
CS 240E – Data Structures
and Data Management (Enriched)

Module 9: String Matching

Therese Biedl
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-03-11 14:24

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 1 / 47

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
Skip-heuristics
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
Skip-heuristics
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025

Pattern Matching Introduction
Search for a string (pattern) in a large body of text. Useful for

I Information Retrieval (text editors, search engines)
I Bioinformatics
I Data Mining

T [0..n − 1] – The text (or haystack) being searched within

Example: T = “Where is he?”

P[0..m − 1] – The pattern (or needle) being searched for

Example: P1 = “he” P2 = “who”

occurrence: index i such that T [i ..i+m−1] = P, i.e.,

P[j] = T [i + j] for 0 ≤ j ≤ m − 1

Convention: return smallest such i (leftmost occurrence)
If P does not occur in T , return FAIL

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 2 / 47

Pattern Matching Observation
Recall:

Substring T [i ..j] for 0 ≤ i ≤ j+1 ≤ n: a string of length j − i + 1
which consists of characters T [i], . . .T [j] in order.
Prefix of T : a substring T [0..i−1] of T for some 0 ≤ i ≤ n.
Suffix of T : a substring T [i ..n−1] of T for some 0 ≤ i ≤ n.
The empty string Λ is also considered a substring, prefix and suffix.

Observe: P occurs in T
⇔ P is a substring of T .
⇔ P is a suffix of some prefix of T .
⇔ P is a prefix of some suffix of T .

X X X X

prefix of T
suffix of prefix of T

prefix of suffix of T
suffix of T

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 3 / 47

General Idea of Algorithms
Pattern matching algorithms consist of guesses and checks:

A guess is a position g such that P might start at T [g].
Valid guesses (initially) are 0 ≤ g ≤ n −m.
A check of a guess is a single position j with 0 ≤ j < m where we
compare T [g + j] to P[j].
We do strncmp to compare a guess to P. This uses m checks in the
worst-case, but may use (many) fewer checks if there is a mismatch.

We will diagram a single run of any pattern matching algorithm by a
matrix of checks, where each row represents a single guess (shaded gray).

a b b b a b a b b a b
a b b a

a

Brute-force idea: Check every possible guess.
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 4 / 47

Brute-Force Example

Example: T = abbbababbab, P = aaab

a a b a a a a a a b b
a a a

a a
a

a a a b
a a a b

a a a b
a a a b

What is the worst possible input?

P = am−1b, T = an

Worst case performance Θ((n −m + 1) ·m)
This is too slow (quadratic if m ≈ n/2).

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 5 / 47

Brute-Force Example

Example: T = abbbababbab, P = aaab

a a b a a a a a a b b
a a a

a a
a

a a a b
a a a b

a a a b
a a a b

What is the worst possible input? P = am−1b, T = an

Worst case performance Θ((n −m + 1) ·m)
This is too slow (quadratic if m ≈ n/2).

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 5 / 47

How to improve?

General idea of preprocessing: Do work on some parts of input
beforehand, so that the actual query (with rest of input) then goes faster.

For pattern matching, we have two options:
Do preprocessing on the pattern P

I We eliminate guesses based on characters we have seen.
Do preprocessing on the text T

I We create a data structure to find matches easily.

Pre-process

Pre-process P

Karp-Rabin NFA/DFA Knuth-Morris-Pratt Boyer-Moore

Pre-process T

Suffix tree Suffix array

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 6 / 47

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
Skip-heuristics
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025

Karp-Rabin Fingerprint Algorithm – Idea
Idea: Use fingerprints to eliminate guesses

Need function h : {strings of length m} → {0, . . . ,M−1}
(Call these ‘hash-function’ and ‘table-size’, but there is no dictionary here)

Insight: If h(P) 6= h(T [g ..g+m−1]) then guess g cannot work

Example: Σ = {0−9}, P = 9 2 6 5 3, T = 3 1 4 1 5 9 2 6 5 3 5
Use standard hash-function for words, with R = |Σ| and M = 97:

h(x0 . . . x4) =
(
x0x1x2x3x4

)
10 mod 97

Pre-compute h(P) = 92653 mod 97 = 18.

3 1 4 1 5 9 2 6 5 3 5
no strcmp needed

no strcmp needed

no strcmp needed

false positive

no strcmp needed

found

fingerprint 84
fingerprint 94

fingerprint 76
fingerprint 18

fingerprint 95
fingerprint 18

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 7 / 47

Karp-Rabin Fingerprint Algorithm – First Attempt

Karp-Rabin-Simple::pattern-matching(T ,P)
1. hP ← h(P[0..m−1)])
2. for g ← 0 to n −m
3. hT ← h(T [g ..g+m−1]) // not constant time
4. if hT = hP
5. if strncmp(T ,P, g ,m) = 0
6. return “found at guess g”
7. return FAIL

Never misses a match: h(T [g ..g+m−1]) 6= h(P)⇒ guess g is not P
h(T [g ..g+m−1]) depends on m characters, so naive computation
takes Θ(m) time per guess
Running time is Θ(mn) if P is not in T . Can we improve this?

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 8 / 47

Karp-Rabin Fingerprint Algorithm – Fast Update
Idea: Consecutive guesses share m−1 characters
⇒ for suitable hash-functions, can compute next fingerprint from previous

Example: 15926 = (41592− 4 · 10 000) · 10 + 6

15926 mod 97︸ ︷︷ ︸
h(15926)

=
(

(41592 mod 97︸ ︷︷ ︸
previous fingerprint

−4 · 10000 mod 97︸ ︷︷ ︸
9 (pre-computed)

)
·10+6) mod 97

=
(

(76− 4 · 9) · 10 + 6
)

mod 97 = 18

So pre-compute Rm−1 mod M (here 10000 mod 97 = 9)
Compute leftmost fingerprint
Use previous fingerprint to compute next fingerprint in O(1) time
Run-time: O(m + n + m ·#{false positives})

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 9 / 47

Karp-Rabin Fingerprint Algorithm – Conclusion

Karp-Rabin::pattern-matching(T ,P) // rolling hash-function
1. M ← suitable prime number
2. hP ← h(P[0..m−1)])
3. s ← Rm−1 mod M
4. hT ← h(T [0..m−1)])
5. for g ← 0 to n −m
6. if hT = hP
7. if strncmp(T ,P, g ,m) = 0 return “found at guess g”
8. if g < n −m // compute fingerprint for next guess
9. hT ← ((hT − T [g] · s) · R + T [g+m]) mod M
10. return “FAIL”

Choose “table size” M to be random prime in {2, . . . ,mn2}
Can show: Then P(at least one false positive) ∈ O(1n)
Expected time O(m+n), worst-luck time O(m·n) (extremely unlikely)
Improvement: reset M after a false positive
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 10 / 47

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
Skip-heuristics
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025

Skip-heuristics
We now make the brute-force algorithm smarter in a different way.

Exploit information gained during strncmp to rule out guesses

P : a b a b a c c

T : a b a c * * * * * * * * * * *
a b a b

Good prefix: The matched prefix of P (here aba).

New guess must match aligned characters.

Bad T -character: The mismatched character of T (here c).

New guess must match it.

Bad P-character: The mismatched character of P (here b).
New guess must mismatch it. (Implied by bad-T -character heuristic.)

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 11 / 47

Skip-heuristics
We now make the brute-force algorithm smarter in a different way.

Exploit information gained during strncmp to rule out guesses

P : a b a b a c c

T : a b a c * * * * * * * * * * *
a b a b

Good prefix: The matched prefix of P (here aba).

New guess must match aligned characters.
Bad T -character: The mismatched character of T (here c).

New guess must match it.

Bad P-character: The mismatched character of P (here b).
New guess must mismatch it. (Implied by bad-T -character heuristic.)

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 11 / 47

Skip-heuristics
We now make the brute-force algorithm smarter in a different way.

Exploit information gained during strncmp to rule out guesses

P : a b a b a c c

T : a b a c * * * * * * * * * * *
a b a b

a wanted: won’t succeed

Good prefix: The matched prefix of P (here aba).
New guess must match aligned characters.

Bad T -character: The mismatched character of T (here c).

New guess must match it.

Bad P-character: The mismatched character of P (here b).
New guess must mismatch it. (Implied by bad-T -character heuristic.)

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 11 / 47

Skip-heuristics
We now make the brute-force algorithm smarter in a different way.

Exploit information gained during strncmp to rule out guesses

P : a b a b a c c

T : a b a c * * * * * * * * * * *
a b a b

a wanted: won’t succeed

Good prefix: The matched prefix of P (here aba).
New guess must match aligned characters.
Bad T -character: The mismatched character of T (here c).

New guess must match it.
Bad P-character: The mismatched character of P (here b).
New guess must mismatch it. (Implied by bad-T -character heuristic.)

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 11 / 47

Skip-heuristics
We now make the brute-force algorithm smarter in a different way.

Exploit information gained during strncmp to rule out guesses

P : a b a b a c c

T : a b a c * * * * * * * * * * *
a b a b

a wanted: won’t succeed
b wanted: won’t succeed

Good prefix: The matched prefix of P (here aba).
New guess must match aligned characters.
Bad T -character: The mismatched character of T (here c).
New guess must match it.

Bad P-character: The mismatched character of P (here b).
New guess must mismatch it. (Implied by bad-T -character heuristic.)

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 11 / 47

Skip-heuristics
We now make the brute-force algorithm smarter in a different way.

Exploit information gained during strncmp to rule out guesses

P : a b a b a c c

T : a b a c * * * * * * * * * * *
a b a b

a wanted: won’t succeed
b wanted: won’t succeed

Good prefix: The matched prefix of P (here aba).
New guess must match aligned characters.
Bad T -character: The mismatched character of T (here c).
New guess must match it.
Bad P-character: The mismatched character of P (here b).
New guess must mismatch it. (Implied by bad-T -character heuristic.)
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 11 / 47

Skip-heuristics
We now make the brute-force algorithm smarter in a different way.

Exploit information gained during strncmp to rule out guesses

P : a b a b a c c

T : a b a c * * * * * * * * * * *
a b a b

a wanted: won’t succeed
b wanted: won’t succeed
a wanted: won’t succeed

Good prefix: The matched prefix of P (here aba).
New guess must match aligned characters.
Bad T -character: The mismatched character of T (here c).
New guess must match it.
Bad P-character: The mismatched character of P (here b).
New guess must mismatch it. (Implied by bad-T -character heuristic.)
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 11 / 47

Skip-heuristics
Any subset of the three heuristics gives a pattern-matching algorithm:
Do brute-force matching, except skip all guesses that can be ruled out.

Crucial: For all three heuristics, the guesses to skip depend only on
the pattern P,
the index j such that P[0..j−1] was matched (the good suffix),
the bad-T -character c,
the bad-P-character P[j].

They does not depend on text T , and therefore can be pre-computed .

First idea: Do pattern matching with all skip-heuristics.
Presumably this will skip many guesses fast in practice?

No! The pre-computation is too slow. (Course notes have details.)

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 12 / 47

Skip-heuristics
Any subset of the three heuristics gives a pattern-matching algorithm:
Do brute-force matching, except skip all guesses that can be ruled out.

Crucial: For all three heuristics, the guesses to skip depend only on
the pattern P,
the index j such that P[0..j−1] was matched (the good suffix),
the bad-T -character c,
the bad-P-character P[j].

They does not depend on text T , and therefore can be pre-computed .

First idea: Do pattern matching with all skip-heuristics.
Presumably this will skip many guesses fast in practice?

No! The pre-computation is too slow. (Course notes have details.)

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 12 / 47

Skip-heuristics
Any subset of the three heuristics gives a pattern-matching algorithm:
Do brute-force matching, except skip all guesses that can be ruled out.

Crucial: For all three heuristics, the guesses to skip depend only on
the pattern P,
the index j such that P[0..j−1] was matched (the good suffix),
the bad-T -character c,
the bad-P-character P[j].

They does not depend on text T , and therefore can be pre-computed .

First idea: Do pattern matching with all skip-heuristics.
Presumably this will skip many guesses fast in practice?

No! The pre-computation is too slow. (Course notes have details.)

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 12 / 47

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
Skip-heuristics
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025

Knuth-Morris-Pratt algorithm, incomplete
Surprisingly, using only the good-prefix heuristic works well enough.
This is the idea for Knuth-Morris-Pratt (KMP) pattern matching.

KMP::pattern-matching(T ,P)
1. F ← compute and store failure-array, using only P
2. i ← 0, j ← 0 // currently compare T [i] to P[j]
3. while i < n do
4. // inv: P[0..j−1] is a suffix of T [0..i−1]
5. if P[j] = T [i]
6. if j = m − 1 then return “found at guess i −m + 1”
7. else // check next character
8. i ← i + 1, j ← j + 1
9. else // bad T-character is T [i]
10. j ← [...] // read from F and old j
11. i ← [...] // depends on j-update
12. return FAIL

Observe: j is always the number of matched characters of P.
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 13 / 47

Knuth-Morris-Pratt example
Example: Search for P = ababaca. We first mismatch at j = 5.

a b a b a b b c a b a b a c a

a b a b a ×

The good-prefix heuristic rules out one guess.
In new guess we have three matched characters. jnew = 3, inew = iold.
We match a character, but then have a mismatch at j = 4.
In new guess we have two matched characters. jnew = 2, inew = iold.

But then we immediately mismatch with j = 2.

Nothing matches the good suffix. jnew = 0.
We still have a mismatch at j = 0. Increase i .

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 14 / 47

Knuth-Morris-Pratt example
Example: Search for P = ababaca. We first mismatch at j = 5.

a b a b a b b c a b a b a c a

a b a b a ×
(a) (b) (a)

The good-prefix heuristic rules out one guess.
In new guess we have three matched characters. jnew = 3, inew = iold.

We match a character, but then have a mismatch at j = 4.
In new guess we have two matched characters. jnew = 2, inew = iold.

But then we immediately mismatch with j = 2.

Nothing matches the good suffix. jnew = 0.
We still have a mismatch at j = 0. Increase i .

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 14 / 47

Knuth-Morris-Pratt example
Example: Search for P = ababaca. We first mismatch at j = 5.

a b a b a b b c a b a b a c a

a b a b a ×
(a) (b) (a) b ×

The good-prefix heuristic rules out one guess.
In new guess we have three matched characters. jnew = 3, inew = iold.
We match a character, but then have a mismatch at j = 4.

In new guess we have two matched characters. jnew = 2, inew = iold.

But then we immediately mismatch with j = 2.

Nothing matches the good suffix. jnew = 0.
We still have a mismatch at j = 0. Increase i .

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 14 / 47

Knuth-Morris-Pratt example
Example: Search for P = ababaca. We first mismatch at j = 5.

a b a b a b b c a b a b a c a

a b a b a ×
(a) (b) (a) b ×

(a) (b)

The good-prefix heuristic rules out one guess.
In new guess we have three matched characters. jnew = 3, inew = iold.
We match a character, but then have a mismatch at j = 4.
In new guess we have two matched characters. jnew = 2, inew = iold.

But then we immediately mismatch with j = 2.
Nothing matches the good suffix. jnew = 0.
We still have a mismatch at j = 0. Increase i .

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 14 / 47

Knuth-Morris-Pratt example
Example: Search for P = ababaca. We first mismatch at j = 5.

a b a b a b b c a b a b a c a

a b a b a ×
(a) (b) (a) b ×

(a) (b) ×

The good-prefix heuristic rules out one guess.
In new guess we have three matched characters. jnew = 3, inew = iold.
We match a character, but then have a mismatch at j = 4.
In new guess we have two matched characters. jnew = 2, inew = iold.
But then we immediately mismatch with j = 2.

Nothing matches the good suffix. jnew = 0.
We still have a mismatch at j = 0. Increase i .

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 14 / 47

Knuth-Morris-Pratt example
Example: Search for P = ababaca. We first mismatch at j = 5.

a b a b a b b c a b a b a c a

a b a b a ×
(a) (b) (a) b ×

(a) (b) ×

The good-prefix heuristic rules out one guess.
In new guess we have three matched characters. jnew = 3, inew = iold.
We match a character, but then have a mismatch at j = 4.
In new guess we have two matched characters. jnew = 2, inew = iold.
But then we immediately mismatch with j = 2.
Nothing matches the good suffix. jnew = 0.

We still have a mismatch at j = 0. Increase i .

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 14 / 47

Knuth-Morris-Pratt example
Example: Search for P = ababaca. We first mismatch at j = 5.

a b a b a b b c a b a b a c a

a b a b a ×
(a) (b) (a) b ×

(a) (b) ×
×

The good-prefix heuristic rules out one guess.
In new guess we have three matched characters. jnew = 3, inew = iold.
We match a character, but then have a mismatch at j = 4.
In new guess we have two matched characters. jnew = 2, inew = iold.
But then we immediately mismatch with j = 2.
Nothing matches the good suffix. jnew = 0.
We still have a mismatch at j = 0. Increase i .
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 14 / 47

Knuth-Morris-Pratt algorithm, complete

Precompute F [J] = new j to use if the current good prefix was F [0..J].

KMP::pattern-matching(T ,P)
1. F ← compute-failure-array(P)
2. i ← 0, j ← 0 // currently compare T [i] to P[j]
3. while i < n do
4. // inv: P[0..j−1] is a suffix of T [0..i−1]
5. if P[j] = T [i]
6. if j = m − 1 then return “found at guess i −m + 1”
7. else // check next character
8. i ← i + 1, j ← j + 1
9. else // bad T-character is T [i]
10. if j = 0 then i ← i + 1
11. else j ← F [j − 1]

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 15 / 47

Knuth-Morris-Pratt Automaton

The Knuth-Morris-Pratt algorithm can also be described as an automaton.
Define a state for the current value of j = length of good prefix.

0 1 2 3 4 5 6 7
a

Σ− a

b

×

a

×

b

×

a

×

c

×

a

×

Σ

This uses an unusual type of transition × (“failure”):
Used only if no other transition fits.
Does not consume a character.
For j = 1, . . . ,m−1, the failure arc from j leads to F [j−1]

(because at this point the good prefix was P[0..j−1])

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 16 / 47

String matching with KMP – Failure-function
To compute F , re-use as much of good prefix as possible.

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): (a) b a b a c a

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): (a)(b) a b a c a

P: a b a b a c a

P (shifted): (a)(b)(a) b a c a

Sometimes nothing fits. Then shift past good prefix.

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): a b a b a c a

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): a b a b a c a

P: a b a b a c a

P (shifted): a b a b a c a

Store in F [·] how many characters are re-used in new shift.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 17 / 47

String matching with KMP – Failure-function
To compute F , re-use as much of good prefix as possible.

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): (a) b a b a c a

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): (a)(b) a b a c a

P: a b a b a c a

P (shifted): (a)(b)(a) b a c a

Sometimes nothing fits. Then shift past good prefix.

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): a b a b a c a

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): a b a b a c a

P: a b a b a c a

P (shifted): a b a b a c a

Store in F [·] how many characters are re-used in new shift.
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 17 / 47

String matching with KMP – Failure function
F [J] = number of re-used characters if good prefix was P[0..J]
For P = ababaca, we get J 0 1 2 3 4 5 6

F [J] 0 0 1 2 3 0 ?

In general: We must find a long prefix of P that is a suffix of P[0..J]
(except it should not be all of P[0..J])

P:
0 1 . . . J

next guess: ? ? ? ?

next guess: ? ? ?

next guess: ? ?

Equivalently: Find longest prefix of P that is a suffix of P[1..J]

Result: F [J] = length of the longest prefix of P that is a suffix of P[1..J].

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 18 / 47

String matching with KMP – Failure function
F [J] = number of re-used characters if good prefix was P[0..J]
For P = ababaca, we get J 0 1 2 3 4 5 6

F [J] 0 0 1 2 3 0 ?

In general: We must find a long prefix of P that is a suffix of P[0..J]
(except it should not be all of P[0..J])

P:
0 1 . . . J

next guess: ? ? ? ?

next guess: ? ? ?

next guess: ? ?

Equivalently: Find longest prefix of P that is a suffix of P[1..J]

Result: F [J] = length of the longest prefix of P that is a suffix of P[1..J].

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 18 / 47

String matching with KMP – Failure function
F [J] = number of re-used characters if good prefix was P[0..J]
For P = ababaca, we get J 0 1 2 3 4 5 6

F [J] 0 0 1 2 3 0 ?

In general: We must find a long prefix of P that is a suffix of P[0..J]
(except it should not be all of P[0..J])

P:
0 1 . . . J

next guess: ? ? ? ?

next guess: ? ? ?

next guess: ? ?

Equivalently: Find longest prefix of P that is a suffix of P[1..J]

Result: F [J] = length of the longest prefix of P that is a suffix of P[1..J].

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 18 / 47

KMP Failure Array – Easy Computation
F [J] = length of the longest prefix of P that is a suffix of P[1..J].

Write down all prefixes (including empty word Λ).
Then for J ∈ {0, . . . ,m−1} and each prefix of P

check whether the prefix is a suffix of P[1..J].

J P[1..J] Prefixes of P longest F [J]
0 Λ Λ, a, ab, aba, abab, ababa, . . . Λ 0
1 b Λ, a, ab, aba, abab, ababa, . . . Λ 0
2 ba Λ, a, ab, aba, abab, ababa, . . . a 1
3 bab Λ, a, ab, aba, abab, ababa, . . . ab 2
4 baba Λ, a, ab, aba, abab, ababa, . . . aba 3
5 babac Λ, a, ab, aba, abab, ababa, . . . Λ 0
6 babaca Λ, a, ab, aba, abab, ababa, . . . a 1

(F [m−1] is not needed for KMP algorithm, but useful elsewhere)

This can clearly be computed in O(m3) time, but we can do better!
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 19 / 47

KMP Failure Array – Fast Computation
Recall: “F [J] = maximal `: {P[0..`−1] is a suffix of P[1..J]}.”
Loop invariant: “j maximal: P[0..j−1] is a suffix of T [0..i−1].”

Idea: Run KMP::pattern-matching on input P[1..m−1].
Update F whenever we enter loop.

KMP::compute-failure-array(P)
1. Initialize array F as all-0
2. i ← 1, j ← 0 // currently compare P[i] to P[j]
3. while i < m do
4. // inv: P[0..j−1] is a suffix of P[1..i−1]
5. F [i − 1]← max{F [i − 1], j}
6. if P[j] = P[i]
7. i ← i + 1, j ← j + 1
8. else
9. if j = 0 then i ← i + 1
10. else j ← F [j − 1]

Note: j < i at all times, so needed F -entries are already computed.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 20 / 47

KMP Failure Array – Fast Computation
Recall: “F [J] = maximal `: {P[0..`−1] is a suffix of P[1..J]}.”
Loop invariant: “j maximal: P[0..j−1] is a suffix of T [0..i−1].”

Idea: Run KMP::pattern-matching on input P[1..m−1].
Update F whenever we enter loop.

KMP::compute-failure-array(P)
1. Initialize array F as all-0
2. i ← 1, j ← 0 // currently compare P[i] to P[j]
3. while i < m do
4. // inv: P[0..j−1] is a suffix of P[1..i−1]
5. F [i − 1]← max{F [i − 1], j}
6. if P[j] = P[i]
7. i ← i + 1, j ← j + 1
8. else
9. if j = 0 then i ← i + 1
10. else j ← F [j − 1]

Note: j < i at all times, so needed F -entries are already computed.
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 20 / 47

KMP Runtime
Consider the main routine KMP::pattern-matching:

How often does the while loop execute?
I i need not increase, j can increase or decrease.
I Not even obviously finite. What is getting bigger?

Idea: Consider function 2i − j . Initially this is 0.
In each iteration that does not exit, there are three possibilities:

1 i and j both increase by 1 ⇒ 2i − j increases
2 j = 0 unchanged, i increases ⇒ 2i − j increases
3 j decreases (F [j − 1] < j), i unchanged ⇒ 2i − j increases

i ≤ n and j ≥ 0 throughout, therefore 2i − j ≤ 2n.
So no more than 2n iterations of the while loop.
The main routine (without compute-failure-array) takes O(n) time.

Similarly: compute-failure-array takes O(m) time.

Result: KMP pattern matching has O(n + m) worst-case run-time.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 21 / 47

KMP Runtime
Consider the main routine KMP::pattern-matching:

How often does the while loop execute?
I i need not increase, j can increase or decrease.
I Not even obviously finite. What is getting bigger?

Idea: Consider function 2i − j . Initially this is 0.
In each iteration that does not exit, there are three possibilities:

1 i and j both increase by 1 ⇒ 2i − j increases
2 j = 0 unchanged, i increases ⇒ 2i − j increases
3 j decreases (F [j − 1] < j), i unchanged ⇒ 2i − j increases

i ≤ n and j ≥ 0 throughout, therefore 2i − j ≤ 2n.
So no more than 2n iterations of the while loop.
The main routine (without compute-failure-array) takes O(n) time.

Similarly: compute-failure-array takes O(m) time.

Result: KMP pattern matching has O(n + m) worst-case run-time.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 21 / 47

KMP Runtime
Consider the main routine KMP::pattern-matching:

How often does the while loop execute?
I i need not increase, j can increase or decrease.
I Not even obviously finite. What is getting bigger?

Idea: Consider function 2i − j . Initially this is 0.
In each iteration that does not exit, there are three possibilities:

1 i and j both increase by 1 ⇒ 2i − j increases
2 j = 0 unchanged, i increases ⇒ 2i − j increases
3 j decreases (F [j − 1] < j), i unchanged ⇒ 2i − j increases

i ≤ n and j ≥ 0 throughout, therefore 2i − j ≤ 2n.
So no more than 2n iterations of the while loop.
The main routine (without compute-failure-array) takes O(n) time.

Similarly: compute-failure-array takes O(m) time.

Result: KMP pattern matching has O(n + m) worst-case run-time.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 21 / 47

KMP Runtime
Consider the main routine KMP::pattern-matching:

How often does the while loop execute?
I i need not increase, j can increase or decrease.
I Not even obviously finite. What is getting bigger?

Idea: Consider function 2i − j . Initially this is 0.
In each iteration that does not exit, there are three possibilities:

1 i and j both increase by 1 ⇒ 2i − j increases
2 j = 0 unchanged, i increases ⇒ 2i − j increases
3 j decreases (F [j − 1] < j), i unchanged ⇒ 2i − j increases

i ≤ n and j ≥ 0 throughout, therefore 2i − j ≤ 2n.
So no more than 2n iterations of the while loop.
The main routine (without compute-failure-array) takes O(n) time.

Similarly: compute-failure-array takes O(m) time.

Result: KMP pattern matching has O(n + m) worst-case run-time.
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 21 / 47

KMP failure function – improvement
We can define an even better failure-function F+:

a b a b a b b c a b a b a c a

a b a b ×
(a) (b) ×

×

We had a mismatch when we wanted an a.
The next guess wants a in the same place.
This can never work! Skip all guesses that have a in this place.

Easy to compute from F in O(m) time (except for annoying ±1):

F+[J] =
{

F [J] if P[J+1]6=P[F [J]] or F [J]=0
F+[F [J]−1] otherwise

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 22 / 47

KMP failure function – improvement
We can define an even better failure-function F+:

a b a b a b b c a b a b a c a

a b a b ×
(a) (b) ×

×

We had a mismatch when we wanted an a.
The next guess wants a in the same place.
This can never work! Skip all guesses that have a in this place.

Easy to compute from F in O(m) time (except for annoying ±1):

F+[J] =
{

F [J] if P[J+1]6=P[F [J]] or F [J]=0
F+[F [J]−1] otherwise

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 22 / 47

KMP failure function – improvement
We can define an even better failure-function F+:

a b a b a b b c a b a b a c a

a b a b ×
(a) (b) ×

×

We had a mismatch when we wanted an a.
The next guess wants a in the same place.
This can never work! Skip all guesses that have a in this place.

Easy to compute from F in O(m) time (except for annoying ±1):

F+[J] =
{

F [J] if P[J+1]6=P[F [J]] or F [J]=0
F+[F [J]−1] otherwise

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 22 / 47

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
Skip-heuristics
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025

Towards the Boyer-Moore Algorithm
Recall: KMP eliminates guesses based on good-prefix heuristic.

text:
i

pattern:
j

Boyer-Moore uses two skip-heuristics:
Eliminate guesses based on matched characters. Now called
good suffix heuristic. Very similar to KMP.
Use weak version of bad-T -char heuristics called
last-occurrence heuristic—this is new.

The second heuristic turns out to be very helpful, and leads to fastest
pattern matching on English text as long as we search backwards.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 23 / 47

Towards the Boyer-Moore Algorithm
Recall: KMP eliminates guesses based on good-prefix heuristic.

text:
i

pattern:
j

Boyer-Moore uses two skip-heuristics:
Eliminate guesses based on matched characters. Now called
good suffix heuristic. Very similar to KMP.
Use weak version of bad-T -char heuristics called
last-occurrence heuristic—this is new.

The second heuristic turns out to be very helpful, and leads to fastest
pattern matching on English text as long as we search backwards.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 23 / 47

Towards the Boyer-Moore Algorithm
Recall: KMP eliminates guesses based on good-prefix heuristic.

text:
i

pattern:
j

Boyer-Moore uses two skip-heuristics:
Eliminate guesses based on matched characters. Now called
good suffix heuristic. Very similar to KMP.
Use weak version of bad-T -char heuristics called
last-occurrence heuristic—this is new.

The second heuristic turns out to be very helpful, and leads to fastest
pattern matching on English text as long as we search backwards.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 23 / 47

Forward-searching vs. reverse-searching

Forward-searching:

P : g o o d
T : g r a d i e n t

g o

o does not occur in P.
⇒ shift pattern past o.

At most j − 1 guesses ruled out
after j checks.

Reverse-order searching:

P : g o o d
T : g r a d i e n t

o d

o does not occur in P.
d cannot be matched again
⇒ shift pattern past d.

Sometimes rule out m − 1 guesses
even after only one check

Reverse-order searching typically eliminates more guesses.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 24 / 47

Forward-searching vs. reverse-searching

Forward-searching:

P : g o o d
T : g r a d i e n t

g o

o does not occur in P.
⇒ shift pattern past o.

At most j − 1 guesses ruled out
after j checks.

Reverse-order searching:

P : g o o d
T : g r a d i e n t

o d

o does not occur in P.
d cannot be matched again
⇒ shift pattern past d.

Sometimes rule out m − 1 guesses
even after only one check

Reverse-order searching typically eliminates more guesses.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 24 / 47

Forward-searching vs. reverse-searching

Forward-searching:

P : g o o d
T : g r a d i e n t

g o

o does not occur in P.
⇒ shift pattern past o.

At most j − 1 guesses ruled out
after j checks.

Reverse-order searching:

P : g o o d
T : g r a d i e n t

o d

o does not occur in P.
d cannot be matched again
⇒ shift pattern past d.

Sometimes rule out m − 1 guesses
even after only one check

Reverse-order searching typically eliminates more guesses.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 24 / 47

Last-occurrence heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r

(1) Bad T -character is a.

I All skipped guessed are impossible since they do not match a

(2) Shift the guess until last p in P aligns with bad T -character p
I Use “last” since we cannot rule out this guess.

(3) Shift completely past o since o is not in P.
(4) The guess that aligns rightmost r of P has already been ruled out.

I Simply shift one unit to the right.
(5) Shift completely past o → out of bounds.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 25 / 47

Last-occurrence heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r

(1) Bad T -character is a.

I All skipped guessed are impossible since they do not match a
(2) Shift the guess until last p in P aligns with bad T -character p

I Use “last” since we cannot rule out this guess.
(3) Shift completely past o since o is not in P.
(4) The guess that aligns rightmost r of P has already been ruled out.

I Simply shift one unit to the right.
(5) Shift completely past o → out of bounds.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 25 / 47

Last-occurrence heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r
(a) r

(1) Bad T -character is a. Shift the guess until a in P aligns with a in T
I All skipped guessed are impossible since they do not match a

(2) Shift the guess until last p in P aligns with bad T -character p
I Use “last” since we cannot rule out this guess.

(3) Shift completely past o since o is not in P.
(4) The guess that aligns rightmost r of P has already been ruled out.

I Simply shift one unit to the right.
(5) Shift completely past o → out of bounds.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 25 / 47

Last-occurrence heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r
(a) r

(p) r

(1) Bad T -character is a. Shift the guess until a in P aligns with a in T
I All skipped guessed are impossible since they do not match a

(2) Shift the guess until last p in P aligns with bad T -character p
I Use “last” since we cannot rule out this guess.

(3) Shift completely past o since o is not in P.
(4) The guess that aligns rightmost r of P has already been ruled out.

I Simply shift one unit to the right.
(5) Shift completely past o → out of bounds.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 25 / 47

Last-occurrence heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r
(a) r

(p) r
(o) e r

(1) Bad T -character is a. Shift the guess until a in P aligns with a in T
I All skipped guessed are impossible since they do not match a

(2) Shift the guess until last p in P aligns with bad T -character p
I Use “last” since we cannot rule out this guess.

(3) Shift completely past o since o is not in P.

(4) The guess that aligns rightmost r of P has already been ruled out.
I Simply shift one unit to the right.

(5) Shift completely past o → out of bounds.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 25 / 47

Last-occurrence heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r
(a) r

(p) r
(o) e r

r

(1) Bad T -character is a. Shift the guess until a in P aligns with a in T
I All skipped guessed are impossible since they do not match a

(2) Shift the guess until last p in P aligns with bad T -character p
I Use “last” since we cannot rule out this guess.

(3) Shift completely past o since o is not in P.
(4) The guess that aligns rightmost r of P has already been ruled out.

I Simply shift one unit to the right.

(5) Shift completely past o → out of bounds.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 25 / 47

Last-occurrence heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r
(a) r

(p) r
(o) e r

r

(1) Bad T -character is a. Shift the guess until a in P aligns with a in T
I All skipped guessed are impossible since they do not match a

(2) Shift the guess until last p in P aligns with bad T -character p
I Use “last” since we cannot rule out this guess.

(3) Shift completely past o since o is not in P.
(4) The guess that aligns rightmost r of P has already been ruled out.

I Simply shift one unit to the right.
(5) Shift completely past o → out of bounds.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 25 / 47

Boyer-Moore Algorithm – incomplete

Boyer-Moore::pattern-matching(T ,P)
1. L← [...] // pre-computation
2. i ← m − 1, j ← m − 1 // currently compare T [i] to P[j]
3. while i < n do

// inv: current guess begins at index i − j
4. if P[j] = T [i]
5. if j = 0 then return “found at guess i −m + 1”
6. else // go backwards
7. i ← i − 1, j ← j − 1
8. else
9. i ← [...] // read from L and T [i]
10. j ← m − 1 // restart from right end
11. return FAIL

Two steps missing:
Need to pre-compute for all characters where they are in P.
Need to determine how to do update i after a mismatch.
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 26 / 47

Helper-Array for Last-Occurrence Heuristic
Build the helper-array L mapping Σ to integers
L[c] is the largest index i such that P[i] = c

Pattern:
0 1 2 3 4
p a p e r

Helper-array:
char p a e r all others
L[·] 2 1 3 4 ?

What value should be used if c not in P?
I We want to shift past c entirely.
I Equivalently view this as ‘c is to the left of P’
I Equivalently: c is at P[−1], so set L[c] = −1

We can build this in time O(m + |Σ|) with simple for-loop
BoyerMoore::last-occurrence-array(P[0..m−1])
1. initialize array L indexed by Σ with all −1
2. for j ← 0 to m−1 do L[P[j]]← j
3. return L

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 27 / 47

Helper-Array for Last-Occurrence Heuristic
Build the helper-array L mapping Σ to integers
L[c] is the largest index i such that P[i] = c

Pattern:
0 1 2 3 4
p a p e r

Helper-array:
char p a e r all others
L[·] 2 1 3 4 ?

What value should be used if c not in P?
I We want to shift past c entirely.
I Equivalently view this as ‘c is to the left of P’
I Equivalently: c is at P[−1], so set L[c] = −1

We can build this in time O(m + |Σ|) with simple for-loop
BoyerMoore::last-occurrence-array(P[0..m−1])
1. initialize array L indexed by Σ with all −1
2. for j ← 0 to m−1 do L[P[j]]← j
3. return L

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 27 / 47

Helper-Array for Last-Occurrence Heuristic
Build the helper-array L mapping Σ to integers
L[c] is the largest index i such that P[i] = c

Pattern:
0 1 2 3 4
p a p e r

Helper-array:
char p a e r all others
L[·] 2 1 3 4 ?

What value should be used if c not in P?
I We want to shift past c entirely.
I Equivalently view this as ‘c is to the left of P’
I Equivalently: c is at P[−1], so set L[c] = −1

We can build this in time O(m + |Σ|) with simple for-loop
BoyerMoore::last-occurrence-array(P[0..m−1])
1. initialize array L indexed by Σ with all −1
2. for j ← 0 to m−1 do L[P[j]]← j
3. return L

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 27 / 47

Last-occurrence heuristic – update formula

“Good” case: L[c] < j , so c is left of P[j].

text: c
iold

inew

pattern: c
L[c] jold

∆1 ∆1∆2
m−1

c
jnew

Want: inew = index in T that corresponds to jnew.

∆1 = amount that we should shift the guess = jold − L[c]
∆2 = how much we had compared = (m−1)− jold

inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]
= iold + (m−1)−min

{
L[c], jold−1

}
Can show: The same formula also holds for the other cases.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 28 / 47

Last-occurrence heuristic – update formula

“Good” case: L[c] < j , so c is left of P[j].

text: c
iold

inew

pattern: c
L[c] jold

∆1

∆1∆2
m−1

c
jnew

Want: inew = index in T that corresponds to jnew.
∆1 = amount that we should shift the guess = jold − L[c]

∆2 = how much we had compared = (m−1)− jold

inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]
= iold + (m−1)−min

{
L[c], jold−1

}
Can show: The same formula also holds for the other cases.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 28 / 47

Last-occurrence heuristic – update formula

“Good” case: L[c] < j , so c is left of P[j].

text: c
iold inew

pattern: c
L[c] jold

∆1

∆1

∆2
m−1

c
jnew

Want: inew = index in T that corresponds to jnew.
∆1 = amount that we should shift the guess = jold − L[c]
∆2 = how much we had compared = (m−1)− jold

inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]
= iold + (m−1)−min

{
L[c], jold−1

}
Can show: The same formula also holds for the other cases.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 28 / 47

Last-occurrence heuristic – update formula

“Good” case: L[c] < j , so c is left of P[j].

text: c
iold inew

pattern: c
L[c] jold

∆1 ∆1∆2
m−1

c
jnew

Want: inew = index in T that corresponds to jnew.
∆1 = amount that we should shift the guess = jold − L[c]
∆2 = how much we had compared = (m−1)− jold

inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]
= iold + (m−1)−min

{
L[c], jold−1

}

Can show: The same formula also holds for the other cases.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 28 / 47

Last-occurrence heuristic – update formula

“Good” case: L[c] < j , so c is left of P[j].

text: c
iold inew

pattern: c
L[c] jold

∆1 ∆1∆2
m−1

c
jnew

Want: inew = index in T that corresponds to jnew.
∆1 = amount that we should shift the guess = jold − L[c]
∆2 = how much we had compared = (m−1)− jold

inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]
= iold + (m−1)−min

{
L[c], jold−1

}
Can show: The same formula also holds for the other cases.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 28 / 47

Boyer-Moore Algorithm

Boyer-Moore::pattern-matching(T ,P) // simplified version
1. L← last-occurrence-array(P)
2. i ← m − 1, j ← m − 1 // currently compare T [i] to P[j]
3. while i < n do

// inv: current guess begins at index i − j
4. if P[j] = T [i]
5. if j = 0 then return “found at guess i −m + 1”
6. else // go backwards
7. i ← i − 1, j ← j − 1
8. else
9. i ← i + m−1−min{L[T [i]], j−1}
10. j ← m − 1 // restart from right end
11. return FAIL

For full Boyer-Moore algorithm:
precompuate helper-array G for good-suffix heuristic from P
update-formula becomes i ← i + m−1−min{L[T [i]],G [j]}
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 29 / 47

Good suffix heuristic: Example
Want: new guess agrees with successfully matched previous characters.

(Same as good prefix heuristic, but renamed due to backward searching.)

P : b a a b a b a
T : a n a a a b a n a i n b a b a l a n d

n a b a

Do smallest shift so that aba fits in the new guess.

Do smallest shift so that a fits in the new guess.
No suffix matched. Shift over by one (or by last-char heuristic)
What if we cannot match the entire good suffix?

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 30 / 47

Good suffix heuristic: Example
Want: new guess agrees with successfully matched previous characters.

(Same as good prefix heuristic, but renamed due to backward searching.)

P : b a a b a b a
T : a n a a a b a n a i n b a b a l a n d

n a b a
(a) (b) (a) b a

Do smallest shift so that aba fits in the new guess.
Do smallest shift so that a fits in the new guess.

No suffix matched. Shift over by one (or by last-char heuristic)
What if we cannot match the entire good suffix?

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 30 / 47

Good suffix heuristic: Example
Want: new guess agrees with successfully matched previous characters.

(Same as good prefix heuristic, but renamed due to backward searching.)

P : b a a b a b a
T : a n a a a b a n a i n b a b a l a n d

n a b a
(a) (b) (a) b a

(a) a

Do smallest shift so that aba fits in the new guess.
Do smallest shift so that a fits in the new guess.
No suffix matched. Shift over by one (or by last-char heuristic)

What if we cannot match the entire good suffix?

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 30 / 47

Good suffix heuristic: Example
Want: new guess agrees with successfully matched previous characters.

(Same as good prefix heuristic, but renamed due to backward searching.)

P : b a a b a b a
T : a n a a a b a n a i n b a b a l a n d

n a b a
(a) (b) (a) b a

(a) a
a

Do smallest shift so that aba fits in the new guess.
Do smallest shift so that a fits in the new guess.
No suffix matched. Shift over by one (or by last-char heuristic)

What if we cannot match the entire good suffix?

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 30 / 47

Good suffix heuristic: Example
Want: new guess agrees with successfully matched previous characters.

(Same as good prefix heuristic, but renamed due to backward searching.)

P : b a a b a b a
T : a n a a a b a n a i n b a b a l a n d

n a b a
(a) (b) (a) b a

(a) a
a

a b a

Do smallest shift so that aba fits in the new guess.
Do smallest shift so that a fits in the new guess.
No suffix matched. Shift over by one (or by last-char heuristic)

What if we cannot match the entire good suffix?

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 30 / 47

Good suffix heuristic: Example
Want: new guess agrees with successfully matched previous characters.

(Same as good prefix heuristic, but renamed due to backward searching.)

P : b a a b a b a
T : a n a a a b a n a i n b a b a l a n d

n a b a
(a) (b) (a) b a

(a) a
a

a b a
a b a b a

Do smallest shift so that aba fits in the new guess.
Do smallest shift so that a fits in the new guess.
No suffix matched. Shift over by one (or by last-char heuristic)
What if we cannot match the entire good suffix?
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 30 / 47

Good suffix array - if matched part doesn’t repeat

P : b a a b a b a
T : a n a i n b a b a l a n d i n g

a b a b a

Cannot match all of baba

But ba fits a prefix of P shift to that guess
Generally: Re-use longest suffix of matched part that fits a prefix of P
If nothing fits: Shift guess all the way past previous guess.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 31 / 47

Good suffix array - if matched part doesn’t repeat

P : b a a b a b a
T : a n a i n b a b a l a n d i n g

a b a b a
(b) (a)

Cannot match all of baba
But ba fits a prefix of P shift to that guess

Generally: Re-use longest suffix of matched part that fits a prefix of P
If nothing fits: Shift guess all the way past previous guess.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 31 / 47

Good suffix array - if matched part doesn’t repeat

P : b a a b a b a
T : a n a i n b a b a l a n d i n g

a b a b a
(b) (a)

Cannot match all of baba
But ba fits a prefix of P shift to that guess
Generally: Re-use longest suffix of matched part that fits a prefix of P

If nothing fits: Shift guess all the way past previous guess.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 31 / 47

Good suffix array - if matched part doesn’t repeat

P : b a a b a b a
T : a n a i n b a b a l a n d i n g

a b a b a
(b) (a)

Cannot match all of baba
But ba fits a prefix of P shift to that guess
Generally: Re-use longest suffix of matched part that fits a prefix of P
If nothing fits: Shift guess all the way past previous guess.

P : c a a b a b a
T : a n a i n b a b a l a n d i n g

a b a b a

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 31 / 47

Definition of good suffix array

Assume search failed at P[j], but had matched P[j+1..m−1] =: S
Case 0: S empty: shift by 1
Case 1: S appears as substring of P elsewhere

XXXXX×
P[j]

S=P[j+1..m−1]

XXXXX

Case 2: A suffix of Q is a prefix of P.
XXXXX×

XXX
P[0]

* *

Case 3: Neither (i.e., only empty suffix fits).
XXXXX×

P[0]
* * * * *

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 32 / 47

Definition of good suffix array
Can unify all three cases into one!
Let P∗ be P with m wildcards attached in front.

XXXXX×
P[j]

S=P[j+1..m−1]

XXXXX

XXXXX×
XXX
P[0]

* *

wildcards

XXXXX×

P[0]
* * * * *

wildcards

In all cases:
S is a substring of P∗

Set ` such that S is a
prefix of P∗[`+1...m−1]
(then G [j]←` fits update-formula)
Want ` 6= j so that we shift guess

G [j] = max
`6=j

P[j+1..m−1] is a prefix of P∗[`+1..m−1]

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 33 / 47

Definition of good suffix array
Can unify all three cases into one!
Let P∗ be P with m wildcards attached in front.

XXXXX×
P[j]

S=P[j+1..m−1]

XXXXX

XXXXX×
XXX
P[0]

* *

wildcards

XXXXX×

P[0]
* * * * *

wildcards

In all cases:
S is a substring of P∗

Set ` such that S is a
prefix of P∗[`+1...m−1]
(then G [j]←` fits update-formula)

Want ` 6= j so that we shift guess

G [j] = max
`6=j

P[j+1..m−1] is a prefix of P∗[`+1..m−1]

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 33 / 47

Definition of good suffix array
Can unify all three cases into one!
Let P∗ be P with m wildcards attached in front.

XXXXX×
P[j]

S=P[j+1..m−1]

XXXXX

XXXXX×
XXX
P[0]

* *

wildcards

XXXXX×

P[0]
* * * * *

wildcards

In all cases:
S is a substring of P∗

Set ` such that S is a
prefix of P∗[`+1...m−1]
(then G [j]←` fits update-formula)
Want ` 6= j so that we shift guess

G [j] = max
`6=j

P[j+1..m−1] is a prefix of P∗[`+1..m−1]

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 33 / 47

Definition of good suffix array
Can unify all three cases into one!
Let P∗ be P with m wildcards attached in front.

XXXXX×
P[j]

S=P[j+1..m−1]

XXXXX

XXXXX×
XXX
P[0]

* *

wildcards

XXXXX×

P[0]
* * * * *

wildcards

In all cases:
S is a substring of P∗

Set ` such that S is a
prefix of P∗[`+1...m−1]
(then G [j]←` fits update-formula)
Want ` 6= j so that we shift guess

G [j] = max
6̀=j

P[j+1..m−1] is a prefix of P∗[`+1..m−1]
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 33 / 47

Good Suffix Array Computation - human

G [j] = max
6̀=j

P[j+1..m−1] is a prefix of P∗[`+1..m−1]

= max
`

P[j+1..m−1] is a prefix of P∗[`+1..m−2]

P = baababa P∗[−m..m−2]
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

j S=P[j+1..m−1] * * * * * * * b a a b a b `+ 1 G [j]
5 a a 4 3
4 ba b a 3 2
3 aba a b a 2 1
2 baba b a b a -2 -3
1 ababa a b a b a -3 -4
0 aababa a a b a b a -4 -5

Easy to compute in polynomial time:
Feels a lot like failure-array (with some prefix/suffix reversed)
Can show (no details): Can compute G in O(m) time.
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 34 / 47

Boyer-Moore Summary
Boyer-Moore::pattern-matching(T ,P) // full version
1. L← last-occurrence-array(Σ), G ← good-suffix-array(P)
2. i ← m − 1, j ← m − 1 // currently compare T [i] to P[j]
3. while i < n do
// // inv: current guess begins at index i − j
4. if P[j] = T [i]
5. if j = 0 then return “found at guess i −m + 1”
6. else i ← i − 1, j ← j − 1
7. else
8. i ← i + m−1−min{L[T [i]],G [j]}
9. i ← max{1, j − L[T [i]]}
10. j ← m − 1 // restart from right end
11. return FAIL

Boyer-Moore performs very well (even the simplified version).
On typical English text Boyer-Moore looks at only ≈ 25% of T
Worst-case run-time for is O(mn), but in practice much faster.
[There are ways to ensure O(n) run-time. No details.]

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 35 / 47

Boyer-Moore Summary
Boyer-Moore::pattern-matching(T ,P) // full version
1. L← last-occurrence-array(Σ), G ← good-suffix-array(P)
2. i ← m − 1, j ← m − 1 // currently compare T [i] to P[j]
3. while i < n do
// // inv: current guess begins at index i − j
4. if P[j] = T [i]
5. if j = 0 then return “found at guess i −m + 1”
6. else i ← i − 1, j ← j − 1
7. else
8. i ← i + m−1−min{L[T [i]],G [j]}
9. i ← max{1, j − L[T [i]]}
10. j ← m − 1 // restart from right end
11. return FAIL

Boyer-Moore performs very well (even the simplified version).
On typical English text Boyer-Moore looks at only ≈ 25% of T
Worst-case run-time for is O(mn), but in practice much faster.
[There are ways to ensure O(n) run-time. No details.]
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 35 / 47

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
Skip-heuristics
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025

Tries of Suffixes and Suffix Trees
Recall: P occurs in T ⇔ P is a prefix of some suffix of T .

X X X X

prefix of T
suffix of prefix of T

prefix of suffix of T
suffix of T

Idea: Build a data structure that stores all suffixes of T .
I So we preprocess the text T rather than the pattern P
I This is useful if we want to search for many different patterns P

within the same fixed text T .
Naive idea: Store the suffixes in a trie.

I |T | = n⇒ the n+1 suffixes together have
(n+1

2
)
∈ Θ(n2) characters

I This wastes space

Suffix tree saves space in multiple ways:
I Store suffixes implicitly via indices into T .
I Use a compressed trie.
I Then the space is O(n) since we store n+1 words.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 36 / 47

Tries of Suffixes and Suffix Trees
Recall: P occurs in T ⇔ P is a prefix of some suffix of T .

X X X X

prefix of T
suffix of prefix of T

prefix of suffix of T
suffix of T

Idea: Build a data structure that stores all suffixes of T .
I So we preprocess the text T rather than the pattern P
I This is useful if we want to search for many different patterns P

within the same fixed text T .
Naive idea: Store the suffixes in a trie.

I |T | = n⇒ the n+1 suffixes together have
(n+1

2
)
∈ Θ(n2) characters

I This wastes space
Suffix tree saves space in multiple ways:

I Store suffixes implicitly via indices into T .
I Use a compressed trie.
I Then the space is O(n) since we store n+1 words.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 36 / 47

Trie of suffixes: Example
T = bananaban has suffixes
{bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n, Λ}

$

$

aban$
$na

b
an$$

anaban$
$na

b

ananaban$
$naba

n
a

n

a

ban$$

bananaban$
$naban

a
na

b

n$$
naban$

$na
b

nanaban$
$naba

n
a

n

(not all leaf-references shown)

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 37 / 47

Tries of suffixes
Store suffixes via indices: 0 1 2 3 4 5 6 7 8 9

T = b a n a n a b a n $

T[9..9]

$

T[5..9]
$na

b
T[7..9]$

T[3..9]
$na

b

T[1..9]
$naba

n
a

n

a

T[6..9]$

T[0..9]
$naban

a
na

b

T[8..9]$
T[4..9]

$na
b

T[2..9]
$naba

n
a

n

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 38 / 47

Suffix tree
Suffix tree: Compressed trie of suffixes where leaves store indices.

0 1 2 3 4 5 6 7 8 9
T = b a n a n a b a n $

0

T[9..9]

$ 1
T[5..9]b

2
T[7..9]$

3
T[3..9]b

T[1..9]
n

a
n

a

3
T[6..9]$

T[0..9]
a

b

1
T[8..9]$

2
T[4..9]b

T[2..9]
n

a

n

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 39 / 47

More on Suffix Trees

Pattern Matching:
prefix-search for P in compressed trie.
This returns longest word with prefix P, hence leftmost occurrence.
Run-time: O(|Σ|m).

Building:
Text T has n characters and n + 1 suffixes
We can build the suffix tree by inserting each suffix of T into a
compressed trie. This takes time Θ(|Σ|n2).
There is a way to build a suffix tree of T in Θ(|Σ|n) time.
This is quite complicated and beyond the scope of the course.

Summary: Theoretically good, but construction is slow or complicated,
and lots of space-overhead rarely used.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 40 / 47

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
Skip-heuristics
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025

Suffix Arrays

Relatively recent development (popularized in the 1990s)
Sacrifice some performance for simplicity:

I Slightly slower (by a log-factor) than suffix trees.
I Much easier to build.
I Much simpler pattern matching.
I Very little space; only one array.

Idea:
Store suffixes implicitly (by storing start-indices)
Store sorting permutation of the suffixes of T .

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 41 / 47

Suffix Array Example

0 1 2 3 4 5 6 7 8
Text T : b a n a n a b a n

i suffix T [i ..n]
0 bananaban$
1 ananaban$
2 nanaban$
3 anaban$
4 naban$
5 aban$
6 ban$
7 an$
8 n$
9 $

−→
sort lexicographically

j Asuffix[j]
0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$
5 6 ban$
6 0 bananaban$
7 8 n$
8 4 naban$
9 2 nanaban$

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 42 / 47

Suffix array

Asuffix

0 9
1 5
2 7
3 3
4 1
5 6
6 0
7 8
8 4
9 2

$
a n $

a b a n $
a n a b a n $

a n a n a b a n $
b a n $

b a n a n a b a n $
n $

n a b a n $
n a n a b a n $

0 1 2 3 4 5 6 7 8 9

T : b a n a n a b a n $

We do not store the suffixes, but they are easy to retrieve if needed.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 43 / 47

Suffix Array Construction

Easy to construct using MSD-Radix-Sort.
I Pad suffixes with trailing $ to achieve equal length.
I Fast in practice; suffixes are unlikely to share many leading characters.
I But worst-case run-time is Θ(n2)

F n rounds of recursions (have n chars)
F Each round takes Θ(n) time (bucket-sort)

Idea: We do not need n rounds! I Consider sub-array after one round.
I These have same leading char. Ties are broken by rest of words.
I But rest of words are also suffixes sorted elsewhere
I We can double length of sorted part every round.

I O(log n) rounds enough ⇒ O(n log n) run-time
I You do not need to know details (cs482).

Construction-algorithm: MSD-radix-sort plus some bookkeeping
I A bit complicated to explain but easy to implement

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 44 / 47

Suffix Array Construction

Easy to construct using MSD-Radix-Sort.
I Pad suffixes with trailing $ to achieve equal length.
I Fast in practice; suffixes are unlikely to share many leading characters.
I But worst-case run-time is Θ(n2)

F n rounds of recursions (have n chars)
F Each round takes Θ(n) time (bucket-sort)

Idea: We do not need n rounds! I Consider sub-array after one round.
I These have same leading char. Ties are broken by rest of words.
I But rest of words are also suffixes sorted elsewhere
I We can double length of sorted part every round.

I O(log n) rounds enough ⇒ O(n log n) run-time
I You do not need to know details (cs482).

Construction-algorithm: MSD-radix-sort plus some bookkeeping
I A bit complicated to explain but easy to implement

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 44 / 47

Pattern matching in suffix arrays
Suffix array stores suffixes (implicitly) in sorted order.
Idea: apply binary search!

P =ban:
j Asuffix[j] T [Asuffix[j]..n−1]

`→ 0 9 $
1 5 aban$
2 7 an$
3 3 anaban$

ν → 4 1 ananaban$
5 6 ban$
6 0 bananaban$
7 8 n$
8 4 naban$

r → 9 2 nanaban$

O(log n) comparisons.
Each comparison is a strncmp of P with a suffix
O(m) time per comparison ⇒ run-time O(m log n)

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 45 / 47

Pattern matching in suffix arrays
Suffix array stores suffixes (implicitly) in sorted order.
Idea: apply binary search!

P =ban:
j Asuffix[j] T [Asuffix[j]..n−1]
0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$

`→ 5 6 ban$
6 0 bananaban$

ν → 7 8 n$
8 4 naban$

r → 9 2 nanaban$

O(log n) comparisons.
Each comparison is a strncmp of P with a suffix
O(m) time per comparison ⇒ run-time O(m log n)

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 45 / 47

Pattern matching in suffix arrays
Suffix array stores suffixes (implicitly) in sorted order.
Idea: apply binary search!

P =ban:
j Asuffix[j] T [Asuffix[j]..n−1]
0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$

ν=`→ 5 6 ban$ found
r → 6 0 bananaban$

7 8 n$
8 4 naban$
9 2 nanaban$

O(log n) comparisons.
Each comparison is a strncmp of P with a suffix
O(m) time per comparison ⇒ run-time O(m log n)

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 45 / 47

Pattern matching in suffix arrays
Suffix array stores suffixes (implicitly) in sorted order.
Idea: apply binary search!

P =ban:
j Asuffix[j] T [Asuffix[j]..n−1]
0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$

ν=`→ 5 6 ban$ found
r → 6 0 bananaban$

7 8 n$
8 4 naban$
9 2 nanaban$

O(log n) comparisons.
Each comparison is a strncmp of P with a suffix
O(m) time per comparison ⇒ run-time O(m log n)
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 45 / 47

Pattern matching in suffix arrays

SuffixArray::pattern-matching(T ,P,Asuffix)
1. `← 0, r ← last index of Asuffix

2. while (` ≤ r)

3. ν ← b `+r
2 c

4. g ← Asuffix[ν] // suffix of middle index begins at T [g]
5. s ← strncmp(T ,P, g ,m)

// Case g + m > n is handled correctly if T has end-sentinel

6. if (s < 0) do `← ν + 1
7. else if (s > 0) do r ← ν − 1
8. else return “found at guess g”
9. return FAIL

Does not always return leftmost occurrence.
Can find leftmost occurrence (and reduce run-time to O(m + log n))
with further pre-computations (no details).
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 46 / 47

String Matching Conclusion
Preprocess P Preprocess T

Brute-
Force

Karp-
Rabin DFA Knuth-

Morris-
Pratt

Boyer-
Moore

Suffix
Tree

Suffix
Array

Preproc. — O(m) O(m|Σ|) O(m) O(m) O(n2|Σ|) O(n log n)
[O(n|Σ|)] [O(n)]

Search
time

O(nm) O(n+m)
expected

O(n) O(n) O(n) or
better

O(m|Σ|) O(m log n)
[O(m + log n)]

Extra — O(1) O(m|Σ|) O(m) O(m+|Σ|) O(n) O(n)space

(Some additive |Σ|-terms are not shown.)

Our algorithms stopped once they have found one occurrence.
Most of them can be adapted to find all occurrences within the same
worst-case run-time.

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 47 / 47

	String Matching
	Introduction
	Pattern Matching Introduction
	Pattern Matching Observation
	General Idea of Algorithms
	Brute-Force Example
	How to improve?

	Karp-Rabin Algorithm
	Karp-Rabin Fingerprint Algorithm – Idea
	Karp-Rabin Fingerprint Algorithm – First Attempt
	Karp-Rabin Fingerprint Algorithm – Fast Update
	Karp-Rabin Fingerprint Algorithm – Conclusion

	Skip-heuristics
	Skip-heuristics
	Skip-heuristics

	Knuth-Morris-Pratt algorithm
	Knuth-Morris-Pratt algorithm, incomplete
	Knuth-Morris-Pratt example
	Knuth-Morris-Pratt algorithm, complete
	Knuth-Morris-Pratt Automaton
	String matching with KMP – Failure-function
	String matching with KMP – Failure function
	KMP Failure Array – Easy Computation
	KMP Failure Array – Fast Computation
	KMP Runtime
	KMP failure function – improvement

	Boyer-Moore Algorithm
	Towards the Boyer-Moore Algorithm
	Forward-searching vs. reverse-searching
	Last-occurrence heuristic details
	Boyer-Moore Algorithm – incomplete
	Helper-Array for Last-Occurrence Heuristic
	Last-occurrence heuristic – update formula
	Boyer-Moore Algorithm
	Good suffix heuristic: Example
	Good suffix array - if matched part doesn't repeat
	Definition of good suffix array
	Definition of good suffix array
	Good Suffix Array Computation - human
	Boyer-Moore Summary

	Suffix Trees
	Tries of Suffixes and Suffix Trees
	Trie of suffixes: Example
	Tries of suffixes
	Suffix tree
	More on Suffix Trees

	Suffix Arrays
	Suffix Arrays
	Suffix Array Example
	Suffix array
	Suffix Array Construction
	Pattern matching in suffix arrays
	Pattern matching in suffix arrays
	String Matching Conclusion

