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© Range-Searching in Dictionaries for Points
@ Range Searches
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Range searches

@ So far: search(k) looks for one specific item.
@ range-search: look for all items in a given range.

» Input: A range, i.e., an interval @ = (x,x’) (open or closed)
» Want: Report all KVPs in the dictionary whose key k satisfies k € Q

Example: | 5[10 |11 |17 |19 ]33 |45 |51 | 55 | 59 |
range-search( (18,45] ) should return {19, 33,45}

T.Biedl (CS-UW) CS240 - Module 8 Winter 2025 2 /51



Range searches

@ So far: search(k) looks for one specific item.
@ range-search: look for all items in a given range.

» Input: A range, i.e., an interval @ = (x,x’) (open or closed)
» Want: Report all KVPs in the dictionary whose key k satisfies k € Q

Example: [ 5[10[ 11|17 [ 19 [33[45[51 5559 |
range-search( (18,45] ) should return {19,33,45}

As usual n denotes the number of input-items.
Let s be the output-size, i.e., the number of items in the range.

We need €(s) time simply to report the items.

Note that sometimes s = 0 and sometimes s = n; we therefore keep it
as a separate parameter when analyzing the run-time.

Typical run-time: O(logn + s).
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Range searches in existing dictionary realizations

Unsorted list/array/hash table: Range search requires Q(n) time:
We have to check for each item explicitly whether it is in the range.

Sorted array: Range search in A can be done in O(log n + s) time:

range-search((18,45]) | 5 [ 10 [ 11 [ 17 [ 19 | 33 [ 45 [ 51 | 55 | 59 |

i i

@ Using binary search, find i such that x is at (or would be at) A[i].
@ Using binary search, find i’ such that x’ is at (or would be at) A[/’]
@ Report all items A[i+1.../"—1]

@ Report A[i] and A[/’] if they are in range

BST: Range searches can similarly be done in time O(height+s) time.
We will see this in detail later.
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© Range-Searching in Dictionaries for Points

@ Multi-Dimensional Data
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Multi-Dimensional Data

Range searches are of special interest for multi-dimensional data.
Example: flights that leave between 9am and noon, and cost $400-$600

price . .

$700f
$650( .

$600( Q
$550(
$500f o .
$4501
$400f
$350(

$300—5:ho 8:00 10000 1200 1400  16io0 ~ departure time

e Each item has d aspects (coordinates): (xo, X1, , X4—1)
so corresponds to a point in d-dimensional space

@ We concentrate on d = 2, i.e., points in Euclidean plane

@ (Orthogonal) d-dimensional range search: Given a query rectangle
Q = [x1,x{] X -+ X [xq,x}], find all points that lie within Q.
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Multi-dimensional Range Search

The time for range searches depends on how the points are stored.

@ Two naive ideas that do not work well:
» Could store a 1-dimensional dictionary (where the key is some
combination of the aspects.)
Problem: Range search on one aspect is not straightforward
» Could use one dictionary for each aspect
Problem: inefficient, wastes space

o Better idea: Design new data structures specifically for points.

» Quadtrees
» kd-trees
> range-trees

Assumption: Points are in general position:
@ No two points on a horizontal line.
@ No two points on a vertical line.
This simplifies presentation; data structures can be generalized.
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© Range-Searching in Dictionaries for Points

@ Quadtrees
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Quadtrees

We have n points P = {(x0, ¥0), (x1,¥1), "+ , (Xn—1, ¥n—1)} in the plane.
Find a bounding box R = [0, 2) x [0,2K): a square containing all points.
@ Assume (after translation) that all coordinates are non-negative.

e Find max-coordinate in P, use the smallest k such that it is < 2*.

Structure (and also how to build the quadtree that stores P):
@ Root r of the quadtree is associated with region R
@ If R contains 0 or 1 points, then root r is a leaf that stores point.

e Else split: Partition R into four equal subsquares (quadrants)

Rne, Rnw s Rsw, Rse

Partition P into sets Png, Pyw, Psw, Pse of points in these regions.
» Convention: Points on split lines belong to right/top side

Recursively build tree T; for points P; in region R; and make them
children of the root.
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Quadtree example

Po
P3 . o P4
P1 e P8
P P ps
p2 ° pr [0, 16)x[0, 16)
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Quadtree example

Po
P3 . o P4
P eps
Po F:G ps
P2 " py
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[0, 8)x 8, 16)
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Quadtree example

P3 V.g o P4
. o .
P.o F:G ps
P >p7 0, 16) X [0, 16)

7/51

Winter 2025
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Quadtree example

e\3 Vag o P4
L e
Po F:G Ps
p2 ‘>p7 [0, 16)x[0, 16)

[0,8) x[8, 16) [0,8)x[0, 8)
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Quadtree Dictionary Operations

@ search: Analogous to binary search trees and tries
@ insert:
» Search for the point
» Split the leaf while there are two points in one region
o delete:
» Search for the point
» Remove the point
» If its parent has only one point left: delete parent
(and recursively all ancestors that have only one point left)
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Quadtree Insert example

f0, 16)x [0, 16)

9 o P4
p3| °
P eps
. P10
Po pPs ° ps
et
insert(p1o)
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Quadtree Insert example

9 o P4
p3| °

L eps

. P10

Po 1%3) Ps

Pt

0,16)x [0, 16)

insert(p1o)

[0,8)%[8, 16)
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Quadtree Range Search

QTree::range-search(r « root, Q)

r: The root of a quadtree, Q: Query-rectangle

1. R < region associated with node r

2. if (R C Q) then // inside node, stop searching
report all points below r and return

3. else if (RN Q is empty) then return // outside node, stop searching

// boundary node, recurse

4. if (ris a leaf) then

5 p < point stored at r

6. if p is not NULL and in @ then report it and return

7 else return

8. for each child v of r do QTree::range-search(v, Q)

Note: We assume here that each node of the quadtree stores the
associated square. Alternatively, these could be re-computed during the
search (space-time tradeoff).
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Quadtree range search example

7 -
1 * Ps
R P10
Po ’:0 Ps
P21 0, 16)x [0, 16)
Pa 0, 8)x[, 16)
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Quadtree range search example

9 o P4

| @ Green: Search stopped due to R C Q.
p1 * Pe @ Red: Search stopped due to RN Q = 0.
. (P @ Blue: Must continue search in children
po | [P6

. i / evaluate.
p2 p7 [0, 16) x [0, 16)
pa 0,8) %[, 16)
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Quadtree Analysis

Complexity of range search:
b1

@ In worst-case, we look at nearly all
nodes, even if the answeris®. |  b--tZIo

@ The number nodes could be ©(nh),
where h is the height.

@ Can have very large height for bad

distributions of points. 0,0

(Even with n = 3 points, the height

can be arbitrarily large.)
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Quadtree Analysis

Complexity of range search:
p1

@ In worst-case, we look at nearly all
nodes, even if the answeris®. | p--=Z-

@ The number nodes could be ©(nh), l
where h is the height.

@ Can have very large height for bad (0,0)
distributions of points. ’

(Even with n = 3 points, the height

can be arbitrarily large.)

In practice, quad-trees work quite well. Theoretical evidence (no details):

@ For n randomly chosen points, the expected height is O(log n).
@ The height depends on the spread factor:

sidelength of R
minimum distance between points in P

The height is in ©(log(spread factor))
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Quadtrees in other dimensions

@ Quad-tree of 1-dimensional points:
“Points:” 0 9 12 14 24 26 28
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Quadtrees in other dimensions
@ Quad-tree of 1-dimensional points:

“Points:” 0 9 12 14 24 26 28
(in base-2) 00000 01001 0110001110 1100011010 11100
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Quadtrees in other dimensions
@ Quad-tree of 1-dimensional points:
“Points:" 0 9 12 14 24 26 28

(in base-2) 00000 01001 0110001110 1100011010 11100

f0.32)
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Quadtrees in other dimensions

@ Quad-tree of 1-dimensional points:

“Points:” 0 9 12 14 24 26 28
(in base-2) 00000 01001 0110001110 1100011010 11100
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Quadtrees in other dimensions

@ Quad-tree of 1-dimensional points:

“Points:” 0 9 12 14 24 26 28
(in base-2) 00000 01001 0110001110 1100011010 11100

Same as a pruned trie
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Quadtrees in other dimensions

@ Quad-tree of 1-dimensional points:

“Points:” 0 9 12 14 24 26 28
(in base-2) 00000 01001 0110001110 1100011010 11100

Same as a pruned trie

e Quadtrees also easily generalize to higher dimensions (split into
octants — octrees, etc.) but are rarely used beyond dimension 3.
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Quadtree summary

@ Very easy to compute and handle

@ No complicated arithmetic, only divisions by 2 (bit-shift!) if the
width/height of bounding box R is a power of 2

@ Space potentially wasteful, but good if points are well-distributed

@ Variation: We could stop splitting earlier and allow up to K points in
a leaf (for some fixed bound K).

o Variation: Use quad-tree to store pixelated images.
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Outline

© Range-Searching in Dictionaries for Points

@ kd-Trees
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kd-trees

o We have n points P = {(x0, ¥0), (x1,¥1), -+ » (Xo—1, ¥n-1)}
@ Quadtrees: Split region into quadrants regardless of where points are

o kd-tree idea: Split region based on where points are.

» We split at upper median of coordinates
~» roughly half of the point are in each subtree

@ Each node of the kd-tree keeps track of a splitting line in one
dimension (2D: either vertical or horizontal)

e Convention: Points on split lines belong to right/top side
e Continue splitting, switching between vertical and horizontal lines,
until every point is in a separate region

(There are alternatives, e.g., split by the dimension that has better aspect
ratios for the resulting regions.)
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kd-tree example

P R
*P3 Ps
pr °
o Po
P2 * ps
p7
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kd-tree example

.PQ
*P3 Ps
pr [
o Po
p2
[ ] .p7
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kd-tree example

.PQ
*P3 Ps
pr [
o Po
p2
[ ] .p7

T.Biedl (CS-UW)

P4

Ps

{06 y) s x<ps.x}

y<pi.y?

CS240 - Module 8

2

{0 y) : x2ps-x}
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kd-tree example

Po .P4
*P3 ps
pr [
N Pe
P2 Ps < >
P {(x,y) : x<ps-x} {(x,y) : x>ps.x}
< > < >
(=00, ps.X)x(—00,pry)) (- ([ (-~
X<po.x? J Lx<pg.x?) Lx<p5.x?J Lx<p5.x?J

For ease of drawing, we will usually not list the associated regions of nodes.
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kd-tree example

Po ‘P4
*P3 ps
pr [
N Pe
P2 Ps < >
P {(x,y) : x<ps-x} {(x,y) : x>ps.x}
< > < >
(=00, ps.x)x(—00, p1.y)] ( -
v ] Geerr) Lx<ps 7

6 b Fep8 beE
& &

For ease of drawing, we will usually not list the associated regions of nodes.
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Constructing kd-trees

The algorithm to build a kd-tree is immediate from the definition of a
kd-tree:

To build a kd-tree with initial split by x on points P:

e If |P| <1 create a leaf and return.
e Else X := randomized-quick-select(P, 5 ]) (select by x-coordinate)
@ Partition P by x-coordinate into P,.x and P,>x

» | 5] points on one side and [{] points on the other.
(Recall: Points in general position.)

Create left subtree recursively (splitting by y) for points Py x.

Create right subtree recursively (splitting by y) for points Py>x.

Building with initial y-split symmetric.
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Constructing kd-trees

Run-time:
e Find X and partition P takes ©(n) expected time.
@ Both subtrees have ~ n/2 points.

TP(n) =2T%P(n/2) + O(n) (sloppy recurrence)

This resolves to ©(nlog n) expected time.

@ This can be reduced to ©(nlog n) worst-case time by pre-sorting.

Height: h(1) =0, h(n) < h([n/2]) + 1.
@ This resolves to O(log n) (specifically [log n]).
e This is tight (binary tree with n leaves)

Space: All interior nodes have exactly two children.
@ Therefore have n — 1 interior nodes.
@ Space is ©(n).
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kd-tree Dictionary Operations

@ search (for single point): as in binary search tree using indicated
coordinate

@ insert: search, insert as new leaf.

@ delete: search, remove leaf.

Problem: After insert or delete, the split might no longer be at exact
median and the height is no longer guaranteed to be [log, n].

We can maintain O(log n) height by occasionally re-building entire
subtrees. (No details.) But range-search will be slower.

kd-trees do not handle insertion/deletion well.
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kd-tree Range Search

@ Range search is exactly as for quad-trees, except that there are only
two children and leaves always store points.

kdTree::range-search(r < root, Q)

r: The root of a kd-tree, @: Query-rectangle

1. R < region associated with node r

2. if (R C Q) then report all points below r; return
3. if (RN Q is empty) then return

4. if (ris a leaf) then

5. p < point stored at r

6 if pisin Q return p

7 else return

8. for each child v of r do kdTree::range-search(v, Q)

o We assume again that each node stores its associated region.

@ To save space, we could instead pass the region as a parameter and
compute the region for each child using the splitting line.
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kd-tree: Range Search Example

Po el

o p3

P2
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kd-tree: Range Search Example

o p3

P2

Red: Search stopped due to RN Q = (). Green: Search stopped due to R C Q.
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kd-tree: Range Search Complexity

We spend O(1) time at each visited node, except in line 2.

All calls to line 2 together take O(s) time (recall: s is the output-size)
Observe: # visited nodes is O(/3(n))
where §(n) is the number of “boundary” nodes (blue):

» kdTree::range-search was called.
» Neither RC Qnor RNQ =0

We will show: (n) € O(y/n)
Therefore, the complexity of range search in kd-trees is O(s + /n)
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Boundary nodes in kd-trees

Goal: The number of boundary-nodes satisfies 5(n) € O(y/n).

/\l:v Py )\E'm AN
o3 o Ps
..... : pb: p6 As Q<<p2~X?] [X<pg.X?] [X<P5.X?] [X<P6.X?]
P \@ %<p9.y?)é y| <;p4:y?

Observation: If z is a boundary-node, then its associated region intersects
one of the lines Ay, Ay, Ag, As that support the query-rectangle.
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Boundary nodes in kd-trees

B(n,A) = max

kd-trees with n points

number of associated regions
that intersect a given line A

Bver(n) = vertig]lal?;es A Bver(na )\) 6hor(n) = horizomg)iines A /Bhor(na )\)
B(n) B(n, Aw) + B(n, An) + B(n, Ag) + B(n, As)

<
< 2/8ver(n) + 2/8’7‘”(”)
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Boundary nodes in kd-trees

Goal: Recursive formula for Syer(n).

p ps R
o . (Xepext)
o3 ps
o
.
P
* : ‘16 ps
P2 *
: pr
[ ]
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Boundary nodes in kd-trees

Goal: Recursive formula for Syer(n).

A
Py Ppa
[ ] [ ]
o3 ps
-
.
P
° F:G ps
P2 *
: pr
[ ]

T.Biedl (CS-UW) CS240 — Module 8
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Boundary nodes in kd-trees

Goal: Recursive formula for Syer(n).

T.Biedl (CS-UW)

{No -associated region:
1

tislintersected by A0

{0y ) i x<ps-x}

y<pry?

Y N
______ /. o
(kd-tree on at, (kd-tree on at,
imost  [n/4],imost  [n/4],
{points | \points ]
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Boundary nodes in kd-trees

® Buer(n) < 2Bver(n/4) +2 = Byer(n) € O(+/n)
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Boundary nodes in kd-trees

® Buer(n) < 2Bver(n/4) +2 = Brer(n) € O(y/n)
o Similarly: Bhor(n) < 2Bhor(n/4) +3 = Bror(n) € O(y/n)
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Boundary nodes in kd-trees

° /Bver(n) < 2/Bver(”/4') +2 = Bver(n) € O(ﬁ)
o Similarly: Bhor(n) < 2Bhor(n/4) +3 = Bror(n) € O(y/n)

° /B(n) < 2/8ver(n) + 26hor(n) S O(\/ﬁ)

Theorem: In a range-query in a kd-tree (of points in general position)
there are O(y/n) boundary-nodes.
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Boundary nodes in kd-trees

° /Bver(n) < 2/Bver(”/4') +2 = Bver(n) € O(\/ﬁ)
o Similarly: Bhor(n) < 2Bhor(n/4) +3 = Bror(n) € O(y/n)

° /B(n) < 2/8ver(n) + 25hor(n) S O(\/ﬁ)

Theorem: In a range-query in a kd-tree (of points in general position)
there are O(y/n) boundary-nodes.

@ So range-search takes O(y/n + s) time.

e Note: It is crucial that we have ~ n/4 points in each grand-child of
the root.
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kd-tree: Higher Dimensions

@ kd-trees for d-dimensional space:
> At the root the point set is partitioned based on the first coordinate
> At the subtrees of the root the partition is based on the second
coordinate
> At depth d — 1 the partition is based on the last coordinate
» At depth d we start all over again, partitioning on first coordinate
Storage: O(n)
Height: O(log n)

Construction time: O(nlog n)

o Range search time: O(s 4 n'~%/9)

This assumes that d is a constant.
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Outline

© Range-Searching in Dictionaries for Points

@ Range Trees
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Towards Range Trees

@ Both Quadtrees and kd-trees are intuitive and simple.
@ But: both may be very slow for range searches.

@ Quadtrees are also potentially wasteful in space.

New idea: Range trees
e Tree of trees (a multi-level data structure)

» So far, nodes in our trees stored a key-value pair and references to
children and (maybe) the parent

» But we can store much more in a node!

» Here: Each node stores in another binary search tree (!)

@ They are wasteful in space, but permit much faster range search.

T.Biedl (CS-UW) CS240 - Module 8 Winter 2025 28 /51



2-dimensional Range Trees
Primary structure:

Balanced binary search tree

T that stores P and uses
x-coordinates as keys.

Every node z of T stores an associate structure T,s(z):
@ Let P(z) be all points in subtree of z in T (including point at z)
@ T,ss(z) stores P(z) in a balanced binary search tree, using the

y-coordinates as key

e Note: Point of z is not necessarily the root of T,s(2z)
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Bigger example

T.Biedl (CS-UW)

(15,16)
(6,15)
(12,14)
[ ]
(5.13)
(10,12)
(7.11)
(8,10)
[ J
(14,9)
(11,8)
(2,7)
.(9, 6)
(1,5)
[}
(4.4)
(16
(13,2)
(3,1)
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Bigger example

T.Biedl (CS-UW)

w0 primary tree T

(1,5)
°

(4.4)
®

(3,1)
L]

(9,6)

(11,8)
J

(14,9)
®

(13,2)
[}

(16,
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Bigger examp|e W.primary tree T

e - .
7’

’

1

1

\

\ 15
\ (12,14) \
14)
Tass(2) 3413 (5.13) \
(10J12) 1
1
11 o !
1
(8,10) '
&9 ,/Tass(w) (drawn
e 5 reversed)
2.7
°
(9,6)
6 9
(1,5)
[ ]
(4.4)
°
(163)
(13.2)
2
(3,1)
>

Not all associate
trees are shown.
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Range Tree Space Analysis

@ Primary tree T uses O(n) space.

@ How many nodes do all associate trees together have?

> point of a is only in associate tree T,s(a)

Tass(a)

> point of b is in associate trees T,ss(a), Tass(b)

» point of ¢ is in associate trees
Tass(a); Tass(b)7 Tass(c)

» Key insight: point of z is in associate tree T,ss(u)
if and only if u is an ancestor of zin T

> So every point belongs to O(log n) associate trees.

> So all associate trees together use O(nlog n) space.

@ A range-tree with n points uses O(nlog n) space.

This is tight for some primary trees.
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Range Trees Operations

@ search: search by x-coordinate in T

e insert/delete: First, insert/delete point by x-coordinate into T.
Then, walk back up to the root and insert/delete the point by
y-coordinate in all associate trees T,s5(z) of nodes z on path.

Problem: We want the binary search trees to be balanced.

» This makes insert/delete very slow if we use AVL-trees.

(A rotation at z changes P(z), so requires a re-build of T,s(2).)
» Solution: Use Scapegoat trees! (No rotations.)
» Run-time for insert/delete becomes O(log? n) amortized.
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Range Trees Operations

@ search: search by x-coordinate in T

e insert/delete: First, insert/delete point by x-coordinate into T.

Then, walk back up to the root and insert/delete the point by
y-coordinate in all associate trees T,s5(z) of nodes z on path.

Problem: We want the binary search trees to be balanced.
» This makes insert/delete very slow if we use AVL-trees.

(A rotation at z changes P(z), so requires a re-build of T,s(2).)

» Solution: Use Scapegoat trees! (No rotations.)
» Run-time for insert/delete becomes O(log? n) amortized.

@ range-search: search by x-range in T.

Among found points, search by y-range in some associated trees.

@ Must understand first: How to do (1-dimensional) range search in

binary search tree?
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BST Range Search

@ Search for left boundary x;: this gives path P;

@ Search for right boundary x,: this gives path P
@ Three types of nodes: outside, on, or between the paths.

@ This classification will be crucial later!
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BST Range Search re-phrased

@ boundary nodes: nodes in P; or P,
» For each boundary node, test whether it is in the range.
@ outside nodes: nodes that are left of P; or right of P,
» These are not in the range, we do not search in them.
@ inside nodes: nodes that are right of P; and left of P,

» We keep a list of the topmost inside nodes.
» All descendants of such a node are in the range.
For a 1d range search, report all of them.
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BST Range Search analysis

Assume that the binary search tree is balanced:
e Search for path P;: O(log n)

@ Search for path Py: O(log n)
@ O(log n) boundary nodes

@ We spend O(1) time on each.
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BST Range Search analysis

Assume that the binary search tree is balanced:
e Search for path P;: O(log n)

e Search for path P>: O(log n)
O(log n) boundary nodes
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We spend O(1) time per topmost inside node v.
» They are children of boundary nodes, so this takes O(log n) time.
For 1d range search, also report the descendants of v.

> We have }, ;5most inside 7 {descendants of z} < s since subtrees of
topmost inside nodes are disjoint. So this takes time O(s) overall.

Run-time for 1d range search: O(logn+ s).

The ability to report the topmost inside nodes will be important for 2d
range search.
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Range Trees: Range Search

Range search for Q = [x1, x2] X [y1, 2] is a two stage process:

@ Perform a range search (on the x-coordinates) for the interval [x1, x2]
in primary tree T (BST::range-search(T,xi,x2))

@ Get boundary and topmost inside nodes as before.

@ For every boundary node, test to see if the corresponding point is
within the region Q.

@ For every topmost inside node v:

Let P(z) be the points in the subtree of z in T.

We know that all x-coordinates of points in P(z) are within range.
Recall: P(z) is stored in T,ss(2).

To find points in P(z) where the y-cordinates are within range as well,
perform a range search in Toss(z): BST::range-search( Toss(2), y1,¥2)

v

vV vVvYyy
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Range tree range search example
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Range tree range search example

w0 primary tree T
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Range tree range search example

1) primary tree T
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Range tree range search example
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Range tree range search example
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Range tree range search example

primary tree T

1
,/ Tass(w) (drawn
reversed)

8
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Range Trees: Range Search Run-time

@ O(log n) time to find boundary and topmost inside nodes in primary
tree.

@ There are O(log n) such nodes.

@ O(logn+ s;) time for each topmost inside node z,
where s, is the number of points in T,ss(z) that are reported

@ Two topmost inside nodes have no common point in their trees
= every point is reported in at most one associate structure

= Zz topmost inside sz <s
Time for range search in range-tree is proportional to

> (logn+s;) € O(log”n+s)

z topmost inside

(There are ways to make this even faster. No details.)
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Range Trees: Higher Dimensions

@ Range trees can be generalized to d-dimensional space.

Space O(n (log n)9=1)
Construction time  O(n (log n)9)
Range search time O(s + (log n)9)

(Note: d is considered to be a constant.)
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Range Trees: Higher Dimensions
@ Range trees can be generalized to d-dimensional space.

Space O(n(logn)¥=1) kd-trees: O(n)
Construction time  O(n (log n)9) kd-trees: O(nlog n)
Range search time O(s + (log n)?)  kd-trees: O(s + n'~1/9)

(Note: d is considered to be a constant.)

@ Space/time trade-off compared to kd-trees.
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Range search data structures summary

o Quadtrees T - P
T
» simple (also for dynamic set of points) -
» work well only if points evenly distributed p | 7 P
» wastes space for higher dimensions ol
o kd-trees

> linear space

» range search time O(y/n + s)

» inserts/deletes destroy balance and range
search time (no simple fix)

@ range-trees

> range search time O(log? n + s)

> wastes some space
> inserts/deletes destroy balance (can
fix this with occasional rebuild)

Convention: Points on split lines belong to right/top side.
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Outline

© Range-Searching in Dictionaries for Points

@ 3-sided range search
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3-sided range search

Consider a special kind of range-search:
3sidedRangeSearch(xi, x2,y'): return (x,y) with x3 < x < xp

andy >y’
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3-sided range search

Consider a special kind of range-search:
3sidedRangeSearch(xi, x2,y'): return (x,y) with x3 < x < xp

andy > y'.
(15-16)
(6,15) .
o (12,14)
(5.13) .
. (10,12)
(7,11) ®
® (310
. 14,9)
(L8)®
27 M
. (9.6)
(15) .
. (4.9)
. (16.3)
(13,2) ®
(3.1) .

o We can do this with a range tree in O(log® n + s) with ©(nlog n)
space.

@ Can we do this faster or using less space by adapting previous ideas to
the special situation?
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Idea 1: Associated heaps

primary tree T
10,
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@ Primary tree:
balanced binary
search tree.

@ Associated tree:
binary heap.

@ Space:
©(nlog n).

@ Range-search
time?
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|dea 1: Associated heaps - 3-sided range search
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|dea 1: Associated heaps - 3-sided range search

primary tree T

@ Search in primary
as before.
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|dea 1: Associated heaps - 3-sided range search

primary tree T

@ Search in primary
\ as before.

,’|T(12) @ In associated
® (heap)  heap: Search by
y-coordinate in
O(1 + s) time.
(Exercise.)
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|dea 1: Associated heaps - 3-sided range search

primary tree T

@ Search in primary
AN as before.

,’|T(12) @ In associated
® (heap)  heap: Search by
y-coordinate in
O(1 + s) time.
(Exercise.)

o Total time:
O(logn+s)

@ But space is w(n)
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Idea 2: Cartesian Trees

Recall: Treap = binary search tree (with respect to keys)
+ heap (with respect to priorities)

46 60
/}\s%’\ % & @
22 29 37 41 49
@y @ &
Cartesian tree: Use x-coordinate as key, y-coordinate as priority.
Space: ©(n).
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|dea 2: Cartesian Tree - 3-sided range search
Cartesian Tree::3-sided-range-search( T, 28,47, 36) :

@ BST::range-search(xi, x2) to get boundary and topmost inside nodes.
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|dea 2: Cartesian Tree - 3-sided range search
Cartesian Tree::3-sided-range-search( T, 28,47, 36) :

@ BST::range-search(xi, x2) to get boundary and topmost inside nodes.

@ Boundary-nodes: Explicitly test whether in x-range and y-range.
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|dea 2: Cartesian Tree - 3-sided range search
Cartesian Tree::3-sided-range-search( T, 28,47, 36) :

@ BST::range-search(xi, x2) to get boundary and topmost inside nodes.
@ Boundary-nodes: Explicitly test whether in x-range and y-range.

@ Topmost inside-nodes: If y > y;, report and recurse in children.
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|dea 2: Cartesian Tree - 3-sided range search
Cartesian Tree::3-sided-range-search( T, 28,47, 36) :

@ BST::range-search(xi, x2) to get boundary and topmost inside nodes.
@ Boundary-nodes: Explicitly test whether in x-range and y-range.

@ Topmost inside-nodes: If y > y;, report and recurse in children.
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|dea 2: Cartesian Tree - 3-sided range search

Run-time for 3-sided range search:
e BST::range-search(xi, x2) — O(height) since we do not report points.
e Testing boundary-nodes: O(height)
o Testing heap: O(1 + s;) per topmost inside-node z

= O(height + s) run-time, O(n) space

But: No guarantees on the height (not even in expectation) since we
cannot choose priorities.
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|dea 3: Priority search trees

@ Design a new data structure

o Keep good aspects of Cartesian trees (store y-coordinates in
heap-order)

o Keep good aspects of kd-tree (split in half by x-coordinate)

(52,74)
x<227 Xx<41?
(15,65) (((27,59) ) [ (39.48) ) (46,49)
(x<257 ) ((x<377 J

N\ N

((9.61)  ((22.42)  ((25.19) (37.42)  ((4a1.8) ((49.37))

Key idea: The x-coordinate stored for splitting can be different from the
x-coordinate of the stored point.
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|dea 3: Priority search trees

(52,74)
x<227 x<41?
(15,65) (((27,59) ) ( (39.48) ) (46,49)
(x<25? J (L x<377 J

DN N\

((9.61)) (22.42)  ((25.19) (37.42)) ((a1.8)) ((49.37))

e Every node z stores a point p, = (xz, yz),
> y, is the maximum y-coordinate in subtree

@ Every non-leaf z stores an x-coordinate x. (split-line)
» Every point p in left subtree has p.x < x,
» Every point p in right subtree has p.x > x.

@ x. is chosen so that tree is balanced = height O(log n).
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Priority search tree closeup

(.74)
-
70) ( 5) Looking only at y-coordinates:
C___J
(65)] (N 48)] = @ Heap-order property
) L ) C C ) @ But not heap-structure

(.61)) ((-42)) ((.19) (42)) é (,37)
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Priority search tree closeup

Looking only at y-coordinates:

@ Heap-order property

@ But not heap-structure

Looking only at x-coordinates:

@ Points at leaves ~
kd-tree (1-dimensional)
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Priority search tree closeup

(.74)
__J
/ \ Looking only at y-coordinates:
(,55) g y y .
C___J C___J
&) N @) (G @ Heap-order property
C ) L ) L ) C ) @ But not heap-structure

Looking only at x-coordinates:

o Points at leaves ~
— kd-tree (1-dimensional)
[(15,)} [(27)} e Points at level ¢ ~

kd-tree if we ignore

points below.
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|dea 3: Priority search trees

(52,74)
x<227 x<417
(15,65) (((27,59) ) ( (39.48) ) (46,49)
(x<25? ) ((x<377 J

DN N\

(0.61)  ((22.42)  ((25.19) (37.42)  ((41.8) ((49.37))

Construction: O(nlog n) time (exercise)
search: O(log n) time
» Get search-path by following split-lines, check all nodes on path

insert, delete: Re-balancing is difficult, but can be done (no details).
@ 3-sided range search: As for Cartesian trees, but height now O(log n).

» Run-time O(logn+ s)
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3-sided range search summary

@ Idea 1: Scapegoat tree + associated heaps
O(log n+ s) time for range search, but w(n) space.

o ldea 2: Cartesian Tree

O(n) space, but range search takes O(height + s), could be slow
o Idea 3: Priority search tree

O(n) space, O(log n + s) time for range search.

Sometimes it pays to design purpose-built data structures.
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