CS240E W25

Tutorial 1

Overview

- Asymptotic notation review
- Two approaches to $n \in \omega\left(2^{\sqrt{\lg n}}\right)$
- Little-*o* characterization

- Big-O with divisibility assumption
- Runtime analysis example
- Bounds with integration

Problems

Q1. Show that $n \in \omega\left(2^{\sqrt{\lg n}}\right)$ using the definition.

Q2. Let f(x) be a positive monotone function with domain \mathbb{R}^+ . Assume that $f(x) \leq x$ for all even integers x. Show that $f(x) \in O(x)$.

Q3. Let f(n), g(n) be eventually positive. In lecture we saw that if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ then $f(n) \in o(g(n))$. Prove the converse.

Q4. Give a tight bound on the runtime of the following algorithm as a function of n.

Additional problems

Q5. Give an exact bound on the *n*-th Harmonic number $H_n := \sum_{k=1}^n 1/k$. Note: this question requires bounds with integration.

Q6. Assuming any appropriate base case, give asymptotic upper and lower bounds (make them as tight as you can) for T(n) if,

(a)
$$T(n) = 3T(n/3) + n/\log_3 n$$

(b)
$$T(n) = T(n-1) + 1/n$$

(c) $T(n) = \sqrt{n}T(\sqrt{n}) + n$