
CS 240E – Data Structures
and Data Management (Enriched)

Module 8: Range-Searching in Dictionaries for Points

Therese Biedl
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-03-03 11:52

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 1 / 51

Outline

8 Range-Searching in Dictionaries for Points
Range Searches
Multi-Dimensional Data
Quadtrees
kd-Trees
Range Trees
3-sided range search

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025

Outline

8 Range-Searching in Dictionaries for Points
Range Searches
Multi-Dimensional Data
Quadtrees
kd-Trees
Range Trees
3-sided range search

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025

Range searches
So far: search(k) looks for one specific item.
range-search: look for all items in a given range.

I Input: A range, i.e., an interval Q = (x , x ′) (open or closed)
I Want: Report all KVPs in the dictionary whose key k satisfies k ∈ Q

Example: 5 10 11 17 19 33 45 51 55 59

range-search((18,45]) should return {19, 33, 45}

As usual n denotes the number of input-items.
Let s be the output-size, i.e., the number of items in the range.
We need Ω(s) time simply to report the items.
Note that sometimes s = 0 and sometimes s = n; we therefore keep it
as a separate parameter when analyzing the run-time.

Typical run-time: O(log n + s).

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 2 / 51

Range searches
So far: search(k) looks for one specific item.
range-search: look for all items in a given range.

I Input: A range, i.e., an interval Q = (x , x ′) (open or closed)
I Want: Report all KVPs in the dictionary whose key k satisfies k ∈ Q

Example: 5 10 11 17 19 33 45 51 55 59

range-search((18,45]) should return {19, 33, 45}

As usual n denotes the number of input-items.
Let s be the output-size, i.e., the number of items in the range.
We need Ω(s) time simply to report the items.
Note that sometimes s = 0 and sometimes s = n; we therefore keep it
as a separate parameter when analyzing the run-time.

Typical run-time: O(log n + s).
T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 2 / 51

Range searches in existing dictionary realizations

Unsorted list/array/hash table: Range search requires Ω(n) time:
We have to check for each item explicitly whether it is in the range.

Sorted array: Range search in A can be done in O(log n + s) time:

range-search((18,45]) 5 10 11 17 19 33 45 51 55 59
↑i ↑i ′

Using binary search, find i such that x is at (or would be at) A[i].
Using binary search, find i ′ such that x ′ is at (or would be at) A[i ′]
Report all items A[i+1...i ′−1]
Report A[i] and A[i ′] if they are in range

BST: Range searches can similarly be done in time O(height+s) time.
We will see this in detail later.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 3 / 51

Outline

8 Range-Searching in Dictionaries for Points
Range Searches
Multi-Dimensional Data
Quadtrees
kd-Trees
Range Trees
3-sided range search

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025

Multi-Dimensional Data
Range searches are of special interest for multi-dimensional data.
Example: flights that leave between 9am and noon, and cost $400-$600

6:00 8:00 10:00 12:00 14:00 16:00 departure time$300
$350
$400
$450
$500
$550
$600
$650
$700

price

Q

Each item has d aspects (coordinates): (x0, x1, · · · , xd−1)
so corresponds to a point in d-dimensional space
We concentrate on d = 2, i.e., points in Euclidean plane
(Orthogonal) d-dimensional range search: Given a query rectangle
Q = [x1, x ′1]× · · · × [xd , x ′d], find all points that lie within Q.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 4 / 51

Multi-dimensional Range Search
The time for range searches depends on how the points are stored.

Two naive ideas that do not work well:
I Could store a 1-dimensional dictionary (where the key is some

combination of the aspects.)
Problem: Range search on one aspect is not straightforward

I Could use one dictionary for each aspect
Problem: inefficient, wastes space

Better idea: Design new data structures specifically for points.
I Quadtrees
I kd-trees
I range-trees

Assumption: Points are in general position:
No two points on a horizontal line.
No two points on a vertical line.

This simplifies presentation; data structures can be generalized.
T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 5 / 51

Outline

8 Range-Searching in Dictionaries for Points
Range Searches
Multi-Dimensional Data
Quadtrees
kd-Trees
Range Trees
3-sided range search

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025

Quadtrees
We have n points P = {(x0, y0), (x1, y1), · · · , (xn−1, yn−1)} in the plane.

Find a bounding box R = [0, 2k)× [0, 2k): a square containing all points.
Assume (after translation) that all coordinates are non-negative.
Find max-coordinate in P, use the smallest k such that it is < 2k .

Structure (and also how to build the quadtree that stores P):
Root r of the quadtree is associated with region R
If R contains 0 or 1 points, then root r is a leaf that stores point.
Else split: Partition R into four equal subsquares (quadrants)
RNE ,RNW ,RSW ,RSE
Partition P into sets PNE ,PNW ,PSW ,PSE of points in these regions.

I Convention: Points on split lines belong to right/top side
Recursively build tree Ti for points Pi in region Ri and make them
children of the root.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 6 / 51

Quadtree example

p0

p1

p2

p3 p4

p5
p6

p7

p8

p9

[0, 16)×[0, 16)

p4

NE
[0, 8)×[8, 16)

∅ ∅ [0, 4)×[8, 12)

p9

NE
p3

NW

∅ p1

SE

SW
p8

SE

NW
[0, 8)×[0, 8)

p6

NE
p0

NW
p2

SW
p7

SE

SW
p5

SE

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 7 / 51

Quadtree example

p0

p1

p2

p3 p4

p5
p6

p7

p8

p9

[0, 16)×[0, 16)

p4

NE
[0, 8)×[8, 16)

∅ ∅ [0, 4)×[8, 12)

p9

NE
p3

NW

∅ p1

SE

SW
p8

SE

NW
[0, 8)×[0, 8)

p6

NE
p0

NW
p2

SW
p7

SE

SW
p5

SE

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 7 / 51

Quadtree example

p0

p1

p2

p3 p4

p5
p6

p7

p8

p9

[0, 16)×[0, 16)

p4

NE
[0, 8)×[8, 16)

∅ ∅ [0, 4)×[8, 12)

p9

NE
p3

NW

∅ p1

SE

SW
p8

SE

NW
[0, 8)×[0, 8)

p6

NE
p0

NW
p2

SW
p7

SE

SW
p5

SE

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 7 / 51

Quadtree example

p0

p1

p2

p3 p4

p5
p6

p7

p8

p9

[0, 16)×[0, 16)

p4

NE
[0, 8)×[8, 16)

∅ ∅ [0, 4)×[8, 12)

p9

NE
p3

NW

∅ p1

SE

SW
p8

SE

NW
[0, 8)×[0, 8)

p6

NE
p0

NW
p2

SW
p7

SE

SW
p5

SE

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 7 / 51

Quadtree Dictionary Operations

search: Analogous to binary search trees and tries
insert:

I Search for the point
I Split the leaf while there are two points in one region

delete:
I Search for the point
I Remove the point
I If its parent has only one point left: delete parent

(and recursively all ancestors that have only one point left)

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 8 / 51

Quadtree Insert example

p0

p1

p2

p3
p4

p5
p6

p7

p8

p9

p10

insert(p10)
[0, 16)×[0, 16)

p4 [0, 8)×[8, 16)

∅ ∅ [0, 4)×[8, 12)

p9 p3 ∅ p1

p8

[0, 8)×[0, 8)

p6 p0 p2 p7

p5

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 9 / 51

Quadtree Insert example

p0

p1

p2

p3
p4

p5
p6

p7

p8

p9

p10

insert(p10)
[0, 16)×[0, 16)

p4 [0, 8)×[8, 16)

∅ ∅ [0, 4)×[8, 12)

p9 p3 ∅ p1

p8

[0, 8)×[0, 8)

[4, 8)× [4, 8)

p10 ∅ p6 ∅

p0 p2 p7

p5

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 9 / 51

Quadtree Range Search

QTree::range-search(r ← root,Q)
r : The root of a quadtree, Q: Query-rectangle
1. R ← region associated with node r
2. if (R ⊆ Q) then // inside node, stop searching

report all points below r and return
3. else if (R ∩ Q is empty) then return // outside node, stop searching

// boundary node, recurse
4. if (r is a leaf) then
5. p ← point stored at r
6. if p is not NULL and in Q then report it and return
7. else return
8. for each child v of r do QTree::range-search(v ,Q)

Note: We assume here that each node of the quadtree stores the
associated square. Alternatively, these could be re-computed during the
search (space-time tradeoff).

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 10 / 51

Quadtree range search example

p0

p1

p2

p3

p4

p5
p6

p7

p8

p9

p10

Green: Search stopped due to R ⊆ Q.

Red: Search stopped due to R ∩Q = ∅.

Blue: Must continue search in children
/ evaluate.

[0, 16)×[0, 16)

p4 [0, 8)×[8, 16)

∅ ∅ [0, 4)×[8, 12)

p9 p3 ∅ p1

p8

[0, 8)×[0, 8)

[4, 8)× [4, 8)

p10 ∅ p6 ∅

p0 p2 p7

p5

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 11 / 51

Quadtree range search example

p0

p1

p2

p3

p4

p5
p6

p7

p8

p9

p10

Green: Search stopped due to R ⊆ Q.

Red: Search stopped due to R ∩Q = ∅.

Blue: Must continue search in children
/ evaluate.

[0, 16)×[0, 16)

p4 [0, 8)×[8, 16)

∅ ∅ [0, 4)×[8, 12)

p9 p3 ∅ p1

p8

[0, 8)×[0, 8)

[4, 8)× [4, 8)

p10 ∅ p6 ∅

p0 p2 p7

p5

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 11 / 51

Quadtree Analysis
Complexity of range search:

In worst-case, we look at nearly all
nodes, even if the answer is ∅.
The number nodes could be Θ(nh),
where h is the height.
Can have very large height for bad
distributions of points.

p2
p1

(0, 0)

(Even with n = 3 points, the height
can be arbitrarily large.)

In practice, quad-trees work quite well. Theoretical evidence (no details):
For n randomly chosen points, the expected height is O(log n).
The height depends on the spread factor:

sidelength of R
minimum distance between points in P

The height is in Θ(log(spread factor))

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 12 / 51

Quadtree Analysis
Complexity of range search:

In worst-case, we look at nearly all
nodes, even if the answer is ∅.
The number nodes could be Θ(nh),
where h is the height.
Can have very large height for bad
distributions of points.

p2
p1

(0, 0)

(Even with n = 3 points, the height
can be arbitrarily large.)

In practice, quad-trees work quite well. Theoretical evidence (no details):
For n randomly chosen points, the expected height is O(log n).
The height depends on the spread factor:

sidelength of R
minimum distance between points in P

The height is in Θ(log(spread factor))
T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 12 / 51

Quadtrees in other dimensions

Quad-tree of 1-dimensional points:
0“Points:” 9 12 14 24 26 28

[0,32)

[0,16)

00000

0
[8,16)

01001
0

[12,16)

01100
0

01110
1

1

1

0
[16,32)

[24,32)

[24,28)

11000
0

11010
1

0
11100
1

1

1

Same as a pruned trie

Quadtrees also easily generalize to higher dimensions (split into
octants → octrees, etc.) but are rarely used beyond dimension 3.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 13 / 51

Quadtrees in other dimensions

Quad-tree of 1-dimensional points:
0“Points:” 9 12 14 24 26 28

(in base-2) 00000 01001 01100 01110 11000 11010 11100

[0,32)

[0,16)

00000

0
[8,16)

01001
0

[12,16)

01100
0

01110
1

1

1

0
[16,32)

[24,32)

[24,28)

11000
0

11010
1

0
11100
1

1

1

Same as a pruned trie

Quadtrees also easily generalize to higher dimensions (split into
octants → octrees, etc.) but are rarely used beyond dimension 3.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 13 / 51

Quadtrees in other dimensions

Quad-tree of 1-dimensional points:
0“Points:” 9 12 14 24 26 28

(in base-2) 00000 01001 01100 01110 11000 11010 11100

[0,32)

[0,16)

00000

0
[8,16)

01001
0

[12,16)

01100
0

01110
1

1

1

0
[16,32)

[24,32)

[24,28)

11000
0

11010
1

0
11100
1

1

1

Same as a pruned trie

Quadtrees also easily generalize to higher dimensions (split into
octants → octrees, etc.) but are rarely used beyond dimension 3.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 13 / 51

Quadtrees in other dimensions

Quad-tree of 1-dimensional points:
0“Points:” 9 12 14 24 26 28

(in base-2) 00000 01001 01100 01110 11000 11010 11100

[0,32)

[0,16)

00000

0
[8,16)

01001
0

[12,16)

01100
0

01110
1

1

1

0
[16,32)

[24,32)

[24,28)

11000
0

11010
1

0
11100
1

1

1

Same as a pruned trie

Quadtrees also easily generalize to higher dimensions (split into
octants → octrees, etc.) but are rarely used beyond dimension 3.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 13 / 51

Quadtrees in other dimensions

Quad-tree of 1-dimensional points:
0“Points:” 9 12 14 24 26 28

(in base-2) 00000 01001 01100 01110 11000 11010 11100

[0,32)

[0,16)

00000

0
[8,16)

01001
0

[12,16)

01100
0

01110
1

1

1

0
[16,32)

[24,32)

[24,28)

11000
0

11010
1

0
11100
1

1

1

Same as a pruned trie

Quadtrees also easily generalize to higher dimensions (split into
octants → octrees, etc.) but are rarely used beyond dimension 3.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 13 / 51

Quadtrees in other dimensions

Quad-tree of 1-dimensional points:
0“Points:” 9 12 14 24 26 28

(in base-2) 00000 01001 01100 01110 11000 11010 11100

[0,32)

[0,16)

00000

0
[8,16)

01001
0

[12,16)

01100
0

01110
1

1

1

0
[16,32)

[24,32)

[24,28)

11000
0

11010
1

0
11100
1

1

1

Same as a pruned trie

Quadtrees also easily generalize to higher dimensions (split into
octants → octrees, etc.) but are rarely used beyond dimension 3.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 13 / 51

Quadtree summary
Very easy to compute and handle
No complicated arithmetic, only divisions by 2 (bit-shift!) if the
width/height of bounding box R is a power of 2
Space potentially wasteful, but good if points are well-distributed
Variation: We could stop splitting earlier and allow up to K points in
a leaf (for some fixed bound K).
Variation: Use quad-tree to store pixelated images.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 14 / 51

Outline

8 Range-Searching in Dictionaries for Points
Range Searches
Multi-Dimensional Data
Quadtrees
kd-Trees
Range Trees
3-sided range search

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025

kd-trees

We have n points P = {(x0, y0), (x1, y1), · · · , (xn−1, yn−1)}
Quadtrees: Split region into quadrants regardless of where points are
kd-tree idea: Split region based on where points are.

I We split at upper median of coordinates
 roughly half of the point are in each subtree

Each node of the kd-tree keeps track of a splitting line in one
dimension (2D: either vertical or horizontal)
Convention: Points on split lines belong to right/top side
Continue splitting, switching between vertical and horizontal lines,
until every point is in a separate region

(There are alternatives, e.g., split by the dimension that has better aspect
ratios for the resulting regions.)

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 15 / 51

kd-tree example

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

R2

x<p8.x?

{(x , y) : x<p8.x}
y<p1.y?

(−∞, p8.x)×(−∞, p1.y)
x<p2.x?

p0

<

p2

≥

<

· · ·
x<p9.x?

p3

<
· · ·

y<p9.y?

p1

<

p9

≥

≥

≥

<

{(x , y) : x≥p8.x}
y<p6.y?

· · ·
x<p5.x?

p7

<

p5

≥

<
· · ·

x<p6.x?

p8

<
· · ·

y<p4.y?

p6

<

p4

≥

≥

≥

≥

For ease of drawing, we will usually not list the associated regions of nodes.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 16 / 51

kd-tree example

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

R2

x<p8.x?

{(x , y) : x<p8.x}
y<p1.y?

(−∞, p8.x)×(−∞, p1.y)
x<p2.x?

p0

<

p2

≥

<

· · ·
x<p9.x?

p3

<
· · ·

y<p9.y?

p1

<

p9

≥

≥

≥

<

{(x , y) : x≥p8.x}
y<p6.y?

· · ·
x<p5.x?

p7

<

p5

≥

<
· · ·

x<p6.x?

p8

<
· · ·

y<p4.y?

p6

<

p4

≥

≥

≥

≥

For ease of drawing, we will usually not list the associated regions of nodes.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 16 / 51

kd-tree example

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

R2

x<p8.x?

{(x , y) : x<p8.x}
y<p1.y?

(−∞, p8.x)×(−∞, p1.y)
x<p2.x?

p0

<

p2

≥

<

· · ·
x<p9.x?

p3

<
· · ·

y<p9.y?

p1

<

p9

≥

≥

≥

<

{(x , y) : x≥p8.x}
y<p6.y?

· · ·
x<p5.x?

p7

<

p5

≥

<
· · ·

x<p6.x?

p8

<
· · ·

y<p4.y?

p6

<

p4

≥

≥

≥

≥

For ease of drawing, we will usually not list the associated regions of nodes.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 16 / 51

kd-tree example

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

R2

x<p8.x?

{(x , y) : x<p8.x}
y<p1.y?

(−∞, p8.x)×(−∞, p1.y)
x<p2.x?

p0

<

p2

≥

<

· · ·
x<p9.x?

p3

<
· · ·

y<p9.y?

p1

<

p9

≥

≥

≥

<

{(x , y) : x≥p8.x}
y<p6.y?

· · ·
x<p5.x?

p7

<

p5

≥

<
· · ·

x<p6.x?

p8

<
· · ·

y<p4.y?

p6

<

p4

≥

≥

≥

≥

For ease of drawing, we will usually not list the associated regions of nodes.
T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 16 / 51

kd-tree example

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

R2

x<p8.x?

{(x , y) : x<p8.x}
y<p1.y?

(−∞, p8.x)×(−∞, p1.y)
x<p2.x?

p0

<

p2

≥

<

· · ·
x<p9.x?

p3

<
· · ·

y<p9.y?

p1

<

p9

≥

≥

≥

<

{(x , y) : x≥p8.x}
y<p6.y?

· · ·
x<p5.x?

p7

<

p5

≥

<
· · ·

x<p6.x?

p8

<
· · ·

y<p4.y?

p6

<

p4

≥

≥

≥

≥

For ease of drawing, we will usually not list the associated regions of nodes.
T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 16 / 51

Constructing kd-trees

The algorithm to build a kd-tree is immediate from the definition of a
kd-tree:

To build a kd-tree with initial split by x on points P:
If |P| ≤ 1 create a leaf and return.
Else X := randomized-quick-select(P, bn

2c) (select by x -coordinate)
Partition P by x -coordinate into Px<X and Px≥X

I b n
2c points on one side and d n

2e points on the other.
(Recall: Points in general position.)

Create left subtree recursively (splitting by y) for points Px<X .
Create right subtree recursively (splitting by y) for points Px≥X .

Building with initial y -split symmetric.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 17 / 51

Constructing kd-trees
Run-time:

Find X and partition P takes Θ(n) expected time.
Both subtrees have ≈ n/2 points.

T exp(n) = 2T exp(n/2) + O(n) (sloppy recurrence)

This resolves to Θ(n log n) expected time.
This can be reduced to Θ(n log n) worst-case time by pre-sorting.

Height: h(1) = 0, h(n) ≤ h(dn/2e) + 1.
This resolves to O(log n) (specifically dlog ne).
This is tight (binary tree with n leaves)

Space: All interior nodes have exactly two children.
Therefore have n − 1 interior nodes.
Space is Θ(n).
T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 18 / 51

kd-tree Dictionary Operations

search (for single point): as in binary search tree using indicated
coordinate
insert: search, insert as new leaf.
delete: search, remove leaf.

Problem: After insert or delete, the split might no longer be at exact
median and the height is no longer guaranteed to be dlog2 ne.

We can maintain O(log n) height by occasionally re-building entire
subtrees. (No details.) But range-search will be slower.

kd-trees do not handle insertion/deletion well.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 19 / 51

kd-tree Range Search
Range search is exactly as for quad-trees, except that there are only
two children and leaves always store points.

kdTree::range-search(r ← root,Q)
r : The root of a kd-tree, Q: Query-rectangle
1. R ← region associated with node r
2. if (R ⊆ Q) then report all points below r ; return
3. if (R ∩ Q is empty) then return
4. if (r is a leaf) then
5. p ← point stored at r
6. if p is in Q return p
7. else return
8. for each child v of r do kdTree::range-search(v ,Q)

We assume again that each node stores its associated region.
To save space, we could instead pass the region as a parameter and
compute the region for each child using the splitting line.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 20 / 51

kd-tree: Range Search Example

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

x<p8.x?

y<p1.y?

x<p2.x?

p0 p2

x<p9.x?

p3 y<p9.y?

p1 p9

y<p6.y?

x<p5.x?

p7 p5

x<p6.x?

p8 y<p4.y?

p6 p4

Red: Search stopped due to R ∩ Q = ∅. Green: Search stopped due to R ⊆ Q.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 21 / 51

kd-tree: Range Search Example

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

x<p8.x?

y<p1.y?

x<p2.x?

p0 p2

x<p9.x?

p3 y<p9.y?

p1 p9

y<p6.y?

x<p5.x?

p7 p5

x<p6.x?

p8 y<p4.y?

p6 p4

Red: Search stopped due to R ∩ Q = ∅. Green: Search stopped due to R ⊆ Q.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 21 / 51

kd-tree: Range Search Complexity

We spend O(1) time at each visited node, except in line 2.
All calls to line 2 together take O(s) time (recall: s is the output-size)
Observe: # visited nodes is O(β(n))
where β(n) is the number of “boundary” nodes (blue):

I kdTree::range-search was called.
I Neither R ⊆ Q nor R ∩ Q = ∅

We will show: β(n) ∈ O(
√
n)

Therefore, the complexity of range search in kd-trees is O(s +
√
n)

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 22 / 51

Boundary nodes in kd-trees

Goal: The number of boundary-nodes satisfies β(n) ∈ O(
√
n).

λW λE

λS

λN

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9 x<p8.x?

y<p1.y?

x<p2.x?

p0 p2

x<p9.x?

p3 y<p9.y?

p1 p9

y<p6.y?

x<p5.x?

p7 p5

x<p6.x?

p8 y<p4.y?

p6 p4

Observation: If z is a boundary-node, then its associated region intersects
one of the lines λW , λN , λE , λS that support the query-rectangle.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 23 / 51

Boundary nodes in kd-trees

β(n, λ) := max
kd-trees with n points

{number of associated regions
that intersect a given line λ

}

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

βver (n) := max
vertical lines λ

βver (n, λ) βhor (n) := max
horizontal lines λ

βhor (n, λ)

β(n) ≤ β(n, λW) + β(n, λN) + β(n, λE) + β(n, λS)
≤ 2βver (n) + 2βhor (n)

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 24 / 51

Boundary nodes in kd-trees

Goal: Recursive formula for βver (n).

p0

p1

p2

p3

p4

p5
p6

p7

p8

p9

λ
R2

x<p8.x?

{(x , y) : x<p8.x}
y<p1.y?

kd-tree on at
most dn/4e
points

Y

kd-tree on at
most dn/4e
points

N

Y

No associated region
is intersected by λ

N

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 25 / 51

Boundary nodes in kd-trees

Goal: Recursive formula for βver (n).

p0

p1

p2

p3

p4

p5
p6

p7

p8

p9

λ
R2

x<p8.x?

{(x , y) : x<p8.x}
y<p1.y?

kd-tree on at
most dn/4e
points

Y

kd-tree on at
most dn/4e
points

N

Y

No associated region
is intersected by λ

N

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 25 / 51

Boundary nodes in kd-trees

Goal: Recursive formula for βver (n).

p0

p1

p2

p3

p4

p5
p6

p7

p8

p9

λ
R2

x<p8.x?

{(x , y) : x<p8.x}
y<p1.y?

kd-tree on at
most dn/4e
points

Y

kd-tree on at
most dn/4e
points

N

Y

No associated region
is intersected by λ

N

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 25 / 51

Boundary nodes in kd-trees

βver (n) ≤ 2βver (n/4) + 2 ⇒ βver (n) ∈ O(
√
n)

Similarly: βhor (n) ≤ 2βhor (n/4) + 3 ⇒ βhor (n) ∈ O(
√
n)

β(n) ≤ 2βver (n) + 2βhor (n) ∈ O(
√
n)

Theorem: In a range-query in a kd-tree (of points in general position)
there are O(

√
n) boundary-nodes.

So range-search takes O(
√
n + s) time.

Note: It is crucial that we have ≈ n/4 points in each grand-child of
the root.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 26 / 51

Boundary nodes in kd-trees

βver (n) ≤ 2βver (n/4) + 2 ⇒ βver (n) ∈ O(
√
n)

Similarly: βhor (n) ≤ 2βhor (n/4) + 3 ⇒ βhor (n) ∈ O(
√
n)

β(n) ≤ 2βver (n) + 2βhor (n) ∈ O(
√
n)

Theorem: In a range-query in a kd-tree (of points in general position)
there are O(

√
n) boundary-nodes.

So range-search takes O(
√
n + s) time.

Note: It is crucial that we have ≈ n/4 points in each grand-child of
the root.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 26 / 51

Boundary nodes in kd-trees

βver (n) ≤ 2βver (n/4) + 2 ⇒ βver (n) ∈ O(
√
n)

Similarly: βhor (n) ≤ 2βhor (n/4) + 3 ⇒ βhor (n) ∈ O(
√
n)

β(n) ≤ 2βver (n) + 2βhor (n) ∈ O(
√
n)

Theorem: In a range-query in a kd-tree (of points in general position)
there are O(

√
n) boundary-nodes.

So range-search takes O(
√
n + s) time.

Note: It is crucial that we have ≈ n/4 points in each grand-child of
the root.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 26 / 51

Boundary nodes in kd-trees

βver (n) ≤ 2βver (n/4) + 2 ⇒ βver (n) ∈ O(
√
n)

Similarly: βhor (n) ≤ 2βhor (n/4) + 3 ⇒ βhor (n) ∈ O(
√
n)

β(n) ≤ 2βver (n) + 2βhor (n) ∈ O(
√
n)

Theorem: In a range-query in a kd-tree (of points in general position)
there are O(

√
n) boundary-nodes.

So range-search takes O(
√
n + s) time.

Note: It is crucial that we have ≈ n/4 points in each grand-child of
the root.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 26 / 51

kd-tree: Higher Dimensions

kd-trees for d-dimensional space:
I At the root the point set is partitioned based on the first coordinate
I At the subtrees of the root the partition is based on the second

coordinate
I At depth d − 1 the partition is based on the last coordinate
I At depth d we start all over again, partitioning on first coordinate

Storage: O(n)
Height: O(log n)
Construction time: O(n log n)
Range search time: O(s + n1−1/d)

This assumes that d is a constant.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 27 / 51

Outline

8 Range-Searching in Dictionaries for Points
Range Searches
Multi-Dimensional Data
Quadtrees
kd-Trees
Range Trees
3-sided range search

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025

Towards Range Trees

Both Quadtrees and kd-trees are intuitive and simple.
But: both may be very slow for range searches.
Quadtrees are also potentially wasteful in space.

New idea: Range trees
Tree of trees (a multi-level data structure)

I So far, nodes in our trees stored a key-value pair and references to
children and (maybe) the parent

I But we can store much more in a node!
I Here: Each node stores in another binary search tree (!)

They are wasteful in space, but permit much faster range search.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 28 / 51

2-dimensional Range Trees
Primary structure:
Balanced binary search tree
T that stores P and uses
x-coordinates as keys.

P(z)

5

13 (5, 13)

6

15 (6, 15)

7

10 (7, 10)

8

9 (8, 9)

T

z

Tass(z)

Every node z of T stores an associate structure Tass(z):
Let P(z) be all points in subtree of z in T (including point at z)
Tass(z) stores P(z) in a balanced binary search tree, using the
y-coordinates as key
Note: Point of z is not necessarily the root of Tass(z)
T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 29 / 51

Bigger example

(1, 5)

(2, 7)

(3, 1)

(4, 4)

(5, 13)

(6, 15)

(7, 11)

(8, 10)

(9, 6)

(10, 12)

(11, 8)

(12, 14)

(13, 2)

(14, 9)

(15, 16)

(16, 3)

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 30 / 51

Bigger example

1

(1, 5)

2

(2, 7)

3

(3, 1)

4

(4, 4)

5

(5, 13)

6

(6, 15)

7

(7, 11)

8

(8, 10)

9

(9, 6)

10

(10, 12)

11

(11, 8)

12

(12, 14)

13

(13, 2)

14

(14, 9)

15

(15, 16)

16

(16, 3)

primary tree T

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 30 / 51

Bigger example

1

(1, 5)

2

(2, 7)

3

(3, 1)

4

(4, 4)

5

13
(5, 13)

6

15
(6, 15)

7

11
(7, 11)

8

10
(8, 10)

9

6
(9, 6)

10

(10, 12)

11

8
(11, 8)

12

14
(12, 14)

13

2
(13, 2)

14

(14, 9)

15

(15, 16)

16

(16, 3)

z

Tass(z)

w

Tass(w) (drawn
reversed)

Not all associate
trees are shown.

primary tree T

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 30 / 51

Range Tree Space Analysis

Primary tree T uses O(n) space.
How many nodes do all associate trees together have?

a

b

c

Tass(a)

Tass(b)

Tass(c)

I point of a is only in associate tree Tass(a)
I point of b is in associate trees Tass(a),Tass(b)
I point of c is in associate trees

Tass(a),Tass(b),Tass(c)
I Key insight: point of z is in associate tree Tass(u)

if and only if u is an ancestor of z in T
I So every point belongs to O(log n) associate trees.
I So all associate trees together use O(n log n) space.

A range-tree with n points uses O(n log n) space.

This is tight for some primary trees.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 31 / 51

Range Trees Operations

search: search by x -coordinate in T
insert/delete: First, insert/delete point by x -coordinate into T .
Then, walk back up to the root and insert/delete the point by
y -coordinate in all associate trees Tass(z) of nodes z on path.

Problem: We want the binary search trees to be balanced.
I This makes insert/delete very slow if we use AVL-trees.

(A rotation at z changes P(z), so requires a re-build of Tass(z).)
I Solution: Use Scapegoat trees! (No rotations.)
I Run-time for insert/delete becomes O(log2 n) amortized.

range-search: search by x -range in T .
Among found points, search by y -range in some associated trees.
Must understand first: How to do (1-dimensional) range search in
binary search tree?

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 32 / 51

Range Trees Operations

search: search by x -coordinate in T
insert/delete: First, insert/delete point by x -coordinate into T .
Then, walk back up to the root and insert/delete the point by
y -coordinate in all associate trees Tass(z) of nodes z on path.

Problem: We want the binary search trees to be balanced.
I This makes insert/delete very slow if we use AVL-trees.

(A rotation at z changes P(z), so requires a re-build of Tass(z).)
I Solution: Use Scapegoat trees! (No rotations.)
I Run-time for insert/delete becomes O(log2 n) amortized.

range-search: search by x -range in T .
Among found points, search by y -range in some associated trees.
Must understand first: How to do (1-dimensional) range search in
binary search tree?

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 32 / 51

BST Range Search

28 43

52

36

15

9 27

22 35

42

39

37 41

46

49

74

65

60 69

97

86 99

Search for left boundary x1: this gives path P1

Search for right boundary x2: this gives path P2

Three types of nodes: outside, on, or between the paths.
This classification will be crucial later!
T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 33 / 51

BST Range Search re-phrased

52

36

15

9 27

22 35

42

39

37 41

46

49

74

65

60 69

97

86 99

boundary nodes: nodes in P1 or P2
I For each boundary node, test whether it is in the range.

outside nodes: nodes that are left of P1 or right of P2
I These are not in the range, we do not search in them.

inside nodes: nodes that are right of P1 and left of P2
I We keep a list of the topmost inside nodes.
I All descendants of such a node are in the range.

For a 1d range search, report all of them.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 34 / 51

BST Range Search analysis
Assume that the binary search tree is balanced:

Search for path P1: O(log n)
Search for path P2: O(log n)
O(log n) boundary nodes
We spend O(1) time on each.

52

36

15

9 27

22 35

42

39

37 41

46

49

74

65

60 69

97

86 99

We spend O(1) time per topmost inside node v .
I They are children of boundary nodes, so this takes O(log n) time.

For 1d range search, also report the descendants of v .
I We have

∑
z topmost inside #{descendants of z} ≤ s since subtrees of

topmost inside nodes are disjoint. So this takes time O(s) overall.

Run-time for 1d range search: O(log n + s).

The ability to report the topmost inside nodes will be important for 2d
range search.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 35 / 51

BST Range Search analysis
Assume that the binary search tree is balanced:

Search for path P1: O(log n)
Search for path P2: O(log n)
O(log n) boundary nodes
We spend O(1) time on each.

52

36

15

9 27

22 35

42

39

37 41

46

49

74

65

60 69

97

86 99

We spend O(1) time per topmost inside node v .
I They are children of boundary nodes, so this takes O(log n) time.

For 1d range search, also report the descendants of v .
I We have

∑
z topmost inside #{descendants of z} ≤ s since subtrees of

topmost inside nodes are disjoint. So this takes time O(s) overall.

Run-time for 1d range search: O(log n + s).

The ability to report the topmost inside nodes will be important for 2d
range search.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 35 / 51

Range Trees: Range Search

Range search for Q = [x1, x2]× [y1, y2] is a two stage process:
Perform a range search (on the x -coordinates) for the interval [x1, x2]
in primary tree T (BST::range-search(T , x1, x2))

Get boundary and topmost inside nodes as before.

For every boundary node, test to see if the corresponding point is
within the region Q.
For every topmost inside node v :

I Let P(z) be the points in the subtree of z in T .
I We know that all x -coordinates of points in P(z) are within range.
I Recall: P(z) is stored in Tass(z).
I To find points in P(z) where the y -cordinates are within range as well,

perform a range search in Tass(z): BST::range-search(Tass(z), y1, y2)

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 36 / 51

Range tree range search example

(1, 5)

(2, 7)

(3, 1)

(4, 4)

(5, 13)

(6, 15)

(7, 11)

(8, 10)

(9, 6)

(10, 12)

(11, 8)

(12, 14)

(13, 2)

(14, 9)

(15, 16)

(16, 3)

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 37 / 51

Range tree range search example

1

(1, 5)

2

(2, 7)

3

(3, 1)

4

(4, 4)

5

(5, 13)

6

(6, 15)

7

(7, 11)

8

(8, 10)

9

(9, 6)

10

(10, 12)

11

(11, 8)

12

(12, 14)

13

(13, 2)

14

(14, 9)

15

(15, 16)

16

(16, 3)

primary tree T

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 37 / 51

Range tree range search example

1

(1, 5)

2

(2, 7)

3

(3, 1)

4

(4, 4)

5

(5, 13)

6

(6, 15)

7

(7, 11)

8

(8, 10)

9

(9, 6)

10

(10, 12)

11

(11, 8)

12

(12, 14)

13

(13, 2)

14

(14, 9)

15

(15, 16)

16

(16, 3)

primary tree T

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 37 / 51

Range tree range search example

1

(1, 5)

2

(2, 7)

3

(3, 1)

4

(4, 4)

5

(5, 13)

6

(6, 15)

7

(7, 11)

8

(8, 10)

9

(9, 6)

10

(10, 12)

11

(11, 8)

12

(12, 14)

13

(13, 2)

14

(14, 9)

15

(15, 16)

16

(16, 3)

primary tree T

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 37 / 51

Range tree range search example

1

(1, 5)

2

(2, 7)

3

(3, 1)

4

(4, 4)

5

13
(5, 13)

6

15
(6, 15)

7

11
(7, 11)

8

10
(8, 10)

9

6
(9, 6)

10

(10, 12)

11

(11, 8)

12

(12, 14)

13

(13, 2)

14

(14, 9)

15

(15, 16)

16

(16, 3)

z

Tass(z)

primary tree T

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 37 / 51

Range tree range search example

1

(1, 5)(1, 5)

2

(2, 7)(2, 7)

3

(3, 1)(3, 1)

4

(4, 4)(4, 4)

5

13
(5, 13)(5, 13)

6

15
(6, 15)(6, 15)

7

11
(7, 11)(7, 11)

8

10
(8, 10)(8, 10)

9

6
(9, 6)(9, 6)

10

(10, 12)(10, 12)

11

(11, 8)
8

(11, 8)

12

(12, 14)
14

(12, 14)

13

(13, 2)
2

(13, 2)

14

(14, 9)(14, 9)

15

(15, 16)(15, 16)

16

(16, 3)(16, 3)

z

Tass(z)

w

Tass(w) (drawn
reversed)

primary tree T

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 37 / 51

Range Trees: Range Search Run-time

O(log n) time to find boundary and topmost inside nodes in primary
tree.
There are O(log n) such nodes.
O(log n + sz) time for each topmost inside node z ,
where sz is the number of points in Tass(z) that are reported
Two topmost inside nodes have no common point in their trees
⇒ every point is reported in at most one associate structure
⇒
∑

z topmost inside sz ≤ s
Time for range search in range-tree is proportional to∑

z topmost inside
(log n + sz) ∈ O(log2 n + s)

(There are ways to make this even faster. No details.)

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 38 / 51

Range Trees: Higher Dimensions
Range trees can be generalized to d-dimensional space.
Space O(n (log n)d−1)
Construction time O(n (log n)d)
Range search time O(s + (log n)d)

(Note: d is considered to be a constant.)

Space/time trade-off compared to kd-trees.

Section 5.4
HIGHER-DIMENSIONAL RANGE TREES

Lemma 5.7 A query with an axis-parallel rectangle in a range tree storing n
points takes O(log2 n+ k) time, where k is the number of reported points.

Proof. At each node ν in the main tree T we spend constant time to decide where
the search path continues, and we possibly call 1DRANGEQUERY. Theorem 5.2
states that the time we spend in this recursive call is O(logn+ kν), where kν is
the number of points reported in this call. Hence, the total time we spend is

∑
ν

O(logn+ kν),

where the summation is over all nodes in the main tree T that are visited. Notice
that the sum ∑ν kν equals k, the total number of reported points. Furthermore,
the search paths of x and x′ in the main tree T have length O(logn). Hence,
∑ν O(logn) = O(log2 n). The lemma follows.

The following theorem summarizes the performance of 2-dimensional range
trees.

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses
O(n logn) storage and can be constructed in O(n logn) time. By querying this
range tree one can report the points in P that lie in a rectangular query range in
O(log2 n+ k) time, where k is the number of reported points.

The query time stated in Theorem 5.8 can be improved to O(logn+ k) by a
technique called fractional cascading. This is described in Section 5.6.

5.4 Higher-Dimensional Range Trees

It is fairly straightforward to generalize 2-dimensional range trees to higher-
dimensional range trees. We only describe the global approach.

Let P be a set of points in d-dimensional space. We construct a balanced
binary search tree on the first coordinate of the points. The canonical subset
P(ν) of a node ν in this first-level tree, the main tree, consists of the points
stored in the leaves of the subtree rooted at ν . For each node ν we construct
an associated structure Tassoc(ν); the second-level tree Tassoc(ν) is a (d − 1)-
dimensional range tree for the points in P(ν), restricted to their last d − 1
coordinates. This (d −1)-dimensional range tree is constructed recursively in
the same way: it is a balanced binary search tree on the second coordinate of the
points, in which each node has a pointer to a (d −2)-dimensional range tree of
the points in its subtree, restricted to the last (d −2) coordinates. The recursion
stops when we are left with points restricted to their last coordinate; these are
stored in a 1-dimensional range tree—a balanced binary search tree.

The query algorithm is also very similar to the 2-dimensional case. We use
the first-level tree to locate O(logn) nodes whose canonical subsets together
contain all the points whose first coordinates are in the correct range. These
canonical subsets are queried further by performing a range query on the cor-
responding second-level structures. In each second-level structure we select 109

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 39 / 51

Range Trees: Higher Dimensions
Range trees can be generalized to d-dimensional space.
Space O(n (log n)d−1) kd-trees: O(n)
Construction time O(n (log n)d) kd-trees: O(n log n)
Range search time O(s + (log n)d) kd-trees: O(s + n1−1/d)

(Note: d is considered to be a constant.)
Space/time trade-off compared to kd-trees.

Section 5.4
HIGHER-DIMENSIONAL RANGE TREES

Lemma 5.7 A query with an axis-parallel rectangle in a range tree storing n
points takes O(log2 n+ k) time, where k is the number of reported points.

Proof. At each node ν in the main tree T we spend constant time to decide where
the search path continues, and we possibly call 1DRANGEQUERY. Theorem 5.2
states that the time we spend in this recursive call is O(logn+ kν), where kν is
the number of points reported in this call. Hence, the total time we spend is

∑
ν

O(logn+ kν),

where the summation is over all nodes in the main tree T that are visited. Notice
that the sum ∑ν kν equals k, the total number of reported points. Furthermore,
the search paths of x and x′ in the main tree T have length O(logn). Hence,
∑ν O(logn) = O(log2 n). The lemma follows.

The following theorem summarizes the performance of 2-dimensional range
trees.

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses
O(n logn) storage and can be constructed in O(n logn) time. By querying this
range tree one can report the points in P that lie in a rectangular query range in
O(log2 n+ k) time, where k is the number of reported points.

The query time stated in Theorem 5.8 can be improved to O(logn+ k) by a
technique called fractional cascading. This is described in Section 5.6.

5.4 Higher-Dimensional Range Trees

It is fairly straightforward to generalize 2-dimensional range trees to higher-
dimensional range trees. We only describe the global approach.

Let P be a set of points in d-dimensional space. We construct a balanced
binary search tree on the first coordinate of the points. The canonical subset
P(ν) of a node ν in this first-level tree, the main tree, consists of the points
stored in the leaves of the subtree rooted at ν . For each node ν we construct
an associated structure Tassoc(ν); the second-level tree Tassoc(ν) is a (d − 1)-
dimensional range tree for the points in P(ν), restricted to their last d − 1
coordinates. This (d −1)-dimensional range tree is constructed recursively in
the same way: it is a balanced binary search tree on the second coordinate of the
points, in which each node has a pointer to a (d −2)-dimensional range tree of
the points in its subtree, restricted to the last (d −2) coordinates. The recursion
stops when we are left with points restricted to their last coordinate; these are
stored in a 1-dimensional range tree—a balanced binary search tree.

The query algorithm is also very similar to the 2-dimensional case. We use
the first-level tree to locate O(logn) nodes whose canonical subsets together
contain all the points whose first coordinates are in the correct range. These
canonical subsets are queried further by performing a range query on the cor-
responding second-level structures. In each second-level structure we select 109

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 39 / 51

Range search data structures summary
Quadtrees

I simple (also for dynamic set of points)
I work well only if points evenly distributed
I wastes space for higher dimensions

p0

p1

p2

p3 p4

p5p6

p7

p8

p9

kd-trees
I linear space
I range search time O(

√
n + s)

I inserts/deletes destroy balance and range
search time (no simple fix)

p0

p1

p2

p3

p4

p5
p6

p7

p8

p9

range-trees

I range search time O(log2 n + s)
I wastes some space
I inserts/deletes destroy balance (can

fix this with occasional rebuild)

P(z)

5

13 (5, 13)

6

15 (6, 15)

7

10 (7, 10)

8

9 (8, 9)

T

z

Tass(z)

Convention: Points on split lines belong to right/top side.
T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 40 / 51

Outline

8 Range-Searching in Dictionaries for Points
Range Searches
Multi-Dimensional Data
Quadtrees
kd-Trees
Range Trees
3-sided range search

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025

3-sided range search
Consider a special kind of range-search:

3sidedRangeSearch(x1, x2, y ′): return (x , y) with x1 ≤ x ≤ x2
and y ≥ y ′.

(1, 5)

(2, 7)

(3, 1)

(4, 4)

(5, 13)

(6, 15)

(7, 11)
(8, 10)

(9, 6)

(10, 12)

(11, 8)

(12, 14)

(13, 2)

(14, 9)

(15, 16)

(16, 3)

We can do this with a range tree in O(log2 n + s) with Θ(n log n)
space.
Can we do this faster or using less space by adapting previous ideas to
the special situation?

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 41 / 51

3-sided range search
Consider a special kind of range-search:

3sidedRangeSearch(x1, x2, y ′): return (x , y) with x1 ≤ x ≤ x2
and y ≥ y ′.

(1, 5)

(2, 7)

(3, 1)

(4, 4)

(5, 13)

(6, 15)

(7, 11)
(8, 10)

(9, 6)

(10, 12)

(11, 8)

(12, 14)

(13, 2)

(14, 9)

(15, 16)

(16, 3)

We can do this with a range tree in O(log2 n + s) with Θ(n log n)
space.
Can we do this faster or using less space by adapting previous ideas to
the special situation?

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 41 / 51

Idea 1: Associated heaps

1

(1, 5)(1, 5)

2

(2, 7)(2, 7)

3

(3, 1)(3, 1)

4

(4, 4)(4, 4)

5

13
(5, 13)(5, 13)

6

15
(6, 15)(6, 15)

7

11
(7, 11)(7, 11)

8

10
(8, 10)(8, 10)

9

6
(9, 6)(9, 6)

10

(10, 12)(10, 12)

11

(11, 8)
8

(11, 8)

12

(12, 14)
14

(12, 14)

13

(13, 2)
2

(13, 2)

14

(14, 9)(14, 9)

15

(15, 16)(15, 16)

16

(16, 3)(16, 3)

T (6)
(heap) T (12)

(heap)

primary tree T

Primary tree:
balanced binary
search tree.
Associated tree:
binary heap.
Space:
Θ(n log n).
Range-search
time?

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 42 / 51

Idea 1: Associated heaps - 3-sided range search

(1, 5)

(2, 7)

(3, 1)

(4, 4)

(5, 13)

(6, 15)

(7, 11)

(8, 10)

(9, 6)

(10, 12)

(11, 8)

(12, 14)

(13, 2)

(14, 9)

(15, 16)

(16, 3)

Search in primary
as before.
In associated
heap: Search by
y -coordinate in
O(1 + s) time.
(Exercise.)
Total time:
O(log n + s)
But space is ω(n)

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 43 / 51

Idea 1: Associated heaps - 3-sided range search

1

(1, 5)

2

(2, 7)

3

(3, 1)

4

(4, 4)

5

(5, 13)

6

(6, 15)

7

(7, 11)

8

(8, 10)

9

(9, 6)

10

(10, 12)

11

(11, 8)

12

(12, 14)

13

(13, 2)

14

(14, 9)

15

(15, 16)

16

(16, 3)

primary tree T

Search in primary
as before.

In associated
heap: Search by
y -coordinate in
O(1 + s) time.
(Exercise.)
Total time:
O(log n + s)
But space is ω(n)

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 43 / 51

Idea 1: Associated heaps - 3-sided range search

1

(1, 5)(1, 5)

2

(2, 7)(2, 7)

3

(3, 1)(3, 1)

4

(4, 4)(4, 4)

5

13
(5, 13)(5, 13)

6

15
(6, 15)(6, 15)

7

11
(7, 11)(7, 11)

8

10
(8, 10)(8, 10)

9

6
(9, 6)(9, 6)

10

(10, 12)(10, 12)

11

(11, 8)
8

(11, 8)

12

(12, 14)
14

(12, 14)

13

(13, 2)
2

(13, 2)

14

(14, 9)(14, 9)

15

(15, 16)(15, 16)

16

(16, 3)(16, 3)

T (6)
(heap) T (12)

(heap)

primary tree T

Search in primary
as before.
In associated
heap: Search by
y -coordinate in
O(1 + s) time.
(Exercise.)

Total time:
O(log n + s)
But space is ω(n)

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 43 / 51

Idea 1: Associated heaps - 3-sided range search

1

(1, 5)(1, 5)

2

(2, 7)(2, 7)

3

(3, 1)(3, 1)

4

(4, 4)(4, 4)

5

13
(5, 13)(5, 13)

6

15
(6, 15)(6, 15)

7

11
(7, 11)(7, 11)

8

10
(8, 10)(8, 10)

9

6
(9, 6)(9, 6)

10

(10, 12)(10, 12)

11

(11, 8)
8

(11, 8)

12

(12, 14)
14

(12, 14)

13

(13, 2)
2

(13, 2)

14

(14, 9)(14, 9)

15

(15, 16)(15, 16)

16

(16, 3)(16, 3)

T (6)
(heap) T (12)

(heap)

primary tree T

Search in primary
as before.
In associated
heap: Search by
y -coordinate in
O(1 + s) time.
(Exercise.)
Total time:
O(log n + s)
But space is ω(n)

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 43 / 51

Idea 2: Cartesian Trees

Recall: Treap = binary search tree (with respect to keys)
+ heap (with respect to priorities)

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

Cartesian tree: Use x -coordinate as key, y -coordinate as priority.
Space: Θ(n).

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 44 / 51

Idea 2: Cartesian Tree - 3-sided range search
CartesianTree::3-sided-range-search(T , 28, 47, 36) :

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

BST::range-search(x1, x2) to get boundary and topmost inside nodes.

Boundary-nodes: Explicitly test whether in x -range and y -range.
Topmost inside-nodes: If y ≥ y1, report and recurse in children.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 45 / 51

Idea 2: Cartesian Tree - 3-sided range search
CartesianTree::3-sided-range-search(T , 28, 47, 36) :

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

BST::range-search(x1, x2) to get boundary and topmost inside nodes.
Boundary-nodes: Explicitly test whether in x -range and y -range.

Topmost inside-nodes: If y ≥ y1, report and recurse in children.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 45 / 51

Idea 2: Cartesian Tree - 3-sided range search
CartesianTree::3-sided-range-search(T , 28, 47, 36) :

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

BST::range-search(x1, x2) to get boundary and topmost inside nodes.
Boundary-nodes: Explicitly test whether in x -range and y -range.
Topmost inside-nodes: If y ≥ y1, report and recurse in children.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 45 / 51

Idea 2: Cartesian Tree - 3-sided range search
CartesianTree::3-sided-range-search(T , 28, 47, 36) :

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

BST::range-search(x1, x2) to get boundary and topmost inside nodes.
Boundary-nodes: Explicitly test whether in x -range and y -range.
Topmost inside-nodes: If y ≥ y1, report and recurse in children.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 45 / 51

Idea 2: Cartesian Tree - 3-sided range search

Run-time for 3-sided range search:
BST::range-search(x1, x2) — O(height) since we do not report points.
Testing boundary-nodes: O(height)
Testing heap: O(1 + sz) per topmost inside-node z

⇒ O(height + s) run-time, O(n) space

But: No guarantees on the height (not even in expectation) since we
cannot choose priorities.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 46 / 51

Idea 3: Priority search trees
Design a new data structure
Keep good aspects of Cartesian trees (store y -coordinates in
heap-order)
Keep good aspects of kd-tree (split in half by x -coordinate)

(52,74)
x<37?

(35,70)
x<22?

(15,65)
x<9?

(9,61)

(27,59)
x<25?

(22,42) (25,19)

(42,55)
x<41?

(39,48)
x<37?

(37,42)

(46,49)
x<49?

(41,8) (49,37)

Key idea: The x -coordinate stored for splitting can be different from the
x -coordinate of the stored point.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 47 / 51

Idea 3: Priority search trees

(52,74)
x<37?

(35,70)
x<22?

(15,65)
x<9?

(9,61)

(27,59)
x<25?

(22,42) (25,19)

(42,55)
x<41?

(39,48)
x<37?

(37,42)

(46,49)
x<49?

(41,8) (49,37)

Every node z stores a point pz = (xz , yz),
I yz is the maximum y -coordinate in subtree

Every non-leaf z stores an x -coordinate x ′z (split-line)
I Every point p in left subtree has p.x < x ′

z
I Every point p in right subtree has p.x ≥ x ′

z

x ′z is chosen so that tree is balanced ⇒ height O(log n).

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 48 / 51

Priority search tree closeup
(,74)

(,70)

(,65)

(,61)

(,59)

(,42) (,19)

(,55)

(,48)

(,42)

(,49)

(,8) (,37)

Looking only at y -coordinates:

Heap-order property
But not heap-structure

(,)
x<37?

(,)
x<22?

(15,)

(,)

(27,)

(,) (,)

(,)
x<41?

(39,)

(,)

(46,)

(,) (,)

Looking only at x -coordinates:

Points at leaves ≈
kd-tree (1-dimensional)

Points at level ` ≈
kd-tree if we ignore
points below.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 49 / 51

Priority search tree closeup
(,74)

(,70)

(,65)

(,61)

(,59)

(,42) (,19)

(,55)

(,48)

(,42)

(,49)

(,8) (,37)

Looking only at y -coordinates:

Heap-order property
But not heap-structure

(,)
x<37?

(,)
x<22?

(,)
x<9?

(9,)

(,)
x<25?

(22,) (25,)

(,)
x<41?

(,)
x<37?

(37,)

(,)
x<49?

(41,) (49,)

Looking only at x -coordinates:

Points at leaves ≈
kd-tree (1-dimensional)

Points at level ` ≈
kd-tree if we ignore
points below.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 49 / 51

Priority search tree closeup
(,74)

(,70)

(,65)

(,61)

(,59)

(,42) (,19)

(,55)

(,48)

(,42)

(,49)

(,8) (,37)

Looking only at y -coordinates:

Heap-order property
But not heap-structure

(,)
x<37?

(,)
x<22?

(15,)

(,)

(27,)

(,) (,)

(,)
x<41?

(39,)

(,)

(46,)

(,) (,)

Looking only at x -coordinates:

Points at leaves ≈
kd-tree (1-dimensional)
Points at level ` ≈
kd-tree if we ignore
points below.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 49 / 51

Idea 3: Priority search trees
(52,74)
x<37?

(35,70)
x<22?

(15,65)
x<9?

(9,61)

(27,59)
x<25?

(22,42) (25,19)

(42,55)
x<41?

(39,48)
x<37?

(37,42)

(46,49)
x<49?

(41,8) (49,37)

Construction: O(n log n) time (exercise)
search: O(log n) time

I Get search-path by following split-lines, check all nodes on path
insert, delete: Re-balancing is difficult, but can be done (no details).
3-sided range search: As for Cartesian trees, but height now O(log n).

I Run-time O(log n + s)
T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 50 / 51

3-sided range search summary

Idea 1: Scapegoat tree + associated heaps
O(log n + s) time for range search, but ω(n) space.
Idea 2: Cartesian Tree
O(n) space, but range search takes O(height + s), could be slow
Idea 3: Priority search tree
O(n) space, O(log n + s) time for range search.

Sometimes it pays to design purpose-built data structures.

T.Biedl (CS-UW) CS240E – Module 8 Winter 2025 51 / 51

	Range-Searching in Dictionaries for Points
	Range Searches
	Range searches
	Range searches in existing dictionary realizations

	Multi-Dimensional Data
	Multi-Dimensional Data
	Multi-dimensional Range Search

	Quadtrees
	Quadtrees
	Quadtree example
	Quadtree Dictionary Operations
	Quadtree Insert example
	Quadtree Range Search
	Quadtree range search example
	Quadtree Analysis
	Quadtrees in other dimensions
	Quadtree summary

	kd-Trees
	kd-trees
	kd-tree example
	Constructing kd-trees
	Constructing kd-trees
	kd-tree Dictionary Operations
	kd-tree Range Search
	kd-tree: Range Search Example
	kd-tree: Range Search Complexity
	Boundary nodes in kd-trees
	Boundary nodes in kd-trees
	Boundary nodes in kd-trees
	Boundary nodes in kd-trees
	kd-tree: Higher Dimensions

	Range Trees
	Towards Range Trees
	2-dimensional Range Trees
	Bigger example
	Range Tree Space Analysis
	Range Trees Operations
	BST Range Search
	BST Range Search re-phrased
	BST Range Search analysis
	Range Trees: Range Search
	Range tree range search example
	Range Trees: Range Search Run-time
	Range Trees: Higher Dimensions
	Range search data structures summary

	3-sided range search
	3-sided range search
	Idea 1: Associated heaps
	Idea 1: Associated heaps - 3-sided range search
	Idea 2: Cartesian Trees
	Idea 2: Cartesian Tree - 3-sided range search
	Idea 2: Cartesian Tree - 3-sided range search
	Idea 3: Priority search trees
	Idea 3: Priority search trees
	Priority search tree closeup
	Idea 3: Priority search trees
	3-sided range search summary

