution of keys is unimportant.
Claim 1: Hash-values are uniform.
Formally: P

(
h(k) = i

)
= 1

M for any key k and slot i .

Claim 2: Hash-values of any two keys are independent of each other.

Back to complexity of chaining:
Each bucket has expected length n

M ≤ α
I n other keys are in this slot with probability 1

M

Each key in dictionary is expected to collide with n−1
M other keys

I n − 1 other keys are in same slot with probability 1
M

Expected cost of search and delete is hence Θ(1 + α)

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 9 / 1

Load factor and re-hashing
For hashing with chaining (and also other collision resolution
strategies), the run-time bound depends on α

(Recall: load factor α = n/M.)
We keep the load factor small by rehashing when needed:

0

T

1 45
2 79 46 13
3

4 92
5 16 49
6

7 7
8 41
9

10 43

0 46 92
T

1
2
3 49
4
5
6
7 7
8
9

10
11
12
13 13
14
15
16 16
17
18 41
19
20 43
21
22 45

I Keep track of n and M throughout operations
I If α gets too large, create new (roughly twice as big) hash-table, new

hash-function(s) and re-insert all items in the new table.
T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 10 / 1

Hashing with Chaining summary

For Hashing with Chaining: Rehash so that α ∈ Θ(1) throughout
Rehashing costs Θ(M + n) time (plus the time to find a new hash
function).
Rehashing happens rarely enough that we can ignore this term when
amortizing over all operations.
We should also re-hash when α gets too small, so that M ∈ Θ(n)
throughout, and the space is always Θ(n).

Summary: The amortized expected cost for hashing with chaining is O(1)
and the space is Θ(n)

(assuming uniform hashing and α ∈ Θ(1) throughout)

Theoretically perfect, but too slow in practice.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 11 / 1

Outline

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025

Open addressing
Main idea: Avoid the links needed for chaining by permitting only one
item per slot, but allowing a key k to be in multiple slots.

search and insert follow a probe sequence of possible locations for key k:
〈h(k, 0), h(k, 1), h(k, 2), . . . h(k,M−1)〉 until an empty spot is found.

0 1 2 3 4 5 6 7 8 9 10

key-value pair (k, v)

preferred slot: h(k, 0)
next-best: h(k, 1)

h(k, 2)

Simplest method for open addressing: linear probing
h(k, j) = (h(k) + j) mod M, for some hash function h.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 12 / 1

Open addressing
Main idea: Avoid the links needed for chaining by permitting only one
item per slot, but allowing a key k to be in multiple slots.

search and insert follow a probe sequence of possible locations for key k:
〈h(k, 0), h(k, 1), h(k, 2), . . . h(k,M−1)〉 until an empty spot is found.

0 1 2 3 4 5 6 7 8 9 10

key-value pair (k, v)

preferred slot: h(k, 0)
next-best: h(k, 1)

h(k, 2)

Simplest method for open addressing: linear probing
h(k, j) = (h(k) + j) mod M, for some hash function h.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 12 / 1

Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

h

0

451

132

3

924

495

6

77

8

9

4310

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 13 / 1

Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(41)

h(41, 0) = 8

0

451

132

3

924

495

6

77

418

9

4310

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 13 / 1

Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(84)

h(84, 0) = 7

0

451

132

3

924

495

6

77

418

9

4310

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 13 / 1

Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(84)

h(84, 1) = 8

0

451

132

3

924

495

6

77

418

9

4310

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 13 / 1

Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(84)

h(84, 2) = 9

0

451

132

3

924

495

6

77

418

849

4310

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 13 / 1

Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(20)

h(20, 0) = 9

0

451

132

3

924

495

6

77

418

849

4310

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 13 / 1

Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(20)

h(20, 1) = 10

0

451

132

3

924

495

6

77

418

849

4310

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 13 / 1

Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(20)

h(20, 2) = 0

200

451

132

3

924

495

6

77

418

849

4310

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 13 / 1

Probe sequence operations
Use lazy deletion (cannot handle updates after delete efficiently).

probe-sequence::insert(T , (k, v))
1. for (j = 0; j < M; j++)
2. if T [h(k, j)] is NULL or “deleted”
3. T [h(k, j)] = (k, v)
4. return “success”
5. return “failure to insert” // need to re-hash

probe-sequence-search(T , k)
1. for (j = 0; j < M; j++)
2. if T [h(k, j)] is NULL return “item not found”
3. if T [h(k, j)] has key k return T [h(k, j)]
4. // key is incorrect or “deleted”
5. // try next probe, i.e., continue for-loop
6. return “item not found”

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 14 / 1

Independent hash functions

Some hashing methods require two hash functions h0, h1.
These hash functions should be independent in the sense that the
random variables P(h0(k) = i) and P(h1(k) = j) are independent.
Using two modular hash-functions often leads to dependencies.

Better idea: Use multiplication method for second hash function:
I Fix some floating-point number A with 0 < A < 1

h(k) =
⌊
M ·

(
A · k︸︷︷︸

multiply
− bA · kc︸ ︷︷ ︸

integral part

)
︸ ︷︷ ︸
fractional part, in [0, 1)

⌋

︸ ︷︷ ︸
integer in [0,M)

.

I Our examples use ϕ=
√
5−1
2 ≈ 0.618033988749.... as A.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 15 / 1

Independent hash functions

Some hashing methods require two hash functions h0, h1.
These hash functions should be independent in the sense that the
random variables P(h0(k) = i) and P(h1(k) = j) are independent.
Using two modular hash-functions often leads to dependencies.
Better idea: Use multiplication method for second hash function:

I Fix some floating-point number A with 0 < A < 1

h(k) =
⌊
M ·

(
A · k︸︷︷︸

multiply
− bA · kc︸ ︷︷ ︸

integral part

)
︸ ︷︷ ︸
fractional part, in [0, 1)

⌋

︸ ︷︷ ︸
integer in [0,M)

.

I Our examples use ϕ=
√
5−1
2 ≈ 0.618033988749.... as A.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 15 / 1

Double Hashing

Assume we have two hash independent functions h0, h1.
Assume further that h1(k) 6= 0 and that h1(k) is relative prime with
the table-size M for all keys k.

I Choose M prime.
I Modify standard hash-functions to ensure h1(k) 6= 0

E.g. modified multiplication method: h(k) = 1 + b(M−1)(kA−bkAc)c

Double hashing: open addressing with probe sequence

h(k, j) =
(
h0(k) + j · h1(k)

)
mod M

search, insert, delete work just like for linear probing,
but with this different probe sequence.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 16 / 1

Double hashing example

M = 11, h0(k) = k mod 11, h1(k) = b10(ϕk − bϕkc)c+ 1

0

451

132

3

924

495

6

77

8

9

4310

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 17 / 1

Double hashing example

M = 11, h0(k) = k mod 11, h1(k) = b10(ϕk − bϕkc)c+ 1

insert(41)

h0(41) = 8

h(41, 0) = 8

0

451

132

3

924

495

6

77

418

9

4310

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 17 / 1

Double hashing example

M = 11, h0(k) = k mod 11, h1(k) = b10(ϕk − bϕkc)c+ 1

insert(194)

h0(194) = 7

h(194, 0) = 7

0

451

132

3

924

495

6

77

418

9

4310

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 17 / 1

Double hashing example

M = 11, h0(k) = k mod 11, h1(k) = b10(ϕk − bϕkc)c+ 1

insert(194)

h0(194) = 7

h(194, 0) = 7

h1(194) = 9

h(194, 1) = 5

0

451

132

3

924

495

6

77

418

9

4310

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 17 / 1

Double hashing example

M = 11, h0(k) = k mod 11, h1(k) = b10(ϕk − bϕkc)c+ 1

insert(194)

h0(194) = 7

h(194, 0) = 7

h1(194) = 9

h(194, 1) = 5

h(194, 2) = 3

0

451

132

1943

924

495

6

77

418

9

4310

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 17 / 1

Analysis of uniform probing
Analyzing linear probing and double hashing is difficult (no details).
Instead, analyze an idealized setup: uniform probing

P(slot i is occupied) = 1
M

As before, α = n
M is the load factor.

Claim 1: The expected run-time of search is O(1
1−α).

Claim 2: The expected-luck average-instance run-time of a successful
search is O(1

α) ln
(

1
1−α

)
.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 18 / 1

Analysis of uniform probing
Analyzing linear probing and double hashing is difficult (no details).
Instead, analyze an idealized setup: uniform probing

P(slot i is occupied) = 1
M

As before, α = n
M is the load factor.

Claim 1: The expected run-time of search is O(1
1−α).

Claim 2: The expected-luck average-instance run-time of a successful
search is O(1

α) ln
(

1
1−α

)
.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 18 / 1

Analysis of uniform probing
Analyzing linear probing and double hashing is difficult (no details).
Instead, analyze an idealized setup: uniform probing

P(slot i is occupied) = 1
M

As before, α = n
M is the load factor.

Claim 1: The expected run-time of search is O(1
1−α).

Claim 2: The expected-luck average-instance run-time of a successful
search is O(1

α) ln
(

1
1−α

)
.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 18 / 1

Outline

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025

Cuckoo hashing

We use two independent hash functions h0, h1 and two tables T0,T1.

Main idea: An item with key
k can only be at T0[h0(k)] or
T1[h1(k)].

search and delete then always
take constant time.

440

1

2

3

594

5

6

517

8

9

10

0

1

2

3

4

5

6

7

8

929

10

T0 T1

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 21 / 1

Cuckoo Hashing Insertion
insert always initially puts the new item into T0[h0(k)]

Evict item that may have been there already.
If so, evicted item inserted at alternate position
This may lead to a loop of evictions.

I Can show: If insertion is possible, then there are at most 2n evictions.
I So abort after too many attempts.

cuckoo::insert(k, v)
1. (kinsert , vinsert)← new key-value pair with (k, v)
2. i ← 0
3. do at most 2n times:
4. (kevict , vevict)← Ti [hi (kinsert)] // save old KVP
5. Ti [hi (kinsert)]← (kinsert , vinsert) // put in new KVP
6. if (kevict , vevict) is NULL return “success”
7. else // repeat in other table
8. (kinsert , vinsert)← (kevict , vevict); i ← 1− i
9. return “failure to insert” // need to re-hash

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 22 / 1

Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

()

i =
k =

h0(k) =
h1(k) =

440

1

2

3

594

5

6

7

8

9

10

T0

0

1

2

3

4

5

6

7

8

929

10

T1

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 23 / 1

Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(51)

i = 0
k = 51

h0(k) = 7
h1(k) = 5

440

1

2

3

594

5

6

7

8

9

10

T0

0

1

2

3

4

5

6

7

8

929

10

T1

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 23 / 1

Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(51)

i = 0
k = 51

h0(k) = 7
h1(k) = 5

440

1

2

3

594

5

6

517

8

9

10

T0

0

1

2

3

4

5

6

7

8

929

10

T1

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 23 / 1

Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(95)

i = 0
k = 95

h0(k) = 7
h1(k) = 7

440

1

2

3

594

5

6

517

8

9

10

T0

0

1

2

3

4

5

6

7

8

929

10

T1

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 23 / 1

Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(95)

i = 1
k = 51

h0(k) = 7
h1(k) = 5

440

1

2

3

594

5

6

957

8

9

10

T0

0

1

2

3

4

5

6

7

8

929

10

T1

51

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 23 / 1

Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(95)

i = 1
k = 51

h0(k) = 7
h1(k) = 5

440

1

2

3

594

5

6

957

8

9

10

T0

0

1

2

3

4

515

6

7

8

929

10

T1

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 23 / 1

Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(26)

i = 0
k = 26

h0(k) = 4
h1(k) = 0

440

1

2

3

594

5

6

957

8

9

10

T0

0

1

2

3

4

515

6

7

8

929

10

T1

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 23 / 1

Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(26)

i = 1
k = 59

h0(k) = 4
h1(k) = 5

440

1

2

3

264

5

6

957

8

9

10

T0

0

1

2

3

4

515

6

7

8

929

10

T1

59

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 23 / 1

Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(26)

i = 0
k = 51

h0(k) = 7
h1(k) = 5

440

1

2

3

264

5

6

957

8

9

10

T0

0

1

2

3

4

595

6

7

8

929

10

T1

51

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 23 / 1

Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(26)

i = 1
k = 95

h0(k) = 4
h1(k) = 7

440

1

2

3

264

5

6

517

8

9

10

T0

0

1

2

3

4

595

6

7

8

929

10

T1

95

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 23 / 1

Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

insert(26)

i = 1
k = 95

h0(k) = 4
h1(k) = 7

440

1

2

3

264

5

6

517

8

9

10

T0

0

1

2

3

4

595

6

957

8

929

10

T1

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 23 / 1

Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

search(59)

i = 1
k =

h0(59) = 4
h1(59) = 5

440

1

2

3

267

5

6

517

8

9

10

T0

0

1

2

3

4

595

6

957

8

929

10

T1

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 23 / 1

Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

delete(59)

i = 1
k =

h0(59) = 4
h1(59) = 5

440

1

2

3

267

5

6

517

8

9

10

T0

0

1

2

3

4

5

6

957

8

929

10

T1

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 23 / 1

Cuckoo hashing discussions

Can show: expected number of evictions during insert is O(1).
I So in practice, stop evictions much earlier than 2n rounds.

This crucially requires load factor α < 1
2 .

I Here α = n/(size of T0 + size of T1)
So cuckoo hashing is wasteful on space.
In fact, space is ω(n) if insert forces lots of re-hashing.
Can show: expected space is O(n).

There are many possible variations:
The two hash-tables could be combined into one.
Be more flexible when inserting: Always consider both possible
positions.
Use k > 2 allowed locations (i.e., k hash-functions).

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 24 / 1

Cuckoo hashing discussions

Can show: expected number of evictions during insert is O(1).
I So in practice, stop evictions much earlier than 2n rounds.

This crucially requires load factor α < 1
2 .

I Here α = n/(size of T0 + size of T1)
So cuckoo hashing is wasteful on space.
In fact, space is ω(n) if insert forces lots of re-hashing.
Can show: expected space is O(n).

There are many possible variations:
The two hash-tables could be combined into one.
Be more flexible when inserting: Always consider both possible
positions.
Use k > 2 allowed locations (i.e., k hash-functions).

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 24 / 1

Complexity of open addressing strategies

For any open addressing scheme, we must have α ≤ 1 (why?).
For the analysis, we require 0 < α < 1 (not arbitrarily close).
Cuckoo hashing requires 0 < α < 1/2 (not arbitrarily close).

Under these restrictions (and the universal hashing assumption):
All strategies have O(1) expected time for search, insert, delete.
Cuckoo Hashing has O(1) worst-case time for search, delete.
Probe sequences use O(n) worst-case space,
Cuckoo Hashing uses O(n) expected space.

But for any hash-function the worst-case run-time is Θ(n) for insert.

In practice, double hashing seems the most popular, or cuckoo hashing if
there are many more searches than insertions.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 25 / 1

Complexity of open addressing strategies

For any open addressing scheme, we must have α ≤ 1 (why?).
For the analysis, we require 0 < α < 1 (not arbitrarily close).
Cuckoo hashing requires 0 < α < 1/2 (not arbitrarily close).

Under these restrictions (and the universal hashing assumption):
All strategies have O(1) expected time for search, insert, delete.
Cuckoo Hashing has O(1) worst-case time for search, delete.
Probe sequences use O(n) worst-case space,
Cuckoo Hashing uses O(n) expected space.

But for any hash-function the worst-case run-time is Θ(n) for insert.

In practice, double hashing seems the most popular, or cuckoo hashing if
there are many more searches than insertions.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 25 / 1

Outline

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025

Hash functions

Every hash function must do badly for some inputs:
If the universe is big enough (|U| ≥ M(n − 1) + 1), then there are n
keys that all hash to the same value.

universe U of keys {0, . . . ,M−1}
h •

•

• •

•

•

•

If we insert this set of keys, then we have Θ(n) run-time.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 26 / 1

Choosing a good hash function

Analysis works only under uniform hashing assumption: Hash
function is randomly chosen among all possible hash-functions.

Satisfying this is impossible: There are too many hash functions; we
would not know how to look up h(k).

Two ways to compromise:
1 Deterministic: hope for good performance by choosing a

hash-function that is
I unrelated to any possible patterns in the data, and
I depends on all parts of the key.

2 Randomized: Choose randomly among a limited set of functions.
I But aim for P(two keys collide) = 1

M w.r.t. key-distribution.
I This is enough to prove the expected run-time bounds for chaining

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 27 / 1

Choosing a good hash function

Analysis works only under uniform hashing assumption: Hash
function is randomly chosen among all possible hash-functions.

Satisfying this is impossible: There are too many hash functions; we
would not know how to look up h(k).

Two ways to compromise:
1 Deterministic: hope for good performance by choosing a

hash-function that is
I unrelated to any possible patterns in the data, and
I depends on all parts of the key.

2 Randomized: Choose randomly among a limited set of functions.
I But aim for P(two keys collide) = 1

M w.r.t. key-distribution.
I This is enough to prove the expected run-time bounds for chaining

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 27 / 1

Deterministic hash functions

We saw two basic methods for integer keys:

Modular method: h(k) = k mod M.
I We should choose M to be a prime.
I This means finding a suitable prime quickly when re-hashing.
I This can be done in O(M log log n) time (no details).

Multiplication method: h(k) = bM(kA− bkAc)c,
for some floating-point number A with 0 < A < 1.

I Multiplying with A is used to scramble the keys.
So A should be irrational to avoid patterns in the keys.

I Experiments show that good scrambling is achieved when A is the
golden ratio ϕ=

√
5−1
2 ≈ 0.618033988749.....

I How many bits should we use?
I Won’t the computation be terribly slow?

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 28 / 1

Deterministic hash functions

We saw two basic methods for integer keys:

Modular method: h(k) = k mod M.
I We should choose M to be a prime.
I This means finding a suitable prime quickly when re-hashing.
I This can be done in O(M log log n) time (no details).

Multiplication method: h(k) = bM(kA− bkAc)c,
for some floating-point number A with 0 < A < 1.

I Multiplying with A is used to scramble the keys.
So A should be irrational to avoid patterns in the keys.

I Experiments show that good scrambling is achieved when A is the
golden ratio ϕ=

√
5−1
2 ≈ 0.618033988749.....

I How many bits should we use?
I Won’t the computation be terribly slow?

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 28 / 1

Deterministic hash functions

We saw two basic methods for integer keys:

Modular method: h(k) = k mod M.
I We should choose M to be a prime.
I This means finding a suitable prime quickly when re-hashing.
I This can be done in O(M log log n) time (no details).

Multiplication method: h(k) = bM(kA− bkAc)c,
for some floating-point number A with 0 < A < 1.

I Multiplying with A is used to scramble the keys.
So A should be irrational to avoid patterns in the keys.

I Experiments show that good scrambling is achieved when A is the
golden ratio ϕ=

√
5−1
2 ≈ 0.618033988749.....

I How many bits should we use?
I Won’t the computation be terribly slow?

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 28 / 1

Multiplication method
h(k) = bM(kA− bkAc)c
Consider what happens at bit-level:

A = 0.a1a2a3 . . .
k = b1b2 . . . b6
(both in base 2)

(leading bits) (bits of fractional part)
A · k = 0 0 0 .. 0 0

+a1· 0 b1b2b3 .. b5 b6
+a2· 0 0 b1b2b3 .. b5 b6
+a3· 0 0 0 b1b2 b3 .. b5 b6

...
+a5· 0 0 0 0 0 b1 b2 b3 .. b5 b6
+a6· 0 0 0 0 0 0 b1 b2 b3 .. b5 b6
+a7· 0 0 0 0 0 0 0 b1 b2 b3 .. b5 b6
+a8· 0 0 0 0 0 0 0 0 b1 b2 b3 .. b5 b6

... ←h(k)→

Use M = 2`. Then h(k) = first ` bits of fractional part.
Only log |U|+ ` bits of A influence h(k).
Computing h(k) = multiplication plus bit-shift.
This may actually be faster than taking “modulo a prime number”.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 29 / 1

Outline

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025

Randomly chosen hash-functions

Ideally we would choose randomly among all hash functions. But this
is impossible.

Idea: Fix a family H of hash-functions that are easy to compute.
Then choose uniformly among them.
Example:

I U = Z5, M = 2
I hb(k) = ((k + b) mod 5) mod 2
I H = {hb : b ∈ Z5}
I Choose b ∈ Z5 randomly to get

hash-function

keys
H 0 1 2 3 4
h0 0 1 0 1 0
h1 1 0 1 0 0
h2 0 1 0 0 1
h3 1 0 0 1 0
h4 0 0 1 0 1

But how do we measure whether these are “good”?

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 30 / 1

Universal hash-functions
For analysis, we needed uniform hash-values:,

P(h(k) = i) = 1
M

But this is not good enough.

keys
H 0 1 2 3 4
h0 0 0 0 0 0
h1 1 1 1 1 1

- P(h(k) = i) = 1
2 for i = 0, 1 and any k

- But these hash-functions are terrible!
- Problem: hash-values not independent

Also want: Small probability of collisions (H is universal):

P
(
h(k) = h(k ′)

)
≤ 1

M for any two keys k 6= k ′

This is enough for analyzing hashing with chaining as before.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 31 / 1

Carter-Wegman hash-function

HCW =
{

ha,b(k) =
(

(a · k + b) mod p︸ ︷︷ ︸
fa,b(k)

)
mod M : a, b ∈ Zp, a 6= 0

}

(where p prime, universe of keys is {0, . . . , p−1} =: Zp, M < p)

Example: (p = 5,M = 2):

keys
0 1 2 3 4

f1,0 0 1 2 3 4
f2,0 0 2 4 1 3
f1,2 2 3 4 0 1
f2,1 1 3 0 2 4
...

...
...

...
...

...

keys
0 1 2 3 4

h1,0 0 1 0 1 0
h2,0 0 0 0 1 1
h1,2 0 1 0 0 1
h2,1 1 1 0 0 0
...

...
...

...
...

...

Observe: fa,b is a permutation of Zp.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 32 / 1

Carter-Wegman hash-function

HCW =
{

ha,b(k) =
(

(a · k + b) mod p︸ ︷︷ ︸
fa,b(k)

)
mod M : a, b ∈ Zp, a 6= 0

}

(where p prime, universe of keys is {0, . . . , p−1} =: Zp, M < p)

Example: (p = 5,M = 2):

keys
0 1 2 3 4

f1,0 0 1 2 3 4
f2,0 0 2 4 1 3
f1,2 2 3 4 0 1
f2,1 1 3 0 2 4
...

...
...

...
...

...

keys
0 1 2 3 4

h1,0 0 1 0 1 0
h2,0 0 0 0 1 1
h1,2 0 1 0 0 1
h2,1 1 1 0 0 0
...

...
...

...
...

...

Observe: fa,b is a permutation of Zp.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 32 / 1

Carter-Wegman hash-function

HCW =
{

ha,b(k) =
(

(a · k + b) mod p︸ ︷︷ ︸
fa,b(k)

)
mod M : a, b ∈ Zp, a 6= 0

}

(where p prime, universe of keys is {0, . . . , p−1} =: Zp, M < p)

Example: (p = 5,M = 2):

keys
0 1 2 3 4

f1,0 0 1 2 3 4
f2,0 0 2 4 1 3
f1,2 2 3 4 0 1
f2,1 1 3 0 2 4
...

...
...

...
...

...

keys
0 1 2 3 4

h1,0 0 1 0 1 0
h2,0 0 0 0 1 1
h1,2 0 1 0 0 1
h2,1 1 1 0 0 0
...

...
...

...
...

...

Observe: fa,b is a permutation of Zp.

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 32 / 1

Carter-Wegman’s universal hashing

Requires: all keys are in {0, . . . , p − 1} for some (big) prime p.
At initialization, and whenever we re-hash:

I Choose M < p arbitrarily, power of 2 is ok.
I Choose (and store) two random numbers a, b

F b = random(p)
F a = 1 + random(p − 1) (so a 6= 0)

I Use as hash-function ha,b(k) =
(
(ak + b) mod p

)
mod M

h(k) can be computed quickly.

Theorem: HCW is universal: P(h(k) = h(k ′)) ≤ 1
M .

So hashing with chaining and randomly chosen hash function in HCW has
expected run-time O(1).

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 33 / 1

Carter-Wegman’s universal hashing

Requires: all keys are in {0, . . . , p − 1} for some (big) prime p.
At initialization, and whenever we re-hash:

I Choose M < p arbitrarily, power of 2 is ok.
I Choose (and store) two random numbers a, b

F b = random(p)
F a = 1 + random(p − 1) (so a 6= 0)

I Use as hash-function ha,b(k) =
(
(ak + b) mod p

)
mod M

h(k) can be computed quickly.

Theorem: HCW is universal: P(h(k) = h(k ′)) ≤ 1
M .

So hashing with chaining and randomly chosen hash function in HCW has
expected run-time O(1).

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 33 / 1

Multi-dimensional Data
What if the keys are multi-dimensional, such as strings?

Standard approach is to flatten string w to integer f (w) ∈ N, e.g.

A · P · P · L · E → (65, 80, 80, 76, 69) (ASCII)
→ 65R4 + 80R3 + 80R2 + 76R1 + 69R0

(for some radix R, e.g. R = 255)

We combine this with a modular hash function: h(w) = f (w) mod M

To compute this in O(|w |) time without overflow, use Horner’s rule and
apply mod early. For exampe, h(APPLE) is

(((((((
65R+80

)
mod M

)
R+80

)
mod M

)
R+76

)
mod M

)
R+69

)
mod M

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 36 / 1

Hashing vs. Balanced Search Trees

Advantages of Balanced Search Trees
O(log n) worst-case operation cost
Does not require any assumptions, special functions,
or known properties of input distribution
Predictable space usage (exactly n nodes)
Never need to rebuild the entire structure
Supports ordered dictionary operations (successor, select, rank etc.)

Advantages of Hash Tables
O(1) operation cost (if hash-function random and load factor small)
We can choose space-time tradeoff via load factor
Cuckoo hashing achieves O(1) worst-case for search & delete

T.Biedl (CS-UW) CS240E – Module 7 Winter 2025 37 / 1

	Dictionaries via Hashing
	Hashing Introduction
	Direct Addressing
	Hashing Details
	Hashing example
	Collisions

	Hashing with Chaining
	Chaining example
	Complexity of chaining
	Complexity of chaining
	Complexity of chaining
	Load factor and re-hashing
	Hashing with Chaining summary

	Probe Sequences
	Open addressing
	Linear probing example
	Probe sequence operations
	Independent hash functions
	Double Hashing
	Double hashing example
	Analysis of uniform probing
	Proof continued...
	Proof continued...

	Cuckoo hashing
	Cuckoo hashing
	Cuckoo Hashing Insertion
	Cuckoo hashing example
	Cuckoo hashing discussions
	Complexity of open addressing strategies

	Hash Function Strategies
	Hash functions
	Choosing a good hash function
	Deterministic hash functions
	Multiplication method

	Universal hashing
	Randomly chosen hash-functions
	Universal hash-functions
	Carter-Wegman hash-function
	Carter-Wegman's universal hashing
	Proof continued...
	Proof continued...
	Multi-dimensional Data
	Hashing vs. Balanced Search Trees

