
CS240E W25 Tutorial 3 Jan. 24

Overview

• Expected Run Time with Recursion

• Average-case Run Time

• Probability and Expected Value

• Partition

• Quick-select

Problems

Q1. Expected Runtime Analysis.

Give the best-case, worst-case, and expected running time for the infamous Bogosort
algorithm in terms of the size n of the array. You can assume that the shuffle function
takes O(n) time and produces each permutation equally likely. You can also assume
that the array contains no duplicates.

bogosort(A):

shuffle(A);

if (A is sorted) {

return A;

} else {

bogosort(A);

}

Q2. Average-case Analysis.

Let A be an array containing each of the numbers {1, . . . , n} exactly once, in some
order. Analyze this algorithm to determine a tight bound on the average number of ?s
that are printed. You may assume n is divisible by 2.

mystery(A, n):

count = 1;

for (i from 1 to n-1) {

if (A[i] is divisible by A[0]) { count++; }

}

for (i = 1 to count) {

print(’?’);

}

1



Q3. Probabilistic Counting.

With a normal b-bit counter, we can only count up to 2b − 1. But with probabilistic
counting we can count to larger values at the cost of precision.

We let a counter reading of i represent a count of vi, for 0 ≤ i ≤ 2b − 1. Initially the
counter reads 0, indicating the count of v0 = 0.

The operation increment works on a probabilistic counter with reading i in a random-
ized way:

1. If i < 2b − 1, increase counter reading with probability

1

vi+1 − vi
,

and leave the counter unchanged otherwise.

2. If i = 2b − 1, report overflow.

Note that if we select vi = 1, then the counter is an ordinary deterministic counter.
More interesting situations arise if vi = 100i, vi = 2i, or vi = i-th Fibonacci number.
For instance, if vi = 2i then a reading of i = 1012 = 510 represents a count of “approx-
imately 25 = 32”.

Assuming that an overflow does not occur, show that the expected value represented
by the counter after n increment operations is n.

Q4. Partition and quick-select.

Consider the following variation of the partition routine from class, which we’ll call
partition++:

1. Take the pivot-index n− 1 (so the pivot-value is v = A[n− 1]).

2. Rearrange A as explained in class (so that everything less than v is to its left and
everything greater than v is to its right) and compute the pivot index i.

3. If i ̸= 0, then further rearrange the left part of A such that A[i − 1] is the
predecessor of v (i.e., A[i− 1] and A[i] would be consecutive in sorted order).

(a) Explain how partition++ can be implemented with Θ(n) key comparisons.

(b) For parts (b)-(d), consider running quick-select(A, 0) using partition++.
If i = n− 1 in the first round, what is the run-time in terms of n?

(c) If i > 0, what is the run time in terms of i and/or n?

(d) Show that the average-case run time (considering all possibilities for the initial
pivot index i) is in Θ(n2).

2


	Overview
	Problems

