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Course Objectives: What is this course about?

Much of Computer Science is problem solving : Write a program that
converts the given input to the expected output.
When first learning to program, we emphasize correctness: does your
program output the expected results?

Starting with this course, we will also be concerned with efficiency : is
your program using the computer’s resources (typically processor
time) efficiently?

We will study efficient methods of storing , accessing , and organizing
large collections of data.

Motivating examples: Digital Music Collection, English Dictionary

Typical operations include: inserting new data items, deleting data
items, searching for specific data items, sorting .
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Course Objectives: What is this course about?

We will consider various abstract data types (ADTs) and how to
realize them efficiently using appropriate data structures.

There is a strong emphasis on mathematical analysis in the course.
Algorithms are presented using pseudo-code and analyzed using order
notation (big-Oh, etc.).
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Course Topics

big-Oh analysis
priority queues and heaps
sorting, selection
binary search trees, AVL trees
skip lists
hashing
quadtrees, kd-trees
range search
tries
string matching
data compression
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CS Background

Topics covered in previous courses with relevant sections in [Sedgewick]:

arrays, linked lists (Sec. 3.2–3.4)
strings (Sec. 3.6)
stacks, queues (Sec. 4.2–4.6)
abstract data types (Sec. 4-intro, 4.1, 4.8–4.9)
recursive algorithms (5.1)
binary trees (5.4–5.7)
sorting (6.1–6.4)
binary search (12.4)
binary search trees (12.5)
probability and expectations (Goodrich & Tamassia, Section 1.3.4)

A. Jamshidpey (CS-UW) CS240E – Module 1 Winter 2026 5 / 43



Outline

1 Introduction and Asymptotic Analysis
CS240 Overview
Algorithm Design
Analysis of Algorithms I
Asymptotic Notation
Analysis of Algorithms II
Example: Analysis of MergeSort
Helpful Formulas

A. Jamshidpey (CS-UW) CS240E – Module 1 Winter 2026



Problems (terminology)

First, we must introduce terminology so that we can precisely characterize
what we mean by efficiency.

Problem: Given a problem instance, carry out a particular computational
task.

Problem Instance: Input for the specified problem.

Problem Solution: Output (correct answer) for the specified problem
instance.

Size of a problem instance: Size(I) is a positive integer which is a
measure of the size of the instance I.

Example: Sorting problem
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Algorithms and Programs

Algorithm: An algorithm is a step-by-step process (e.g., described in
pseudo-code) for carrying out a series of computations, given an arbitrary
problem instance I.

Solving a problem: An Algorithm A solves a problem Π if, for every
instance I of Π, A finds (computes) a valid solution for the instance I in
finite time.

Program: A program is an implementation of an algorithm using a
specified computer language.

In this course, our emphasis is on algorithms (as opposed to programs or
programming).

A. Jamshidpey (CS-UW) CS240E – Module 1 Winter 2026 7 / 43



Algorithms and Programs

Pseudocode: a method of communicating an algorithm to another
person.

In contrast, a program is a method of communicating an algorithm to a
computer.

Pseudocode
omits obvious details, e.g. variable declarations,
has limited if any error detection,
sometimes uses English descriptions,
sometimes uses mathematical notation.
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Algorithms and Programs

For a problem Π, we can have several algorithms.

For an algorithm A solving Π, we can have several programs
(implementations).

Algorithms in practice: Given a problem Π
1 Design an algorithm A that solves Π. → Algorithm Design
2 Assess correctness and efficiency of A. → Algorithm Analysis
3 If acceptable (correct and efficient), implement A.
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Efficiency of Algorithms/Programs

How do we decide which algorithm or program is the most efficient
solution to a given problem?

In this course, we are primarily concerned with the amount of time a
program takes to run. → Running Time

We also may be interested in the amount of additional memory the
program requires. → Auxiliary space

The amount of time and/or memory required by a program will
depend on Size(I), the size of the given problem instance I.
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Running Time of Algorithms/Programs

First option: experimental studies

Write a program implementing the algorithm.

Run the program with inputs of varying size and composition.

Use a method like clock() (from time.h) to get an accurate
measure of the actual running time.

Plot/compare the results.
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Running Time of Algorithms/Programs

Shortcomings of experimental studies
Implementation may be complicated/costly.
Timings are affected by many factors: hardware (processor, memory),
software environment (OS, compiler, programming language), and
human factors (programmer).
We cannot test all inputs; what are good sample inputs?
We cannot easily compare two algorithms/programs.

We want a framework that:
Does not require implementing the algorithm.
Is independent of the hardware/software environment.
Takes into account all input instances.

We need some simplifications.
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Overview of Algorithm Analysis

We will develop several aspects of algorithm analysis in the next slides.
To overcome dependency on hardware/software:

Algorithms are presented in structured high-level pseudo-code which
is language-independent.
Analysis of algorithms is based on an idealized computer model .
Instead of time, count the number of primitive operations
The efficiency of an algorithm (with respect to time) is measured in
terms of its growth rate (this is called the complexity of the
algorithm).
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Random Access Machine

Random Access Machine (RAM) model:
A set of memory cells, each of which stores one item (word) of data.
Implicit assumption: memory cells are big enough to hold the items
that we store.
Any access to a memory location takes constant time.
Any primitive operation takes constant time.
Implicit assumption: primitive operations have fairly similar, though
different, running time on different systems
The running time of a program is proportional to the number of
memory accesses plus the number of primitive operations.

This is an idealized model, so these assumptions may not be valid for a
“real” computer.
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Running Time Simplifications

We will simplify our analysis by considering the behaviour of algorithms for
large inputs sizes.

Example 1: What is larger, 100n or 10n2?
Example 2: What is larger, 1000000n + 200000000000000 or
0.01n2?

To simplify comparisons, use order notation
Informally: ignore constants and lower order terms
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Order Notation
O-notation: f (n) ∈ O(g(n)) if there exist constants c > 0 and n0 ≥ 0
such that |f (n)| ≤ c |g(n)| for all n ≥ n0.

Example: f (n) = 75n + 500 and g(n) = 5n2 (e.g. c = 1, n0 = 20)

n

y

1000
2000
3000

5 10 15 20 25 30n0

g(n) = 5n2

f (n) = 75n + 500

Note: The absolute value signs in the definition are irrelevant for analysis
of run-time or space, but are useful in other applications of asymptotic
notation.
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Example of Order Notation

In order to prove that 2n2 + 3n + 11 ∈ O(n2) from first principles, we need
to find c and n0 such that the following condition is satisfied:

0 ≤ 2n2 + 3n + 11 ≤ c n2 for all n ≥ n0.

note that not all choices of c and n0 will work.
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Aymptotic Lower Bound

We have 2n2 + 3n + 11 ∈ O(n2).
But we also have 2n2 + 3n + 11 ∈ O(n10).
We want a tight asymptotic bound.

Ω-notation: f (n) ∈ Ω(g(n)) if there exist constants c > 0 and n0 ≥ 0
such that c |g(n)| ≤ |f (n)| for all n ≥ n0.

Θ-notation: f (n) ∈ Θ(g(n)) if there exist constants c1, c2 > 0 and n0 ≥ 0
such that c1 |g(n)| ≤ |f (n)| ≤ c2 |g(n)| for all n ≥ n0.

f (n) ∈ Θ(g(n))⇔ f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))
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Example of Order Notation
Prove that f (n) = 2n2 + 3n + 11 ∈ Ω(n2) from first principles.

Prove that 1
2n2 − 5n ∈ Ω(n2) from first principles.

Prove that logb(n) ∈ Θ(log n) for all b > 1 from first principles.
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Strictly smaller/larger asymptotic bounds

We have f (n) = 2n2 + 3n + 11 ∈ Θ(n2).
How to express that f (n) is asymptotically strictly smaller than n3?

o-notation: f (n) ∈ o(g(n)) if for all constants c > 0, there exists a
constant n0 ≥ 0 such that |f (n)| ≤ c |g(n)| for all n ≥ n0.

ω-notation: f (n) ∈ ω(g(n)) if for all constants c > 0, there exists a
constant n0 ≥ 0 such that |f (n)| ≥ c |g(n)| for all n ≥ n0.

Main difference to O, Ω is the quantifier for c.
Rarely proved from first principles.
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Algebra of Order Notations

Identity rule: f (n) ∈ Θ(f (n))

Transitivity:
If f (n) ∈ O(g(n)) and g(n) ∈ O(h(n)) then f (n) ∈ O(h(n)).
If f (n) ∈ Ω(g(n)) and g(n) ∈ Ω(h(n)) then f (n) ∈ Ω(h(n)).

Maximum rules: Suppose that f (n) > 0 and g(n) > 0 for all n ≥ n0.
Then:

f (n) + g(n) ∈ O(max{f (n), g(n)})
f (n) + g(n) ∈ Ω(max{f (n), g(n)})

Proof: max{f (n), g(n)} ≤ f (n) + g(n) ≤ 2 max{f (n), g(n)}
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Techniques for Order Notation

Suppose that f (n) > 0 and g(n) > 0 for all n ≥ n0. Suppose that

L = lim
n→∞

f (n)
g(n) (in particular, the limit exists).

Then

f (n) ∈


o(g(n)) if L = 0
Θ(g(n)) if 0 < L <∞
ω(g(n)) if L =∞.

The required limit can often be computed using l’Hôpital’s rule. Note that
this result gives sufficient (but not necessary) conditions for the stated
conclusions to hold.
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Example 1
Let f (n) be a polynomial of degree d ≥ 0:

f (n) = cdnd + cd−1nd−1 + · · ·+ c1n + c0

for some cd > 0.

Then f (n) ∈ Θ(nd):
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Example 2

Prove that n(2 + sin nπ/2) is Θ(n). Note that limn→∞(2 + sin nπ/2) does
not exist.

x

y

f (n) = n(2 + sin nπ/2)

3n

n
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Example 3

Compare the growth rates of log n and n.

Now compare the growth rates of (log n)c and nd (where c > 0 and d > 0
are arbitrary numbers).
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Growth rates

If f (n) ∈ Θ(g(n)), then the growth rates of f (n) and g(n) are the
same.
If f (n) ∈ o(g(n)), then we say that the growth rate of f (n) is
less than the growth rate of g(n).
If f (n) ∈ ω(g(n)), then we say that the growth rate of f (n) is
greater than the growth rate of g(n).
Typically, f (n) may be “complicated” and g(n) is chosen to be a very
simple function.
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Common Growth Rates

Commonly encountered growth rates in analysis of algorithms include the
following (in increasing order of growth rate):

Θ(1) (constant complexity),
Θ(log n) (logarithmic complexity),
Θ(n) (linear complexity),
Θ(n log n)(linearithmic),
Θ(n logk n), for some constant k (quasi-linear),
Θ(n2) (quadratic complexity),
Θ(n3) (cubic complexity),
Θ(2n) (exponential complexity).
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How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c

⇝ T (2n) = c.

logarithmic complexity: T (n) = c log n

⇝ T (2n) = T (n) + c.

linear complexity: T (n) = cn

⇝ T (2n) = 2T (n).

linearithmic Θ(n log n): T (n) = cn log n

⇝ T (2n) = 2T (n) + 2cn.

quadratic complexity: T (n) = cn2

⇝ T (2n) = 4T (n).

cubic complexity: T (n) = cn3

⇝ T (2n) = 8T (n).

exponential complexity: T (n) = c2n

⇝ T (2n) = (T (n))2/c.

A. Jamshidpey (CS-UW) CS240E – Module 1 Winter 2026 28 / 43



How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c ⇝ T (2n) = c.
logarithmic complexity: T (n) = c log n

⇝ T (2n) = T (n) + c.

linear complexity: T (n) = cn

⇝ T (2n) = 2T (n).

linearithmic Θ(n log n): T (n) = cn log n

⇝ T (2n) = 2T (n) + 2cn.

quadratic complexity: T (n) = cn2

⇝ T (2n) = 4T (n).

cubic complexity: T (n) = cn3

⇝ T (2n) = 8T (n).

exponential complexity: T (n) = c2n

⇝ T (2n) = (T (n))2/c.

A. Jamshidpey (CS-UW) CS240E – Module 1 Winter 2026 28 / 43



How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c ⇝ T (2n) = c.
logarithmic complexity: T (n) = c log n ⇝ T (2n) = T (n) + c.
linear complexity: T (n) = cn

⇝ T (2n) = 2T (n).

linearithmic Θ(n log n): T (n) = cn log n

⇝ T (2n) = 2T (n) + 2cn.

quadratic complexity: T (n) = cn2

⇝ T (2n) = 4T (n).

cubic complexity: T (n) = cn3

⇝ T (2n) = 8T (n).

exponential complexity: T (n) = c2n

⇝ T (2n) = (T (n))2/c.

A. Jamshidpey (CS-UW) CS240E – Module 1 Winter 2026 28 / 43



How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c ⇝ T (2n) = c.
logarithmic complexity: T (n) = c log n ⇝ T (2n) = T (n) + c.
linear complexity: T (n) = cn ⇝ T (2n) = 2T (n).
linearithmic Θ(n log n): T (n) = cn log n

⇝ T (2n) = 2T (n) + 2cn.

quadratic complexity: T (n) = cn2

⇝ T (2n) = 4T (n).

cubic complexity: T (n) = cn3

⇝ T (2n) = 8T (n).

exponential complexity: T (n) = c2n

⇝ T (2n) = (T (n))2/c.

A. Jamshidpey (CS-UW) CS240E – Module 1 Winter 2026 28 / 43



How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c ⇝ T (2n) = c.
logarithmic complexity: T (n) = c log n ⇝ T (2n) = T (n) + c.
linear complexity: T (n) = cn ⇝ T (2n) = 2T (n).
linearithmic Θ(n log n): T (n) = cn log n ⇝ T (2n) = 2T (n) + 2cn.
quadratic complexity: T (n) = cn2

⇝ T (2n) = 4T (n).

cubic complexity: T (n) = cn3

⇝ T (2n) = 8T (n).

exponential complexity: T (n) = c2n

⇝ T (2n) = (T (n))2/c.

A. Jamshidpey (CS-UW) CS240E – Module 1 Winter 2026 28 / 43



How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c ⇝ T (2n) = c.
logarithmic complexity: T (n) = c log n ⇝ T (2n) = T (n) + c.
linear complexity: T (n) = cn ⇝ T (2n) = 2T (n).
linearithmic Θ(n log n): T (n) = cn log n ⇝ T (2n) = 2T (n) + 2cn.
quadratic complexity: T (n) = cn2 ⇝ T (2n) = 4T (n).
cubic complexity: T (n) = cn3

⇝ T (2n) = 8T (n).

exponential complexity: T (n) = c2n

⇝ T (2n) = (T (n))2/c.

A. Jamshidpey (CS-UW) CS240E – Module 1 Winter 2026 28 / 43



How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c ⇝ T (2n) = c.
logarithmic complexity: T (n) = c log n ⇝ T (2n) = T (n) + c.
linear complexity: T (n) = cn ⇝ T (2n) = 2T (n).
linearithmic Θ(n log n): T (n) = cn log n ⇝ T (2n) = 2T (n) + 2cn.
quadratic complexity: T (n) = cn2 ⇝ T (2n) = 4T (n).
cubic complexity: T (n) = cn3 ⇝ T (2n) = 8T (n).
exponential complexity: T (n) = c2n

⇝ T (2n) = (T (n))2/c.

A. Jamshidpey (CS-UW) CS240E – Module 1 Winter 2026 28 / 43



How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c ⇝ T (2n) = c.
logarithmic complexity: T (n) = c log n ⇝ T (2n) = T (n) + c.
linear complexity: T (n) = cn ⇝ T (2n) = 2T (n).
linearithmic Θ(n log n): T (n) = cn log n ⇝ T (2n) = 2T (n) + 2cn.
quadratic complexity: T (n) = cn2 ⇝ T (2n) = 4T (n).
cubic complexity: T (n) = cn3 ⇝ T (2n) = 8T (n).
exponential complexity: T (n) = c2n ⇝ T (2n) = (T (n))2/c.

A. Jamshidpey (CS-UW) CS240E – Module 1 Winter 2026 28 / 43



Relationships between Order Notations

f (n) ∈ Θ(g(n))⇔ g(n) ∈ Θ(f (n))
f (n) ∈ O(g(n))⇔ g(n) ∈ Ω(f (n))
f (n) ∈ o(g(n))⇔ g(n) ∈ ω(f (n))

f (n) ∈ o(g(n))⇒ f (n) ∈ O(g(n))
f (n) ∈ o(g(n))⇒ f (n) ̸∈ Ω(g(n))
f (n) ∈ ω(g(n))⇒ f (n) ∈ Ω(g(n))
f (n) ∈ ω(g(n))⇒ f (n) ̸∈ O(g(n))
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Techniques for Run-time Analysis

Goal: Use asymptotic notation to simplify run-time analysis.
Running time of an algorithm depends on the input size n.

Test1(n)
1. sum← 0
2. for i ← 1 to n do
3. for j ← i to n do
4. sum← sum + (i − j)2

5. return sum

Identify primitive operations that require Θ(1) time.
The complexity of a loop is expressed as the sum of the complexities
of each iteration of the loop.
Nested loops: start with the innermost loop and proceed outwards.
This gives nested summations.
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Techniques for Run-time Analysis
Two general strategies are as follows.

Strategy I: Use Θ-bounds throughout the analysis and obtain a Θ-bound
for the complexity of the algorithm.

Strategy II: Prove a O-bound and a matching Ω-bound separately .
Use upper bounds (for O-bounds) and lower bounds (for Ω-bound) early
and frequently.
This may be easier because upper/lower bounds are easier to sum.

Test2(A, n)
1. max ← 0
2. for i ← 1 to n do
3. for j ← i to n do
4. sum← 0
5. for k ← i to j do
6. sum← A[k]
7. return max
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Complexity of Algorithms

Algorithm can have different running times on two instances of the
same size.

Test3(A, n)
A: array of size n
1. for i ← 1 to n − 1 do
2. j ← i
3. while j > 0 and A[j] < A[j − 1] do
4. swap A[j] and A[j − 1]
5. j ← j − 1

Let TA(I) denote the running time of an algorithm A on instance I.

Worst-case complexity of an algorithm: take the worst I

Average-case complexity of an algorithm: average over I
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Complexity of Algorithms

Worst-case complexity of an algorithm: The worst-case running time
of an algorithm A is a function f : Z+ → R mapping n (the input size) to
the longest running time for any input instance of size n:

TA(n) = max{TA(I) : Size(I) = n}.

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is a function f : Z+ → R mapping n (the input
size) to the average running time of A over all instances of size n:

T avg
A (n) = 1

|{I : Size(I) = n}|
∑

{I:Size(I)=n}
TA(I).
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O-notation and Complexity of Algorithms

It is important not to try and make comparisons between algorithms
using O-notation.

For example, suppose algorithm A1 and A2 both solve the same
problem, A1 has worst-case run-time O(n3) and A2 has worst-case
run-time O(n2).

Observe that we cannot conclude that A2 is more efficient than A1
for all input!

1 The worst-case run-time may only be achieved on some instances.
2 O-notation is an upper bound. A1 may well have worst-case run-time

O(n). If we want to be able to compare algorithms, we should always
use Θ-notation.
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Design Idea for MergeSort

Input: Array A of n integers
Step 1: We split A into two subarrays: AL consists of the first ⌈n

2⌉
elements in A and AR consists of the last ⌊n

2⌋ elements in A.

Step 2: Recursively run MergeSort on AL and AR .

Step 3: After AL and AR have been sorted, use a function Merge to
merge them into a single sorted array.
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MergeSort

MergeSort(A, n, ℓ← 0, r ← n − 1, S ← NIL)
A: array of size n, 0 ≤ ℓ ≤ r ≤ n − 1
1. if S is NIL initialize it as array S[0..n − 1]
2. if (r ≤ ℓ) then
3. return
4. else
5. m = (r + ℓ)/2
6. MergeSort(A, n, ℓ, m, S)
7. MergeSort(A, n, m + 1, r , S)
8. Merge(A, ℓ, m, r , S)

Two tricks to reduce run-time and auxiliary space:
The recursion uses parameters that indicate the range of the array
that needs to be sorted.
The array used for copying is passed along as parameter.
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Merge

Merge(A, ℓ, m, r , S)
A[0..n − 1] is an array, A[ℓ..m] is sorted, A[m + 1..r ] is sorted
S[0..n − 1] is an array
1. copy A[ℓ..r ] into S[ℓ..r ]
2. int iL ← ℓ; int iR ← m + 1;
3. for (k ← ℓ; k ≤ r ; k++) do
4. if (iL > m) A[k]← S[iR++]
5. else if (iR > r) A[k]← S[iL++]
6. else if (S[iL] ≤ S[iR ]) A[k]← S[iL++]
7. else A[k]← S[iR++]

Merge takes time Θ(r − ℓ + 1), i.e., Θ(n) time for merging n elements.
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Analysis of MergeSort
Let T (n) denote the time to run MergeSort on an array of length n.

Step 1 takes time Θ(n)
Step 2 takes time T

(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

Step 3 takes time Θ(n)
The recurrence relation for T (n) is as follows:

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ Θ(n) if n > 1
Θ(1) if n = 1.

It suffices to consider the following exact recurrence, with constant factor
c replacing Θ’s:

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ cn if n > 1
c if n = 1.
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Analysis of MergeSort

The following is the corresponding sloppy recurrence
(it has floors and ceilings removed):

T (n) =
{

2 T
(n

2
)

+ cn if n > 1
c if n = 1.

The exact and sloppy recurrences are identical when n is a power of 2.
The recurrence can easily be solved by various methods when n = 2j .
The solution has growth rate T (n) ∈ Θ(n log n).
It is possible to show that T (n) ∈ Θ(n log n) for all n
by analyzing the exact recurrence.
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Some Recurrence Relations

Recursion resolves to example
T (n) = T (n/2) + Θ(1) T (n) ∈ Θ(log n) Binary search
T (n) = 2T (n/2) + Θ(n) T (n) ∈ Θ(n log n) Mergesort
T (n) = 2T (n/2) + Θ(log n) T (n) ∈ Θ(n) Heapify (*)
T (n) = T (cn) + Θ(n) T (n) ∈ Θ(n) Selection (*)
for some 0 < c < 1
T (n) = 2T (n/4) + Θ(1) T (n) ∈ Θ(

√
n) Range Search (*)

T (n) = T (
√

n) + Θ(
√

n) T (n) ∈ Θ(
√

n) Interpol. Search (*)
T (n) = T (

√
n) + Θ(1) T (n) ∈ Θ(log log n) Interpol. Search (*)

Once you know the result, it is (usually) easy to prove by induction.
Many more recursions, and some methods to find the result, in cs341.

(*) These will be studied later in the course.
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Order Notation Summary

O-notation: f (n) ∈ O(g(n)) if there exist constants c > 0 and n0 ≥ 0
such that |f (n)| ≤ c |g(n)| for all n ≥ n0.

Ω-notation: f (n) ∈ Ω(g(n)) if there exist constants c > 0 and n0 ≥ 0
such that c |g(n)| ≤ |f (n)| for all n ≥ n0.

Θ-notation: f (n) ∈ Θ(g(n)) if there exist constants c1, c2 > 0 and n0 ≥ 0
such that c1 |g(n)| ≤ |f (n)| ≤ c2 |g(n)| for all n ≥ n0.

o-notation: f (n) ∈ o(g(n)) if for all constants c > 0, there exists a
constant n0 ≥ 0 such that |f (n)| ≤ c |g(n)| for all n ≥ n0.

ω-notation: f (n) ∈ ω(g(n)) if for all constants c > 0, there exists a
constant n0 ≥ 0 such that c |g(n)| ≤ |f (n)| for all n ≥ n0.
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Useful Sums
Arithmetic sequence:∑n−1

i=0 i = ???
∑n−1

i=0 (a + di) = na + dn(n−1)
2 ∈ Θ(n2) if d ̸= 0.

Geometric sequence:

∑n−1
i=0 2i = ???

∑n−1
i=0 a r i =


a rn − 1

r − 1 ∈ Θ(rn−1) if r > 1
na ∈ Θ(n) if r = 1

a1− rn

1− r ∈ Θ(1) if 0 < r < 1.
Harmonic sequence:∑n

i=1
1
i = ??? Hn :=

∑n
i=1

1
i = ln n + γ + o(1) ∈ Θ(log n)

A few more:∑n
i=1

1
i2 = ???

∑n
i=1

1
i2 = π2

6 ∈ Θ(1)∑n
i=1 ik = ???

∑n
i=1 ik ∈ Θ(nk+1) for k ≥ 0
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Useful Math Facts

Logarithms:
c = logb(a) means bc = a. E.g. n = 2log n.
log(a) (in this course) means log2(a)
log(a · c) = log(a)+ log(c), log(ac) = c log(a), log x ≤ x
logb(a) = logc a

logc b = 1
loga(b) , alogb c = c logb a

ln(x) = natural log = loge(x), d
dx ln x = 1

x
concavity: α log x+(1−α) log y ≤ log(αx+(1−α)y) for 0 ≤ α ≤ 1

Factorial:
n! := n(n − 1)(n − 2) · · · · 2 · 1 = # ways to permute n elements
log(n!) = log n + log(n − 1) + · · ·+ log 2 + log 1 ∈ Θ(n log n)

Probability and moments:
E [aX ] = aE [X ], E [X + Y ] = E [X ] + E [Y ] (linearity of expectation)
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