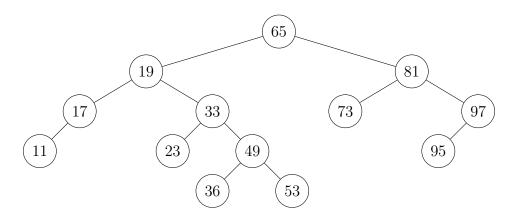
CS240E W25	Tutorial 4	Jan. 31
Overview		
• Amortized Analysis with Functions	• AVL Trees an	d Rotations
• Balanced Trees	• Scapegoat Tre	ees

Problems

Q1. Binary Counter.

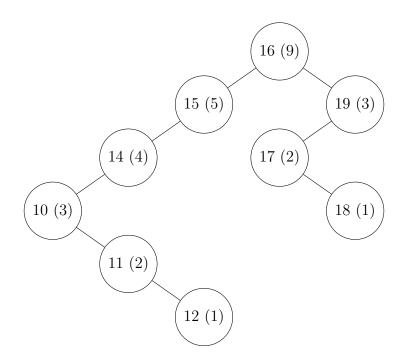
An *n*-bit binary counter counts upward from zero and is stored as an array of n bits (the leftmost bit is least significant). It supports the operation *increment*, which adds 1 to the counter:

```
increment(A[0..n-1]):
i = 0
while(A[i] != 0):
    A[i] = 0
    ++i
    A[i] = 1
```


The running time for *increment* is $\Theta(k)$, where k is the final value of variable i, which is $\Theta(n)$ in the worst case. Show the amortized cost per *increment* of $\Theta(1)$.

Q2. 2-AVL Trees.

Define a 2-AVL tree to be a binary search tree where for every node, the difference of heights of its left and right subtree is at most 2. Prove that a 2-AVL tree has height at most $3 \log n$ where n is the number of nodes in the tree.


Q3. AVL Rotations.

Consider the AVL Tree shown below and perform insert(61), then delete(73).

Q4. Scapegoat Tree Reconstruction.

Insert the key 13 in the following scapegoat (2/3)-tree. The numbers in the brackets are the number of nodes in that subtree.

