CS 240E – Data Structures and Data Management (Enriched)

Module 7: Dictionaries via Hashing

Therese Biedl

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-02-16 16:49

Outline

Outline

Direct Addressing

Special situation: For a known $M \in \mathbb{N}$, every key k is an integer with $0 \le k < M$.

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via $A[k] \leftarrow v$.

- *search*(*k*): Check whether *A*[*k*] is NULL
- insert(k, v): $A[k] \leftarrow v$
- delete(k): $A[k] \leftarrow \text{NULL}$

Direct Addressing

Special situation: For a known $M \in \mathbb{N}$, every key k is an integer with $0 \le k < M$.

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via $A[k] \leftarrow v$.

- *search*(*k*): Check whether *A*[*k*] is NULL
- insert(k, v): $A[k] \leftarrow v$
- delete(k): $A[k] \leftarrow \text{NULL}$

Each operation is $\Theta(1)$. Total space is $\Theta(M)$.

What sorting algorithm does this remind you of?

Direct Addressing

Special situation: For a known $M \in \mathbb{N}$, every key k is an integer with $0 \le k < M$.

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via $A[k] \leftarrow v$.

- *search*(*k*): Check whether *A*[*k*] is NULL
- insert(k, v): $A[k] \leftarrow v$
- delete(k): $A[k] \leftarrow \text{NULL}$

Each operation is $\Theta(1)$. Total space is $\Theta(M)$.

What sorting algorithm does this remind you of? *Bucket Sort*

Hashing Details

- Assumption: We know that all keys come from some universe U. (Typically U = non-negative integers, sometimes |U| finite.)
- We pick a table-size M.
- We pick a hash function h: U → {0, 1, ..., M 1}.
 (Commonly used: h(k) = k mod M. We will see other choices later.)
- Store dictionary in **hash table**, i.e., an array *T* of size *M*.
- An item with key k wants to be stored in **slot** h(k), i.e., at T[h(k)].

T.Biedl (CS-UW)

Hashing example

 $U = \mathbb{N}, M = 11, \qquad h(k) = k \mod 11.$ The hash table stores keys 7, 13, 43, 45, 49, 92. (Values are not shown).

Collisions

- Generally hash function *h* is not injective, so many keys can map to the same integer.
 - For example, h(46) = 2 = h(13) if $h(k) = k \mod 11$.
- We get collisions: we want to insert (k, v) into the table, but T[h(k)] is already occupied.

Collisions

- Generally hash function *h* is not injective, so many keys can map to the same integer.
 - For example, h(46) = 2 = h(13) if $h(k) = k \mod 11$.
- We get collisions: we want to insert (k, v) into the table, but T[h(k)] is already occupied.
- There are many strategies to resolve collisions:

Outline

 $M = 11, \qquad h(k) = k \bmod 11$

$$M = 11, \qquad h(k) = k \bmod 11$$

$$h(41) = 8$$

 $M = 11, \qquad h(k) = k \bmod 11$

$$h(41) = 8$$

$$M = 11, \qquad h(k) = k \bmod 11$$

$$h(46) = 2$$

 $M = 11, \qquad h(k) = k \bmod 11$

$$h(46) = 2$$

$$M = 11, \qquad h(k) = k \bmod 11$$

$$h(16) = 5$$

 $M = 11, \qquad h(k) = k \bmod 11$

$$h(16) = 5$$

 $M = 11, \qquad h(k) = k \bmod 11$

$$h(79) = 2$$

Run-times: *insert* takes time $\Theta(1)$. *search* and *delete* have run-time $\Theta(1 + \text{size of bucket } T[h(k)])$.

• The *average* bucket-size is $\frac{n}{M} =: \alpha$. (α is also called the **load factor**.)

Run-times: *insert* takes time $\Theta(1)$. *search* and *delete* have run-time $\Theta(1 + \text{size of bucket } T[h(k)])$.

• The *average* bucket-size is $\frac{n}{M} =: \alpha$. (α is also called the **load factor**.)

However, this does not imply that the *average-case* cost of *search* and *delete* is Θ(1 + α).

- Consider the case where all keys hash to the same slot
- The average bucket-size is still α
- But the operations take $\Theta(n)$ time on average
- To get meaningful average-case bounds, we need some assumptions on the hash-functions and the keys!

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize?

• To analyze what happens 'on average', switch to randomized hashing.

- How can we randomize? Assume that the *hash-function* is chosen randomly.
 - We will later see examples how to do this.
- To be able to analyze, we assume the following:

Uniform Hashing Assumption: Any possible hash-function is equally likely to be chosen as hash-function.

(This is not at all realistic, but the assumption makes analysis possible.)

UHA implies that the distribution of keys is unimportant.

• Claim 1: Hash-values are uniform. Formally: $P(h(k) = i) = \frac{1}{M}$ for any key k and slot i.

• Claim 2: Hash-values of any two keys are independent of each other.

UHA implies that the distribution of keys is unimportant.

• Claim 1: Hash-values are uniform. Formally: $P(h(k) = i) = \frac{1}{M}$ for any key k and slot i.

• Claim 2: Hash-values of any two keys are independent of each other.

Back to complexity of chaining:

- Each bucket has expected length $\frac{n}{M} \leq \alpha$
 - *n* other keys are in this slot with probability $\frac{1}{M}$
- Each key in dictionary is expected to collide with $\frac{n-1}{M}$ other keys
 - n-1 other keys are in same slot with probability $\frac{1}{M}$
- Expected cost of search and delete is hence $\Theta(1 + \alpha)$

Load factor and re-hashing

• For hashing with chaining (and also other collision resolution strategies), the run-time bound depends on α

(Recall: *load factor* $\alpha = n/M$.)

• We keep the load factor small by rehashing when needed:

- Keep track of n and M throughout operations
- If α gets too large, create new (roughly twice as big) hash-table, new hash-function(s) and re-insert all items in the new table.

Hashing with Chaining summary

- For Hashing with Chaining: Rehash so that $lpha\in \Theta(1)$ throughout
- Rehashing costs $\Theta(M + n)$ time (plus the time to find a new hash function).
- Rehashing happens rarely enough that we can ignore this term when amortizing over all operations.
- We should also re-hash when α gets too small, so that M ∈ Θ(n) throughout, and the space is always Θ(n).

Summary: The amortized expected cost for hashing with chaining is O(1) and the space is $\Theta(n)$

(assuming uniform hashing and $\alpha \in \Theta(1)$ throughout)

Theoretically perfect, but too slow in practice.

Outline

Open addressing

Main idea: Avoid the links needed for chaining by permitting only one item per slot, but allowing a key k to be in multiple slots.

search and insert follow a **probe sequence** of possible locations for key k: $\langle h(k,0), h(k,1), h(k,2), \dots h(k, M-1) \rangle$ until an empty spot is found.

Open addressing

Main idea: Avoid the links needed for chaining by permitting only one item per slot, but allowing a key k to be in multiple slots.

search and insert follow a **probe sequence** of possible locations for key k: $\langle h(k,0), h(k,1), h(k,2), \dots h(k, M-1) \rangle$ until an empty spot is found.

Simplest method for open addressing: *linear probing* $h(k,j) = (h(k) + j) \mod M$, for some hash function h.

T.Biedl (CS-UW)

CS240E - Module 7

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, j) = (h(k) + j) \mod 11.$

0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	
9	
10	43

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, j) = (h(k) + j) \mod 11.$

$$h(41, 0) = 8$$

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, j) = (h(k) + j) \mod 11.$

$$h(84, 0) = 7$$

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, j) = (h(k) + j) \mod 11.$

insert(84)

$$h(84, 1) = 8$$

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, j) = (h(k) + j) \mod 11.$

insert(84)

$$h(84, 2) = 9$$

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, j) = (h(k) + j) \mod 11.$

insert(20)

$$h(20,0) = 9$$
Linear probing example

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, j) = (h(k) + j) \mod 11.$

insert(20)

$$h(20, 1) = 10$$

Linear probing example

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, j) = (h(k) + j) \mod 11.$

$$h(20,2) = 0$$

Probe sequence operations

Use *lazy deletion* (cannot handle updates after *delete* efficiently).

probe-sequence::insert(T, (k, v)) 1. for (j = 0; j < M; j++)2. if T[h(k, j)] is NULL or "deleted" 3. T[h(k, j)] = (k, v)4. return "success" 5. return "failure to insert" // need to re-hash

probe-sequence-search(T, k)
1. for (j = 0; j < M; j++)2. if T[h(k,j)] is NULL return "item not found"
3. if T[h(k,j)] has key k return T[h(k,j)]4. // key is incorrect or "deleted"
5. // try next probe, i.e., continue for-loop
6. return "item not found"

Independent hash functions

- Some hashing methods require *two* hash functions h_0, h_1 .
- These hash functions should be *independent* in the sense that the random variables $P(h_0(k) = i)$ and $P(h_1(k) = j)$ are independent.
- Using two modular hash-functions often leads to dependencies.

Independent hash functions

- Some hashing methods require *two* hash functions h_0, h_1 .
- These hash functions should be *independent* in the sense that the random variables $P(h_0(k) = i)$ and $P(h_1(k) = j)$ are independent.
- Using two modular hash-functions often leads to dependencies.
- Better idea: Use *multiplication method* for second hash function:
 - ▶ Fix some floating-point number A with 0 < A < 1

$$h(k) = \left\lfloor M \cdot \left(\underbrace{A \cdot k}_{\text{multiply}} - \underbrace{\left\lfloor A \cdot k \right\rfloor}_{\text{integral part}} \right) \right\rfloor.$$
fractional part, in [0, 1)
integer in [0, M)

• Our examples use
$$\varphi = \frac{\sqrt{5}-1}{2} \approx 0.618033988749...$$
 as A.

Double Hashing

- Assume we have two hash independent functions h_0, h_1 .
- Assume further that h₁(k) ≠ 0 and that h₁(k) is relative prime with the table-size M for all keys k.
 - Choose M prime.
 - Modify standard hash-functions to ensure h₁(k) ≠ 0 E.g. modified multiplication method: h(k) = 1 + ⌊(M−1)(kA−⌊kA⌋)⌋
- Double hashing: open addressing with probe sequence

$$h(k,j) = (h_0(k) + j \cdot h_1(k)) \mod M$$

• *search*, *insert*, *delete* work just like for linear probing, but with this different probe sequence.

M = 11, $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$

$$M = 11,$$
 $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$

insert(41)

$$h_0(41) = 8$$

 $h(41, 0) = 8$

$$M = 11,$$
 $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$

insert(194)

$$h_0(194) = 7$$

$$h(194, 0) = 7$$

$$M = 11,$$
 $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$

insert(194) $h_0(194) = 7$ h(194, 0) = 7 $h_1(194) = 9$ h(194,1) = 51

0 45 1 45 2 13 3 4 4 92 5 49 6 7 7 7 8 41 9 43		
1 45 2 13 3 - 4 92 5 49 6 - 7 7 8 41 9 - 10 43	0	
2 13 3 4 92 5 49 6 7 7 8 41 9 10 43	1	45
3 4 92 5 49 6 7 7 8 41 9 10 43	2	13
4 92 5 49 6 7 7 8 41 9 9 10 43	3	
5 49 6	4	92
6 7 7 8 41 9 10 43	5	49
7 7 8 41 9	6	
8 41 9	7	7
9 10 43	8	41
10 43	9	
	10	43

$$M = 11,$$
 $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$

insert(194) $h_0(194) = 7$ h(194, 0) = 7 $h_1(194) = 9$ h(194,1) = 5h(194, 2) = 31

0	
1	45
2	13
3	194
4	92
5	49
6	
7	7
8	41
9	
0	43

Analysis of uniform probing

- Analyzing linear probing and double hashing is difficult (no details).
- Instead, analyze an idealized setup: uniform probing

 $P(\text{slot } i \text{ is occupied}) = \frac{1}{M}$

• As before, $\alpha = \frac{n}{M}$ is the load factor.

Analysis of uniform probing

- Analyzing linear probing and double hashing is difficult (no details).
- Instead, analyze an idealized setup: uniform probing

 $P(\text{slot } i \text{ is occupied}) = \frac{1}{M}$

• As before, $\alpha = \frac{n}{M}$ is the load factor.

Claim 1: The expected run-time of search is $O(\frac{1}{1-\alpha})$.

Analysis of uniform probing

- Analyzing linear probing and double hashing is difficult (no details).
- Instead, analyze an idealized setup: uniform probing

 $P(\text{slot } i \text{ is occupied}) = \frac{1}{M}$

• As before, $\alpha = \frac{n}{M}$ is the load factor.

Claim 1: The expected run-time of search is $O(\frac{1}{1-\alpha})$.

Claim 2: The expected-luck average-instance run-time of a successful search is $O(\frac{1}{\alpha})\ln(\frac{1}{1-\alpha})$.

Outline

Cuckoo hashing

We use two independent hash functions h_0 , h_1 and two tables T_0 , T_1 .

Main idea: An item with key k can *only* be at $T_0[h_0(k)]$ or $T_1[h_1(k)]$.

search and delete then always take constant time.

Cuckoo Hashing Insertion

insert always initially puts the new item into $T_0[h_0(k)]$

- Evict item that may have been there already.
- If so, evicted item inserted at alternate position
- This may lead to a loop of evictions.
 - Can show: If insertion is possible, then there are at most 2*n* evictions.
 - So abort after too many attempts.

M = 11, $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

M = 11, $h_0(k) = k \mod 11,$

$$h_1(k) = \lfloor 11(arphi k - \lfloor arphi k
floor)
floor$$

insert(51)

$$i = 0$$

 $k = 51$
 $h_0(k) = 7$
 $h_1(k) = 5$

M = 11, $h_0(k) = k \mod 11,$

$$h_1(k) = \lfloor 11(arphi k - \lfloor arphi k
floor))
floor$$

insert(51)

$$i = 0$$
$$k = 51$$

$$h_0(k) = 7$$
$$h_1(k) = 5$$

M = 11, $h_0(k) = k \mod 11,$

$$h_1(k) = \lfloor 11(arphi k - \lfloor arphi k
floor))
floor$$

insert(95)

$$i = 0$$

 $k = 95$
 $h_0(k) = 7$
 $h_1(k) = 7$

M = 11, $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(95)

i = 1 k = 51 $h_0(k) = 7$ $h_1(k) = 5$

M = 11, $h_0(k) = k \mod 11,$

$$h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k
floor) \rfloor$$

insert(95)

$$i = 1$$

 $k = 51$
 $h_0(k) = 7$
 $h_1(k) = 5$

M = 11, $h_0(k) = k \mod 11,$

$$h_1(k) = \lfloor 11(arphi k - \lfloor arphi k
floor)
floor$$

insert(26)

~

$$h = 0$$

$$k = 26$$

$$h_0(k) = 4$$

$$h_1(k) = 0$$

 $h_0(k) = k \mod 11,$ $h_1(k) = |11(\varphi k - |\varphi k|)|$ M = 11,

insert(26)

:

$$i = 1$$

 $k = 59$
 $h_0(k) = 4$
 $h_1(k) = 5$

M = 11, $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26)

$$k = 0$$

 $k = 51$
 $h_0(k) = 7$
 $h_1(k) = 5$

M = 11, $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26)

1

$$k = 1$$

 $k = 95$
 $h_0(k) = 4$
 $h_1(k) = 7$

T.Biedl (CS-UW)

M = 11, $h_0(k) = k \mod 11,$

$$h_1(k) = \lfloor 11(arphi k - \lfloor arphi k
floor)
floor$$

insert(26)

$$i = 1$$

 $k = 95$
 $h_0(k) = 4$
 $h_1(k) = 7$

M = 11, $h_0(k) = k \mod 11,$ $h_1(k) = |11(\varphi k - |\varphi k|)|$

search(59)

 $h_0(59) = 4$

 $h_1(59) = 5$

Т.

M = 11, $h_0(k) = k \mod 11, \qquad h_1(k) = |11(\varphi k - |\varphi k|)|$

T

delete(59)

 $h_0(59) = 4$

 $h_1(59) = 5$

Cuckoo hashing discussions

- **Can show**: expected number of evictions during *insert* is O(1).
 - ▶ So in practice, stop evictions much earlier than 2*n* rounds.
- This crucially requires load factor $\alpha < \frac{1}{2}$.

• Here $\alpha = n/(\text{size of } T_0 + \text{size of } T_1)$

- So cuckoo hashing is wasteful on space.
- In fact, space is $\omega(n)$ if *insert* forces lots of re-hashing.
- Can show: expected space is O(n).

Cuckoo hashing discussions

- **Can show**: expected number of evictions during *insert* is O(1).
 - ▶ So in practice, stop evictions much earlier than 2*n* rounds.
- This crucially requires load factor $\alpha < \frac{1}{2}$.

• Here $\alpha = n/(\text{size of } T_0 + \text{size of } T_1)$

- So cuckoo hashing is wasteful on space.
- In fact, space is $\omega(n)$ if *insert* forces lots of re-hashing.
- **Can show**: expected space is O(n).

There are many possible variations:

- The two hash-tables could be combined into one.
- Be more flexible when inserting: Always consider both possible positions.
- Use k > 2 allowed locations (i.e., k hash-functions).

Complexity of open addressing strategies

For any open addressing scheme, we *must* have $\alpha \leq 1$ (why?). For the analysis, we require $0 < \alpha < 1$ (not arbitrarily close). Cuckoo hashing requires $0 < \alpha < 1/2$ (not arbitrarily close).

Under these restrictions (and the universal hashing assumption):

- All strategies have O(1) expected time for *search*, *insert*, *delete*.
- Cuckoo Hashing has O(1) worst-case time for search, delete.
- Probe sequences use O(n) worst-case space, Cuckoo Hashing uses O(n) expected space.

But for any hash-function the worst-case run-time is $\Theta(n)$ for *insert*.

Complexity of open addressing strategies

For any open addressing scheme, we *must* have $\alpha \leq 1$ (why?). For the analysis, we require $0 < \alpha < 1$ (not arbitrarily close). Cuckoo hashing requires $0 < \alpha < 1/2$ (not arbitrarily close).

Under these restrictions (and the universal hashing assumption):

- All strategies have O(1) expected time for *search*, *insert*, *delete*.
- Cuckoo Hashing has O(1) worst-case time for search, delete.
- Probe sequences use O(n) worst-case space, Cuckoo Hashing uses O(n) expected space.

But for any hash-function the worst-case run-time is $\Theta(n)$ for *insert*.

In practice, double hashing seems the most popular, or cuckoo hashing if there are many more searches than insertions.

Outline

Hash functions

Every hash function *must* do badly for some inputs:

• If the universe is big enough $(|U| \ge M(n-1)+1)$, then there are n keys that all hash to the same value.

• If we insert this set of keys, then we have $\Theta(n)$ run-time.
Choosing a good hash function

- Analysis works only under **uniform hashing assumption**: Hash function is randomly chosen among all possible hash-functions.
- Satisfying this is impossible: There are too many hash functions; we would not know how to look up h(k).

Choosing a good hash function

- Analysis works only under **uniform hashing assumption**: Hash function is randomly chosen among all possible hash-functions.
- Satisfying this is impossible: There are too many hash functions; we would not know how to look up h(k).

Two ways to compromise:

- Deterministic: hope for good performance by choosing a hash-function that is
 - unrelated to any possible patterns in the data, and
 - depends on all parts of the key.

2 Randomized: Choose randomly among a limited set of functions.

- But aim for $P(\text{two keys collide}) = \frac{1}{M}$ w.r.t. key-distribution.
- This is enough to prove the expected run-time bounds for chaining

Deterministic hash functions

We saw two basic methods for integer keys:

- Modular method: $h(k) = k \mod M$.
 - We should choose *M* to be a prime.
 - This means finding a suitable prime quickly when re-hashing.
 - ▶ This can be done in *O*(*M* log log *n*) time (no details).

Deterministic hash functions

We saw two basic methods for integer keys:

- Modular method: $h(k) = k \mod M$.
 - We should choose *M* to be a prime.
 - This means finding a suitable prime quickly when re-hashing.
 - ► This can be done in *O*(*M* log log *n*) time (no details).
- Multiplication method: h(k) = [M(kA − [kA])], for some floating-point number A with 0 < A < 1.
 - Multiplying with A is used to scramble the keys.
 So A should be irrational to avoid patterns in the keys.
 - Experiments show that good scrambling is achieved when A is the golden ratio $\varphi = \frac{\sqrt{5}-1}{2} \approx 0.618033988749.....$

Deterministic hash functions

We saw two basic methods for integer keys:

- Modular method: $h(k) = k \mod M$.
 - We should choose *M* to be a prime.
 - This means finding a suitable prime quickly when re-hashing.
 - ► This can be done in *O*(*M* log log *n*) time (no details).
- Multiplication method: h(k) = [M(kA [kA])], for some floating-point number A with 0 < A < 1.
 - Multiplying with A is used to scramble the keys.
 So A should be irrational to avoid patterns in the keys.
 - ► Experiments show that good scrambling is achieved when A is the golden ratio $\varphi = \frac{\sqrt{5}-1}{2} \approx 0.618033988749....$
 - How many bits should we use?
 - Won't the computation be terribly slow?

Multiplication method

- $h(k) = \lfloor M(kA \lfloor kA \rfloor) \rfloor$
- Consider what happens at bit-level:

 $\begin{array}{c|c} A = 0.a_{1}a_{2}a_{3}\ldots \\ k = b_{1}b_{2}\ldots b_{6} \\ (both \ in \ base \ 2) \end{array} \qquad \begin{array}{c|c} A \cdot k & = & \begin{pmatrix} (leading \ bits) \\ 0 & 0 & \dots & 0 & 0 \\ +a_{1} \cdot & 0 & 0 & b_{1}b_{2}b_{3} & \dots & b_{5} \\ +a_{2} \cdot & 0 & 0 & 0 & b_{1}b_{2} & b_{3} \\ +a_{3} \cdot & 0 & 0 & 0 & b_{1}b_{2} & b_{3} \\ +a_{5} \cdot & 0 & 0 & 0 & 0 & 0 & b_{1} \\ +a_{6} \cdot & 0 & 0 & 0 & 0 & 0 \\ +a_{7} \cdot & 0 & 0 & 0 & 0 & 0 \\ +a_{8} \cdot & 0 & 0 & 0 & 0 & 0 \\ \vdots & & & & & & & \\ \end{array} \qquad \begin{array}{c|c} (leading \ bits) \\ b_{6} \\ b_{5} & b_{6} \\ \dots & b_{5} & b_{6} \\ \dots & b_{5} & b_{6} \\ \dots & b_{5} & b_{6} \\ \vdots & & & & & \\ b_{1}b_{2} & b_{3} & \dots & b_{5} & b_{6} \\ 0 & 0 & 1 & b_{2} & b_{3} & \dots & b_{5} & b_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & & & & & \\ \end{array}$

- Use $M = 2^{\ell}$. Then $h(k) = \text{first } \ell$ bits of fractional part.
- Only $\log |U| + \ell$ bits of A influence h(k).
- Computing h(k) = multiplication plus bit-shift.
 This may actually be faster than taking "modulo a prime number".

Outline

Randomly chosen hash-functions

- Ideally we would choose randomly among all hash functions. But this is impossible.
- Idea: Fix a family \mathcal{H} of hash-functions that are easy to compute. Then choose uniformly among them.

• Example:

- $U = \mathbb{Z}_5, M = 2$
- $h_b(k) = ((k+b) \mod 5) \mod 2$
- $\blacktriangleright \mathcal{H} = \{h_b : b \in \mathbb{Z}_5\}$
- ► Choose b ∈ Z₅ randomly to get hash-function

	keys									
\mathcal{H}	0	1	2	3	4					
h_0	0	1	0	1	0					
h_1	1	0	1	0	0					
h_2	0	1	0	0	1					
h ₃	1	0	0	1	0					
h_4	0	0	1	0	1					

• But how do we measure whether these are "good"?

Universal hash-functions

• For analysis, we needed uniform hash-values:,

$$P(h(k)=i)=\frac{1}{M}$$

• But this is *not* good enough.

	keys									
\mathcal{H}	0	0 1 2 3 4								
h_0	0	0	0	0	0					
h_1	1	1	1	1	1					

- $P(h(k) = i) = \frac{1}{2}$ for i = 0, 1 and any k
- But these hash-functions are terrible!
- Problem: hash-values not independent
- Also want: Small probability of collisions (*H* is **universal**):

$$Pig(h(k)=h(k')ig)\leq rac{1}{M}$$
 for any two keys $k
eq k'$

• This is enough for analyzing hashing with chaining as before.

T.Biedl (CS-UW)

Carter-Wegman hash-function

$$\mathcal{H}_{CW} = \left\{ \begin{array}{cc} h_{a,b}(k) = \left(\underbrace{(a \cdot k + b) \mod p}_{f_{a,b}(k)}\right) \mod M & : a, b \in \mathbb{Z}_p, a \neq 0 \right\}$$

(where p prime, universe of keys is $\{0, \ldots, p-1\} =: \mathbb{Z}_p, M < p$)

Example: (p = 5, M = 2):

		keys									
	0	1	2	3	4						
<i>f</i> _{1,0}	0	1	2	3	4						
<i>f</i> _{2,0}	0	2	4	1	3						
<i>f</i> _{1,2}	2	3	4	0	1						
<i>f</i> _{2,1}	1	3	0	2	4						
	:	:	:	:	:						

Carter-Wegman hash-function

$$\mathcal{H}_{CW} = \left\{ h_{a,b}(k) = \left(\underbrace{(a \cdot k + b) \mod p}_{f_{a,b}(k)}\right) \mod M \quad : a, b \in \mathbb{Z}_p, a \neq 0 \right\}$$

(where *p* prime, universe of keys is $\{0, \ldots, p-1\} =: \mathbb{Z}_p, M < p$) Example: (p = 5, M = 2):

	keys					keys					
	0	1	2	3	4		0	1	2	3	4
f _{1,0}	0	1	2	3	4	<i>h</i> _{1,0}	0	1	0	1	0
f _{2,0}	0	2	4	1	3	h _{2,0}	0	0	0	1	1
f _{1,2}	2	3	4	0	1	h _{1,2}	0	1	0	0	1
f _{2,1}	1	3	0	2	4	h _{2,1}	1	1	0	0	0
:	÷	:	:	:	:		:	:	:		:

Carter-Wegman hash-function

$$\mathcal{H}_{CW} = \left\{ \begin{array}{cc} h_{a,b}(k) = \left(\underbrace{(a \cdot k + b) \mod p}_{f_{a,b}(k)}\right) \mod M & : a, b \in \mathbb{Z}_p, a \neq 0 \right\}$$

(where p prime, universe of keys is $\{0, \ldots, p-1\} =: \mathbb{Z}_p, M < p$) Example: (p = 5, M = 2):

	keys							keys	;		
	0	1	2	3	4		0	1	2	3	4
<i>f</i> _{1,0}	0	1	2	3	4	<i>h</i> _{1,0}	0	1	0	1	0
f _{2,0}	0	2	4	1	3	h _{2,0}	0	0	0	1	1
f _{1,2}	2	3	4	0	1	<i>h</i> _{1,2}	0	1	0	0	1
<i>f</i> _{2,1}	1	3	0	2	4	$h_{2,1}$	1	1	0	0	0
:	÷	:	÷	:	÷	:	:	:	:	:	:

Observe: $f_{a,b}$ is a permutation of \mathbb{Z}_p .

T.Biedl (CS-UW)

Carter-Wegman's universal hashing

- Requires: all keys are in $\{0, \ldots, p-1\}$ for some (big) prime p.
- At initialization, and whenever we re-hash:
 - Choose M < p arbitrarily, power of 2 is ok.
 - Choose (and store) two random numbers a, b
 - * b = random(p)
 - ★ a = 1 + random(p-1) (so $a \neq 0$)
 - Use as hash-function $h_{a,b}(k) = ((ak + b) \mod p) \mod M$
- h(k) can be computed quickly.

Carter-Wegman's universal hashing

- Requires: all keys are in $\{0, \ldots, p-1\}$ for some (big) prime p.
- At initialization, and whenever we re-hash:
 - Choose M < p arbitrarily, power of 2 is ok.
 - Choose (and store) two random numbers a, b
 - \star b = random(p)

★
$$a = 1 + random(p - 1)$$
 (so $a \neq 0$)

• Use as hash-function $h_{a,b}(k) = ((ak + b) \mod p) \mod M$

• h(k) can be computed quickly.

Theorem: \mathcal{H}_{CW} is universal: $P(h(k) = h(k')) \leq \frac{1}{M}$.

So hashing with chaining and randomly chosen hash function in \mathcal{H}_{CW} has expected run-time O(1).

Multi-dimensional Data

What if the keys are multi-dimensional, such as strings?

Standard approach is to *flatten* string w to integer $f(w) \in \mathbb{N}$, e.g.

$$\begin{array}{rcl} A \cdot P \cdot P \cdot L \cdot E & \rightarrow & (65, 80, 80, 76, 69) & (\mathsf{ASCII}) \\ & \rightarrow & 65R^4 + 80R^3 + 80R^2 + 76R^1 + 69R^0 \\ & & (\text{for some radix } R, \text{ e.g. } R = 255) \end{array}$$

We combine this with a modular hash function: $h(w) = f(w) \mod M$

To compute this in O(|w|) time without overflow, use Horner's rule and apply mod early. For example, h(APPLE) is

$$\left(\left(\left(\left(\left((65R+80) \mod M\right)R+80\right) \mod M\right)R+76\right) \mod M\right)R+69\right) \mod M$$

Hashing vs. Balanced Search Trees

Advantages of Balanced Search Trees

- $O(\log n)$ worst-case operation cost
- Does not require any assumptions, special functions, or known properties of input distribution
- Predictable space usage (exactly *n* nodes)
- Never need to rebuild the entire structure
- Supports ordered dictionary operations (successor, select, rank etc.)

Advantages of Hash Tables

- O(1) operation cost (if hash-function random and load factor small)
- We can choose space-time tradeoff via load factor
- Cuckoo hashing achieves O(1) worst-case for search & delete