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Pattern Matching Introduction
Search for a string (pattern) in a large body of text. Useful for

I Information Retrieval (text editors, search engines)
I Bioinformatics
I Data Mining

T [0..n − 1] – The text (or haystack) being searched within

Example: T = “Where is he?”

P[0..m − 1] – The pattern (or needle) being searched for

Example: P1 = “he” P2 = “who”

occurrence: index i such that T [i ..i+m−1] = P, i.e.,

P[j] = T [i + j] for 0 ≤ j ≤ m − 1

Convention: return smallest such i (leftmost occurrence)
If P does not occur in T , return FAIL
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Pattern Matching Observation
Recall:

Substring T [i ..j] for 0 ≤ i ≤ j+1 ≤ n: a string of length j − i + 1
which consists of characters T [i ], . . .T [j] in order.
Prefix of T : a substring T [0..i−1] of T for some 0 ≤ i ≤ n.
Suffix of T : a substring T [i ..n−1] of T for some 0 ≤ i ≤ n.
The empty string Λ is also considered a substring, prefix and suffix.

Observe: P occurs in T
⇔ P is a substring of T .
⇔ P is a suffix of some prefix of T .
⇔ P is a prefix of some suffix of T .

X X X X

prefix of T
suffix of prefix of T

prefix of suffix of T
suffix of T
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General Idea of Algorithms
Pattern matching algorithms consist of guesses and checks:

A guess is a position g such that P might start at T [g ].
Valid guesses (initially) are 0 ≤ g ≤ n −m.
A check of a guess is a single position j with 0 ≤ j < m where we
compare T [g + j] to P[j].
We do strncmp to compare a guess to P. This uses m checks in the
worst-case, but may use (many) fewer checks if there is a mismatch.

We will diagram a single run of any pattern matching algorithm by a
matrix of checks, where each row represents a single guess (shaded gray).

a b b b a b a b b a b
a b b a

a

Brute-force idea: Check every possible guess.
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Brute-Force Example

Example: T = abbbababbab, P = aaab

a a b a a a a a a b b
a a a

a a
a

a a a b
a a a b

a a a b
a a a b

What is the worst possible input?

P = am−1b, T = an

Worst case performance Θ((n −m + 1) ·m)
This is too slow (quadratic if m ≈ n/2).
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How to improve?

General idea of preprocessing: Do work on some parts of input
beforehand, so that the actual query (with rest of input) then goes faster.

For pattern matching, we have two options:
Do preprocessing on the pattern P

I We eliminate guesses based on characters we have seen.
Do preprocessing on the text T

I We create a data structure to find matches easily.

Pre-process

Pre-process P

Karp-Rabin NFA/DFA Knuth-Morris-Pratt Boyer-Moore

Pre-process T

Suffix tree Suffix array
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Karp-Rabin Fingerprint Algorithm – Idea
Idea: Use fingerprints to eliminate guesses

Need function h : {strings of length m} → {0, . . . ,M−1}
(Call these ‘hash-function’ and ‘table-size’, but there is no dictionary here)

Insight: If h(P) 6= h(T [g ..g+m−1]) then guess g cannot work

Example: Σ = {0−9}, P = 9 2 6 5 3, T = 3 1 4 1 5 9 2 6 5 3 5
Use standard hash-function for words, with R = |Σ| and M = 97:

h(x0 . . . x4) =
(
x0x1x2x3x4

)
10 mod 97

Pre-compute h(P) = 92653 mod 97 = 18.

3 1 4 1 5 9 2 6 5 3 5
no strcmp needed

no strcmp needed

no strcmp needed

false positive

no strcmp needed

found

fingerprint 84
fingerprint 94

fingerprint 76
fingerprint 18

fingerprint 95
fingerprint 18
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Karp-Rabin Fingerprint Algorithm – First Attempt

Karp-Rabin-Simple::pattern-matching(T ,P)
1. hP ← h(P[0..m−1)])
2. for g ← 0 to n −m
3. hT ← h(T [g ..g+m−1]) // not constant time
4. if hT = hP
5. if strncmp(T ,P, g ,m) = 0
6. return “found at guess g”
7. return FAIL

Never misses a match: h(T [g ..g+m−1]) 6= h(P)⇒ guess g is not P
h(T [g ..g+m−1]) depends on m characters, so naive computation
takes Θ(m) time per guess
Running time is Θ(mn) if P is not in T . Can we improve this?
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Karp-Rabin Fingerprint Algorithm – Fast Update
Idea: Consecutive guesses share m−1 characters
⇒ for suitable hash-functions, can compute next fingerprint from previous

Example: 15926 = (41592− 4 · 10 000) · 10 + 6

15926 mod 97︸ ︷︷ ︸
h(15926)

=
(

( 41592 mod 97︸ ︷︷ ︸
previous fingerprint

−4 · 10000 mod 97︸ ︷︷ ︸
9 (pre-computed)

)
·10+6) mod 97

=
(

(76− 4 · 9) · 10 + 6
)

mod 97 = 18

So pre-compute Rm−1 mod M (here 10000 mod 97 = 9)
Compute leftmost fingerprint
Use previous fingerprint to compute next fingerprint in O(1) time
Run-time: O(m + n + m ·#{false positives})
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Karp-Rabin Fingerprint Algorithm – Conclusion

Karp-Rabin::pattern-matching(T ,P) // rolling hash-function
1. M ← suitable prime number
2. hP ← h(P[0..m−1)])
3. s ← Rm−1 mod M
4. hT ← h(T [0..m−1)])
5. for g ← 0 to n −m
6. if hT = hP
7. if strncmp(T ,P, g ,m) = 0 return “found at guess g”
8. if g < n −m // compute fingerprint for next guess
9. hT ← ((hT − T [g ] · s) · R + T [g+m]) mod M
10. return “FAIL”

Choose “table size” M to be random prime in {2, . . . ,mn2}
Can show: Then P(at least one false positive) ∈ O( 1n )
Expected time O(m+n), worst-luck time O(m·n) (extremely unlikely)
Improvement: reset M after a false positive
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Skip-heuristics
We now make the brute-force algorithm smarter in a different way.

Exploit information gained during strncmp to rule out guesses

P : a b a b a c c

T : a b a c * * * * * * * * * * *
a b a b

Good prefix: The matched prefix of P (here aba).

New guess must match aligned characters.

Bad T -character: The mismatched character of T (here c).

New guess must match it.

Bad P-character: The mismatched character of P (here b).
New guess must mismatch it. (Implied by bad-T -character heuristic.)
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Skip-heuristics
Any subset of the three heuristics gives a pattern-matching algorithm:
Do brute-force matching, except skip all guesses that can be ruled out.

Crucial: For all three heuristics, the guesses to skip depend only on
the pattern P,
the index j such that P[0..j−1] was matched (the good suffix),
the bad-T -character c,
the bad-P-character P[j].

They does not depend on text T , and therefore can be pre-computed .

First idea: Do pattern matching with all skip-heuristics.
Presumably this will skip many guesses  fast in practice?

No! The pre-computation is too slow. (Course notes have details.)
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Knuth-Morris-Pratt algorithm, incomplete
Surprisingly, using only the good-prefix heuristic works well enough.
This is the idea for Knuth-Morris-Pratt (KMP) pattern matching.

KMP::pattern-matching(T ,P)
1. F ← compute and store failure-array, using only P
2. i ← 0, j ← 0 // currently compare T [i ] to P[j]
3. while i < n do
4. // inv: P[0..j−1] is a suffix of T [0..i−1]
5. if P[j] = T [i ]
6. if j = m − 1 then return “found at guess i −m + 1”
7. else // check next character
8. i ← i + 1, j ← j + 1
9. else // bad T-character is T [i ]
10. j ← [...] // read from F and old j
11. i ← [...] // depends on j-update
12. return FAIL

Observe: j is always the number of matched characters of P.
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Knuth-Morris-Pratt example
Example: Search for P = ababaca. We first mismatch at j = 5.

a b a b a b b c a b a b a c a

a b a b a ×

The good-prefix heuristic rules out one guess.
In new guess we have three matched characters. jnew = 3, inew = iold.
We match a character, but then have a mismatch at j = 4.
In new guess we have two matched characters. jnew = 2, inew = iold.

But then we immediately mismatch with j = 2.

Nothing matches the good suffix. jnew = 0.
We still have a mismatch at j = 0. Increase i .
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Knuth-Morris-Pratt algorithm, complete

Precompute F [J ] = new j to use if the current good prefix was F [0..J ].

KMP::pattern-matching(T ,P)
1. F ← compute-failure-array(P)
2. i ← 0, j ← 0 // currently compare T [i ] to P[j]
3. while i < n do
4. // inv: P[0..j−1] is a suffix of T [0..i−1]
5. if P[j] = T [i ]
6. if j = m − 1 then return “found at guess i −m + 1”
7. else // check next character
8. i ← i + 1, j ← j + 1
9. else // bad T-character is T [i ]
10. if j = 0 then i ← i + 1
11. else j ← F [j − 1]
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Knuth-Morris-Pratt Automaton

The Knuth-Morris-Pratt algorithm can also be described as an automaton.
Define a state for the current value of j = length of good prefix.

0 1 2 3 4 5 6 7
a

Σ− a

b

×

a

×

b

×

a

×

c

×

a

×

Σ

This uses an unusual type of transition × (“failure”):
Used only if no other transition fits.
Does not consume a character.
For j = 1, . . . ,m−1, the failure arc from j leads to F [j−1]

(because at this point the good prefix was P[0..j−1])
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String matching with KMP – Failure-function
To compute F , re-use as much of good prefix as possible.

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): (a) b a b a c a

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): (a)(b) a b a c a

P: a b a b a c a

P (shifted): (a)(b)(a) b a c a

Sometimes nothing fits. Then shift past good prefix.

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): a b a b a c a

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): a b a b a c a

P: a b a b a c a

P (shifted): a b a b a c a

Store in F [·] how many characters are re-used in new shift.
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String matching with KMP – Failure function
F [J ] = number of re-used characters if good prefix was P[0..J ]
For P = ababaca, we get J 0 1 2 3 4 5 6

F [J ] 0 0 1 2 3 0 ?

In general: We must find a long prefix of P that is a suffix of P[0..J ]
(except it should not be all of P[0..J ])

P:
0 1 . . . J

next guess: ? ? ? ?

next guess: ? ? ?

next guess: ? ?

Equivalently: Find longest prefix of P that is a suffix of P[1..J ]

Result: F [J ] = length of the longest prefix of P that is a suffix of P[1..J ].
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KMP Failure Array – Easy Computation
F [J ] = length of the longest prefix of P that is a suffix of P[1..J ].

Write down all prefixes (including empty word Λ).
Then for J ∈ {0, . . . ,m−1} and each prefix of P

check whether the prefix is a suffix of P[1..J ].

J P[1..J ] Prefixes of P longest F [J ]
0 Λ Λ, a, ab, aba, abab, ababa, . . . Λ 0
1 b Λ, a, ab, aba, abab, ababa, . . . Λ 0
2 ba Λ, a, ab, aba, abab, ababa, . . . a 1
3 bab Λ, a, ab, aba, abab, ababa, . . . ab 2
4 baba Λ, a, ab, aba, abab, ababa, . . . aba 3
5 babac Λ, a, ab, aba, abab, ababa, . . . Λ 0
6 babaca Λ, a, ab, aba, abab, ababa, . . . a 1

(F [m−1] is not needed for KMP algorithm, but useful elsewhere)

This can clearly be computed in O(m3) time, but we can do better!
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KMP Failure Array – Fast Computation
Recall: “F [J ] = maximal `: {P[0..`−1] is a suffix of P[1..J ]}.”
Loop invariant: “j maximal: P[0..j−1] is a suffix of T [0..i−1].”

Idea: Run KMP::pattern-matching on input P[1..m−1].
Update F whenever we enter loop.

KMP::compute-failure-array(P)
1. Initialize array F as all-0
2. i ← 1, j ← 0 // currently compare P[i ] to P[j]
3. while i < m do
4. // inv: P[0..j−1] is a suffix of P[1..i−1]
5. F [i − 1]← max{F [i − 1], j}
6. if P[j] = P[i ]
7. i ← i + 1, j ← j + 1
8. else
9. if j = 0 then i ← i + 1
10. else j ← F [j − 1]

Note: j < i at all times, so needed F -entries are already computed.
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KMP Runtime
Consider the main routine KMP::pattern-matching:

How often does the while loop execute?
I i need not increase, j can increase or decrease.
I Not even obviously finite. What is getting bigger?

Idea: Consider function 2i − j . Initially this is 0.
In each iteration that does not exit, there are three possibilities:

1 i and j both increase by 1 ⇒ 2i − j increases
2 j = 0 unchanged, i increases ⇒ 2i − j increases
3 j decreases (F [j − 1] < j), i unchanged ⇒ 2i − j increases

i ≤ n and j ≥ 0 throughout, therefore 2i − j ≤ 2n.
So no more than 2n iterations of the while loop.
The main routine (without compute-failure-array) takes O(n) time.

Similarly: compute-failure-array takes O(m) time.

Result: KMP pattern matching has O(n + m) worst-case run-time.
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KMP failure function – improvement
We can define an even better failure-function F+:

a b a b a b b c a b a b a c a

a b a b ×
(a) (b) ×

×

We had a mismatch when we wanted an a.
The next guess wants a in the same place.
This can never work! Skip all guesses that have a in this place.

Easy to compute from F in O(m) time (except for annoying ±1):

F+[J ] =
{

F [J ] if P[J+1]6=P[F [J ]] or F [J ]=0
F+[F [J ]−1] otherwise
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Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
Skip-heuristics
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays
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Towards the Boyer-Moore Algorithm
Recall: KMP eliminates guesses based on good-prefix heuristic.

text:
i

pattern:
j

Boyer-Moore uses two skip-heuristics:
Eliminate guesses based on matched characters. Now called
good suffix heuristic. Very similar to KMP.
Use weak version of bad-T -char heuristics called
last-occurrence heuristic—this is new.

The second heuristic turns out to be very helpful, and leads to fastest
pattern matching on English text as long as we search backwards.
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Forward-searching vs. reverse-searching

Forward-searching:

P : g o o d
T : g r a d i e n t

g o

o does not occur in P.
⇒ shift pattern past o.

At most j − 1 guesses ruled out
after j checks.

Reverse-order searching:

P : g o o d
T : g r a d i e n t

o d

o does not occur in P.
d cannot be matched again
⇒ shift pattern past d.

Sometimes rule out m − 1 guesses
even after only one check

Reverse-order searching typically eliminates more guesses.
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Last-occurrence heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r

(1) Bad T -character is a.

I All skipped guessed are impossible since they do not match a

(2) Shift the guess until last p in P aligns with bad T -character p
I Use “last” since we cannot rule out this guess.

(3) Shift completely past o since o is not in P.
(4) The guess that aligns rightmost r of P has already been ruled out.

I Simply shift one unit to the right.
(5) Shift completely past o → out of bounds.
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Boyer-Moore Algorithm – incomplete

Boyer-Moore::pattern-matching(T ,P)
1. L← [...] // pre-computation
2. i ← m − 1, j ← m − 1 // currently compare T [i ] to P[j]
3. while i < n do

// inv: current guess begins at index i − j
4. if P[j] = T [i ]
5. if j = 0 then return “found at guess i −m + 1”
6. else // go backwards
7. i ← i − 1, j ← j − 1
8. else
9. i ← [...] // read from L and T [i ]
10. j ← m − 1 // restart from right end
11. return FAIL

Two steps missing:
Need to pre-compute for all characters where they are in P.
Need to determine how to do update i after a mismatch.
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Helper-Array for Last-Occurrence Heuristic
Build the helper-array L mapping Σ to integers
L[c] is the largest index i such that P[i ] = c

Pattern:
0 1 2 3 4
p a p e r

Helper-array:
char p a e r all others
L[·] 2 1 3 4 ?

What value should be used if c not in P?
I We want to shift past c entirely.
I Equivalently view this as ‘c is to the left of P’
I Equivalently: c is at P[−1], so set L[c] = −1

We can build this in time O(m + |Σ|) with simple for-loop
BoyerMoore::last-occurrence-array(P[0..m−1])
1. initialize array L indexed by Σ with all −1
2. for j ← 0 to m−1 do L[P[j]]← j
3. return L
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Last-occurrence heuristic – update formula

“Good” case: L[c] < j , so c is left of P[j].

text: c
iold

inew

pattern: c
L[c] jold

∆1 ∆1∆2
m−1

c
jnew

Want: inew = index in T that corresponds to jnew.

∆1 = amount that we should shift the guess = jold − L[c]
∆2 = how much we had compared = (m−1)− jold

inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]
= iold + (m−1)−min

{
L[c], jold−1

}
Can show: The same formula also holds for the other cases.
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Boyer-Moore Algorithm

Boyer-Moore::pattern-matching(T ,P) // simplified version
1. L← last-occurrence-array(P)
2. i ← m − 1, j ← m − 1 // currently compare T [i ] to P[j]
3. while i < n do

// inv: current guess begins at index i − j
4. if P[j] = T [i ]
5. if j = 0 then return “found at guess i −m + 1”
6. else // go backwards
7. i ← i − 1, j ← j − 1
8. else
9. i ← i + m−1−min{L[T [i ]], j−1}
10. j ← m − 1 // restart from right end
11. return FAIL

For full Boyer-Moore algorithm:
precompuate helper-array G for good-suffix heuristic from P
update-formula becomes i ← i + m−1−min{L[T [i ]],G [j]}
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Good suffix heuristic: Example
Want: new guess agrees with successfully matched previous characters.

(Same as good prefix heuristic, but renamed due to backward searching.)

P : b a a b a b a
T : a n a a a b a n a i n b a b a l a n d

n a b a

Do smallest shift so that aba fits in the new guess.

Do smallest shift so that a fits in the new guess.
No suffix matched. Shift over by one (or by last-char heuristic)
What if we cannot match the entire good suffix?
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Do smallest shift so that a fits in the new guess.
No suffix matched. Shift over by one (or by last-char heuristic)

What if we cannot match the entire good suffix?
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Good suffix array - if matched part doesn’t repeat

P : b a a b a b a
T : a n a i n b a b a l a n d i n g

a b a b a

Cannot match all of baba

But ba fits a prefix of P  shift to that guess
Generally: Re-use longest suffix of matched part that fits a prefix of P
If nothing fits: Shift guess all the way past previous guess.
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Good suffix array - if matched part doesn’t repeat

P : b a a b a b a
T : a n a i n b a b a l a n d i n g

a b a b a
(b) (a)

Cannot match all of baba
But ba fits a prefix of P  shift to that guess
Generally: Re-use longest suffix of matched part that fits a prefix of P
If nothing fits: Shift guess all the way past previous guess.

P : c a a b a b a
T : a n a i n b a b a l a n d i n g

a b a b a
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Definition of good suffix array

Assume search failed at P[j], but had matched P[j+1..m−1] =: S
Case 0: S empty: shift by 1
Case 1: S appears as substring of P elsewhere

XXXXX×
P[j]

S=P[j+1..m−1]

XXXXX

Case 2: A suffix of Q is a prefix of P.
XXXXX×

XXX
P[0]

* *

Case 3: Neither (i.e., only empty suffix fits).
XXXXX×

P[0]
* * * * *
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Definition of good suffix array
Can unify all three cases into one!
Let P∗ be P with m wildcards attached in front.

XXXXX×
P[j]

S=P[j+1..m−1]

XXXXX

XXXXX×
XXX
P[0]

* *

wildcards

XXXXX×

P[0]
* * * * *

wildcards

In all cases:
S is a substring of P∗

Set ` such that S is a
prefix of P∗[`+1...m−1]
(then G [j]←` fits update-formula)
Want ` 6= j so that we shift guess

G [j] = max
`6=j

P[j+1..m−1] is a prefix of P∗[`+1..m−1]
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Good Suffix Array Computation - human

G [j] = max
6̀=j

P[j+1..m−1] is a prefix of P∗[`+1..m−1]

= max
`

P[j+1..m−1] is a prefix of P∗[`+1..m−2]

P = baababa P∗[−m..m−2]
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

j S=P[j+1..m−1] * * * * * * * b a a b a b `+ 1 G [j]
5 a a 4 3
4 ba b a 3 2
3 aba a b a 2 1
2 baba b a b a -2 -3
1 ababa a b a b a -3 -4
0 aababa a a b a b a -4 -5

Easy to compute in polynomial time:
Feels a lot like failure-array (with some prefix/suffix reversed)
Can show (no details): Can compute G in O(m) time.
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Boyer-Moore Summary
Boyer-Moore::pattern-matching(T ,P) // full version
1. L← last-occurrence-array(Σ), G ← good-suffix-array(P)
2. i ← m − 1, j ← m − 1 // currently compare T [i ] to P[j]
3. while i < n do
// // inv: current guess begins at index i − j
4. if P[j] = T [i ]
5. if j = 0 then return “found at guess i −m + 1”
6. else i ← i − 1, j ← j − 1
7. else
8. i ← i + m−1−min{L[T [i ]],G [j]}
9. i ← max{1, j − L[T [i ]]}
10. j ← m − 1 // restart from right end
11. return FAIL

Boyer-Moore performs very well (even the simplified version).
On typical English text Boyer-Moore looks at only ≈ 25% of T
Worst-case run-time for is O(mn), but in practice much faster.
[There are ways to ensure O(n) run-time. No details.]

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 35 / 47



Boyer-Moore Summary
Boyer-Moore::pattern-matching(T ,P) // full version
1. L← last-occurrence-array(Σ), G ← good-suffix-array(P)
2. i ← m − 1, j ← m − 1 // currently compare T [i ] to P[j]
3. while i < n do
// // inv: current guess begins at index i − j
4. if P[j] = T [i ]
5. if j = 0 then return “found at guess i −m + 1”
6. else i ← i − 1, j ← j − 1
7. else
8. i ← i + m−1−min{L[T [i ]],G [j]}
9. i ← max{1, j − L[T [i ]]}
10. j ← m − 1 // restart from right end
11. return FAIL

Boyer-Moore performs very well (even the simplified version).
On typical English text Boyer-Moore looks at only ≈ 25% of T
Worst-case run-time for is O(mn), but in practice much faster.
[There are ways to ensure O(n) run-time. No details.]
T.Biedl (CS-UW) CS240E – Module 9 Winter 2025 35 / 47



Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
Skip-heuristics
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays

T.Biedl (CS-UW) CS240E – Module 9 Winter 2025



Tries of Suffixes and Suffix Trees
Recall: P occurs in T ⇔ P is a prefix of some suffix of T .

X X X X

prefix of T
suffix of prefix of T

prefix of suffix of T
suffix of T

Idea: Build a data structure that stores all suffixes of T .
I So we preprocess the text T rather than the pattern P
I This is useful if we want to search for many different patterns P

within the same fixed text T .
Naive idea: Store the suffixes in a trie.

I |T | = n⇒ the n+1 suffixes together have
(n+1

2
)
∈ Θ(n2) characters

I This wastes space

Suffix tree saves space in multiple ways:
I Store suffixes implicitly via indices into T .
I Use a compressed trie.
I Then the space is O(n) since we store n+1 words.
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Trie of suffixes: Example
T = bananaban has suffixes
{bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n, Λ}

$

$

aban$
$na

b
an$$

anaban$
$na

b

ananaban$
$naba

n
a

n

a

ban$$

bananaban$
$naban

a
na

b

n$$
naban$

$na
b

nanaban$
$naba

n
a

n

(not all leaf-references shown)
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Tries of suffixes
Store suffixes via indices: 0 1 2 3 4 5 6 7 8 9

T = b a n a n a b a n $

T[9..9]

$

T[5..9]
$na

b
T[7..9]$

T[3..9]
$na

b

T[1..9]
$naba

n
a

n

a

T[6..9]$

T[0..9]
$naban

a
na

b

T[8..9]$
T[4..9]

$na
b

T[2..9]
$naba

n
a

n
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Suffix tree
Suffix tree: Compressed trie of suffixes where leaves store indices.

0 1 2 3 4 5 6 7 8 9
T = b a n a n a b a n $

0

T[9..9]

$ 1
T[5..9]b

2
T[7..9]$

3
T[3..9]b

T[1..9]
n

a
n

a

3
T[6..9]$

T[0..9]
a

b

1
T[8..9]$

2
T[4..9]b

T[2..9]
n

a

n
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More on Suffix Trees

Pattern Matching:
prefix-search for P in compressed trie.
This returns longest word with prefix P, hence leftmost occurrence.
Run-time: O(|Σ|m).

Building:
Text T has n characters and n + 1 suffixes
We can build the suffix tree by inserting each suffix of T into a
compressed trie. This takes time Θ(|Σ|n2).
There is a way to build a suffix tree of T in Θ(|Σ|n) time.
This is quite complicated and beyond the scope of the course.

Summary: Theoretically good, but construction is slow or complicated,
and lots of space-overhead  rarely used.
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Suffix Arrays

Relatively recent development (popularized in the 1990s)
Sacrifice some performance for simplicity:

I Slightly slower (by a log-factor) than suffix trees.
I Much easier to build.
I Much simpler pattern matching.
I Very little space; only one array.

Idea:
Store suffixes implicitly (by storing start-indices)
Store sorting permutation of the suffixes of T .
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Suffix Array Example

0 1 2 3 4 5 6 7 8
Text T : b a n a n a b a n

i suffix T [i ..n]
0 bananaban$
1 ananaban$
2 nanaban$
3 anaban$
4 naban$
5 aban$
6 ban$
7 an$
8 n$
9 $

−→
sort lexicographically

j Asuffix[j]
0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$
5 6 ban$
6 0 bananaban$
7 8 n$
8 4 naban$
9 2 nanaban$
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Suffix array

Asuffix

0 9
1 5
2 7
3 3
4 1
5 6
6 0
7 8
8 4
9 2

$
a n $

a b a n $
a n a b a n $

a n a n a b a n $
b a n $

b a n a n a b a n $
n $

n a b a n $
n a n a b a n $

0 1 2 3 4 5 6 7 8 9

T : b a n a n a b a n $

We do not store the suffixes, but they are easy to retrieve if needed.
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Suffix Array Construction

Easy to construct using MSD-Radix-Sort.
I Pad suffixes with trailing $ to achieve equal length.
I Fast in practice; suffixes are unlikely to share many leading characters.
I But worst-case run-time is Θ(n2)

F n rounds of recursions (have n chars)
F Each round takes Θ(n) time (bucket-sort)

Idea: We do not need n rounds! I Consider sub-array after one round.
I These have same leading char. Ties are broken by rest of words.
I But rest of words are also suffixes  sorted elsewhere
I We can double length of sorted part every round.


I O(log n) rounds enough ⇒ O(n log n) run-time
I You do not need to know details ( cs482).

Construction-algorithm: MSD-radix-sort plus some bookkeeping
I A bit complicated to explain but easy to implement
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Pattern matching in suffix arrays
Suffix array stores suffixes (implicitly) in sorted order.
Idea: apply binary search!

P =ban:
j Asuffix[j] T [Asuffix[j]..n−1]

`→ 0 9 $
1 5 aban$
2 7 an$
3 3 anaban$

ν → 4 1 ananaban$
5 6 ban$
6 0 bananaban$
7 8 n$
8 4 naban$

r → 9 2 nanaban$

O(log n) comparisons.
Each comparison is a strncmp of P with a suffix
O(m) time per comparison ⇒ run-time O(m log n)
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Pattern matching in suffix arrays

SuffixArray::pattern-matching(T ,P,Asuffix)
1. `← 0, r ← last index of Asuffix

2. while (` ≤ r)

3. ν ← b `+r
2 c

4. g ← Asuffix[ν] // suffix of middle index begins at T [g ]
5. s ← strncmp(T ,P, g ,m)

// Case g + m > n is handled correctly if T has end-sentinel

6. if (s < 0) do `← ν + 1
7. else if (s > 0) do r ← ν − 1
8. else return “found at guess g”
9. return FAIL

Does not always return leftmost occurrence.
Can find leftmost occurrence (and reduce run-time to O(m + log n))
with further pre-computations (no details).
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String Matching Conclusion
Preprocess P Preprocess T

Brute-
Force

Karp-
Rabin DFA Knuth-

Morris-
Pratt

Boyer-
Moore

Suffix
Tree

Suffix
Array

Preproc. — O(m) O(m|Σ|) O(m) O(m) O(n2|Σ|) O(n log n)
[O(n|Σ|)] [O(n)]

Search
time

O(nm) O(n+m)
expected

O(n) O(n) O(n) or
better

O(m|Σ|) O(m log n)
[O(m + log n)]

Extra — O(1) O(m|Σ|) O(m) O(m+|Σ|) O(n) O(n)space

(Some additive |Σ|-terms are not shown.)

Our algorithms stopped once they have found one occurrence.
Most of them can be adapted to find all occurrences within the same
worst-case run-time.
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