CS 240E - Data Structures
and Data Management (Enriched)

Module 1: Introduction and Asymptotic Analysis

Armin Jamshidpey

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2026

version 2026-01-06 11:42

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 1/43

Outline

@ Introduction and Asymptotic Analysis
@ CS240 Overview
@ Algorithm Design
@ Analysis of Algorithms |
@ Asymptotic Notation
@ Analysis of Algorithms Il
@ Example: Analysis of MergeSort
o Helpful Formulas

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026

Outline

@ Introduction and Asymptotic Analysis
@ CS240 Overview

A. Jamshidpey (CS-UW) CS240 - Module 1

Course Objectives: What is this course about?

@ Much of Computer Science is problem solving: Write a program that
converts the given input to the expected output.

@ When first learning to program, we emphasize correctness: does your
program output the expected results?

@ Starting with this course, we will also be concerned with efficiency: is
your program using the computer’s resources (typically processor
time) efficiently?

@ We will study efficient methods of storing, accessing, and organizing
large collections of data.

Motivating examples: Digital Music Collection, English Dictionary

Typical operations include: inserting new data items, deleting data
items, searching for specific data items, sorting.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 2 /43

Course Objectives: What is this course about?

e We will consider various abstract data types (ADTs) and how to
realize them efficiently using appropriate data structures.

@ There is a strong emphasis on mathematical analysis in the course.

@ Algorithms are presented using pseudo-code and analyzed using order
notation (big-Oh, etc.).

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 3/43

Course Topics

big-Oh analysis

priority queues and heaps
sorting, selection

binary search trees, AVL trees
skip lists

hashing

quadtrees, kd-trees

range search

tries

string matching

data compression

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 4 /43

CS Background

Topics covered in previous courses with relevant sections in [Sedgewick]:

arrays, linked lists (Sec. 3.2-3.4)

strings (Sec. 3.6)

stacks, queues (Sec. 4.2-4.6)

abstract data types (Sec. 4-intro, 4.1, 4.8-4.9)
recursive algorithms (5.1)

binary trees (5.4-5.7)

sorting (6.1-6.4)

binary search (12.4)

binary search trees (12.5)

probability and expectations (Goodrich & Tamassia, Section 1.3.4)

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 5 /43

Outline

@ Introduction and Asymptotic Analysis

@ Algorithm Design

A. Jamshidpey (CS-UW) CS240 - Module 1

Problems (terminology)

First, we must introduce terminology so that we can precisely characterize
what we mean by efficiency.

Problem: Given a problem instance, carry out a particular computational
task.

Problem Instance: /nput for the specified problem.

Problem Solution: Output (correct answer) for the specified problem
instance.

Size of a problem instance: Size(/) is a positive integer which is a
measure of the size of the instance /.

Example: Sorting problem

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 6 /43

Algorithms and Programs

Algorithm: An algorithm is a step-by-step process (e.g., described in
pseudo-code) for carrying out a series of computations, given an arbitrary
problem instance /.

Solving a problem: An Algorithm A solves a problem TI1 if, for every
instance [of I, A finds (computes) a valid solution for the instance / in
finite time.

Program: A program is an implementation of an algorithm using a
specified computer language.

In this course, our emphasis is on algorithms (as opposed to programs or
programming).

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 7 /43

Algorithms and Programs

Pseudocode: a method of communicating an algorithm to another
person.

In contrast, a program is a method of communicating an algorithm to a
computer.

Pseudocode
@ omits obvious details, e.g. variable declarations,
@ has limited if any error detection,
@ sometimes uses English descriptions,

@ sometimes uses mathematical notation.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 8 /43

Algorithms and Programs

For a problem 1, we can have several algorithms.

For an algorithm A solving 1, we can have several programs
(implementations).

Algorithms in practice: Given a problem T1
© Design an algorithm A that solves 1. — Algorithm Design
@ Assess correctness and efficiency of A. — Algorithm Analysis

© If acceptable (correct and efficient), implement A.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 9 /43

Outline

@ Introduction and Asymptotic Analysis

@ Analysis of Algorithms |

A. Jamshidpey (CS-UW) CS240 - Module 1

Efficiency of Algorithms/Programs

@ How do we decide which algorithm or program is the most efficient
solution to a given problem?

@ In this course, we are primarily concerned with the amount of time a
program takes to run. — Running Time

@ We also may be interested in the amount of additional memory the
program requires. — Auxiliary space

@ The amount of time and/or memory required by a program will
depend on Size(l), the size of the given problem instance /.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 10 / 43

Running Time of Algorithms/Programs

First option: experimental studies
e Write a program implementing the algorithm.
@ Run the program with inputs of varying size and composition.

@ Use a method like clock() (from time.h) to get an accurate
measure of the actual running time.

@ Plot/compare the results.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 11 / 43

Running Time of Algorithms/Programs

Shortcomings of experimental studies
@ Implementation may be complicated/costly.

e Timings are affected by many factors: hardware (processor, memory),
software environment (OS, compiler, programming language), and
human factors (programmer).

@ We cannot test all inputs; what are good sample inputs?

e We cannot easily compare two algorithms/programs.

We want a framework that:
@ Does not require implementing the algorithm.
@ Is independent of the hardware/software environment.

@ Takes into account all input instances.
We need some simplifications.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 12 / 43

Overview of Algorithm Analysis

We will develop several aspects of algorithm analysis in the next slides.
To overcome dependency on hardware/software:

@ Algorithms are presented in structured high-level pseudo-code which
is language-independent.

@ Analysis of algorithms is based on an idealized computer model.
@ Instead of time, count the number of primitive operations

@ The efficiency of an algorithm (with respect to time) is measured in
terms of its growth rate (this is called the complexity of the
algorithm).

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 13 / 43

Random Access Machine

Random Access Machine (RAM) model:

@ A set of memory cells, each of which stores one item (word) of data.
Implicit assumption: memory cells are big enough to hold the items
that we store.

@ Any access to a memory location takes constant time.

@ Any primitive operation takes constant time.
Implicit assumption: primitive operations have fairly similar, though
different, running time on different systems

@ The running time of a program is proportional to the number of
memory accesses plus the number of primitive operations.

This is an idealized model, so these assumptions may not be valid for a
“real” computer.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 14 / 43

Running Time Simplifications

We will simplify our analysis by considering the behaviour of algorithms for
large inputs sizes.

e Example 1: What is larger, 100n or 10n°?

e Example 2: What is larger, 10000001 4+ 200000000000000 or
0.01n%?

@ To simplify comparisons, use order notation

@ Informally: ignore constants and lower order terms

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 15 / 43

Outline

@ Introduction and Asymptotic Analysis

@ Asymptotic Notation

A. Jamshidpey (CS-UW) CS240 - Module 1

Order Notation

O-notation: f(n) € O(g(n)) if there exist constants ¢ > 0 and ng > 0
such that |f(n)| < c|g(n)| for all n > no.

Example: f(n) = 75n+ 500 and g(n) = 5n° (e.g. ¢ =1, ny = 20)

g(n) = 5n?

Note: The absolute value signs in the definition are irrelevant for analysis
of run-time or space, but are useful in other applications of asymptotic
notation.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 16 / 43

Example of Order Notation

In order to prove that 2n? +3n 4 11 € O(n?) from first principles, we need

to find ¢ and ng such that the following condition is satisfied:
0<2n®+3n+11<cn?forall n> ng.

note that not all choices of ¢ and ng will work.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 17 / 43

Aymptotic Lower Bound

o We have 2n% +3n+ 11 € O(n?).
e But we also have 2n? + 3n+ 11 € O(n'9).
o We want a tight asymptotic bound.

Q-notation: f(n) € Q(g(n)) if there exist constants ¢ > 0 and ng > 0
such that c|g(n)| < |f(n)| for all n > ng.

©-notation: 7(n) € ©(g(n)) if there exist constants ¢1,c; > 0 and np > 0
such that ¢ [g(n)| < |f(n)] < c2|g(n)] for all n > ng.

f(n) € ©(g(n)) < f(n) € O(g(n)) and f(n) € Q2(g(n))

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 18 / 43

Example of Order Notation

Prove that f(n) = 2n% + 3n + 11 € Q(n?) from first principles.

Prove that %nz —5n € Q(n?) from first principles.

Prove that log,(n) € ©(logn) for all b > 1 from first principles.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 19 / 43

Strictly smaller/larger asymptotic bounds

o We have f(n) = 2n?> +3n+ 11 € ©(n?).

o How to express that f(n) is asymptotically strictly smaller than n3?

o-notation: f(n) € o(g(n)) if for all constants ¢ > 0, there exists a
constant ng > 0 such that |f(n)| < c|g(n)| for all n > ng.

w-notation: f(n) € w(g(n)) if for all constants ¢ > 0, there exists a
constant ng > 0 such that |f(n)| > c|g(n)| for all n > ng.

e Main difference to O, 2 is the quantifier for c.
@ Rarely proved from first principles.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 20 / 43

Algebra of Order Notations

Identity rule: f(n) € ©(f(n))
Transitivity:

o If f(n) € O(g(n)) and g(n) € O(h(n)) then f(n) € O(h(n)).

o If f(n) € Q(g(n)) and g(n) € Q(h(n)) then f(n) € Q(h(n)).
Maximum rules: Suppose that f(n) > 0 and g(n) > 0 for all n > no.
Then:

o f(n) + g(n) € O(max{f(n),g(n)})

o f(n)+g(n) € Q(max{f(n),g(n)})

Proof: max{f(n),g(n)} < f(n)+ g(n) < 2max{f(n),g(n)}

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 21 /43

Techniques for Order Notation

Suppose that f(n) > 0 and g(n) > 0 for all n > ng. Suppose that

L= lim ﬂ (in particular, the limit exists).
n—00 g(n)

Then
o(g(n)) ifL=0
f(n) € ¢O(g(n)) If0<L<oo
w(g(n)) if L= oc.
The required limit can often be computed using /'Hépital’s rule. Note that

this result gives sufficient (but not necessary) conditions for the stated
conclusions to hold.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 22 /43

Example 1
Let f(n) be a polynomial of degree d > 0:

f(n) = can® +cg_1n? Tt 4+ ant g
for some ¢4 > 0.

Then f(n) € ©(n9):

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 23 /43

Example 2

Prove that n(2 + sin n7/2) is ©(n). Note that lim,_,oo(2 + sin n7/2) does
not exist.

A. Jamshidpey (CS-UW) CS240 - Module 1

Example 2

Prove that n(2 + sin n7/2) is ©(n). Note that lim,_o(2 + sin nm/2) does

not exist.

3n

f(n) = n(2 + sin nm/2)

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026

24 / 43

Example 3

Compare the growth rates of log n and n.

Now compare the growth rates of (log n)° and n? (where ¢ >0 and d > 0
are arbitrary numbers).

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 25 /43

Growth rates

o If f(n) € ©(g(n)), then the growth rates of f(n) and g(n) are the
same.

e If f(n) € o(g(n)), then we say that the growth rate of f(n) is
less than the growth rate of g(n).

e If f(n) € w(g(n)), then we say that the growth rate of f(n) is
greater than the growth rate of g(n).

e Typically, f(n) may be “complicated” and g(n) is chosen to be a very
simple function.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 26 /43

Common Growth Rates

Commonly encountered growth rates in analysis of algorithms include the
following (in increasing order of growth rate):

e O(1) (constant complexity),
e O(log n) (logarithmic complexity),

e O(n) (linear complexity),

©(nlog n)(linearithmic),

e o
o O

n?) (quadratic complexity),
©
©

n3) (cubic complexity),

(
(
(
(nlogk n), for some constant k (quasi-linear),
(
(
(

2") (exponential complexity).

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 27 / 43

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c

logarithmic complexity: T(n) = clogn

@ linear complexity: T(n) = cn

linearithmic ©(nlog n): T(n) = cnlogn
2

quadratic complexity: T(n) = cn
e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 28 /43

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

logarithmic complexity: T(n) = clogn

@ linear complexity: T(n) = cn

linearithmic ©(nlog n): T(n) = cnlogn
2

quadratic complexity: T(n) = cn
e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 28 /43

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

logarithmic complexity: T(n) = clogn ~» T(2n) = T(n)+ c.

@ linear complexity: T(n) = cn

linearithmic ©(nlog n): T(n) = cnlogn

quadratic complexity: T(n) = cn?

3

@ cubic complexity: T(n) = cn

@ exponential complexity: T(n) = c2"

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 28 /43

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

o logarithmic complexity: T(n) =clogn ~» T(2n) = T(n)+ c.
@ linear complexity: T(n) = cn ~» T(2n) = 2T(n).

o linearithmic ©(nlogn): T(n) = cnlogn

2

quadratic complexity: T(n) = cn
e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 28 /43

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

o logarithmic complexity: T(n) =clogn ~» T(2n)= T(n)+c¢

@ linear complexity: T(n) = cn ~» T(2n) =2T(n)

e linearithmic ©(nlogn): T(n) = cnlogn ~» T(2n) =2T(n)+ 2cn
o quadratic complexity: T(n) = cn?

e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 28 /43

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

o logarithmic complexity: T(n) =clogn ~» T(2n)= T(n)+c¢

@ linear complexity: T(n) = cn ~» T(2n) = 2T(n).

e linearithmic ©(nlogn): T(n) = cnlogn ~» T(2n) =2T(n)+ 2cn
o quadratic complexity: T(n) = cn? ~» T(2n) = 4T(n).

e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 28 /43

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

o logarithmic complexity: T(n) =clogn ~» T(2n)= T(n)+c¢

@ linear complexity: T(n) = cn ~» T(2n) = 2T(n).

e linearithmic ©(nlogn): T(n) = cnlogn ~» T(2n) =2T(n)+ 2cn
o quadratic complexity: T(n) = cn? ~» T(2n) = 4T(n).

e cubic complexity: T(n) = cn® ~ T(2n) = 8T (n).

@ exponential complexity: T(n) = c2"

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 28 /43

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

o logarithmic complexity: T(n) =clogn ~» T(2n)= T(n)+c¢

@ linear complexity: T(n) = cn ~» T(2n) = 2T(n).

e linearithmic ©(nlogn): T(n) = cnlogn ~» T(2n) =2T(n)+ 2cn
o quadratic complexity: T(n) = cn? ~» T(2n) = 4T(n).

e cubic complexity: T(n) = cn® ~ T(2n) = 8T (n).

@ exponential complexity: T(n) = c2" ~ T(2n) = (T(n))?/c

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 28 /43

Relationships between Order Notations

o f(n) € ©(g(n)) < g(n) € ©(f(n))
o f(n) € O(g(n)) < g(n) € Q(f(n))
e f(n) € o(g(n)) & g(n) € w(f(n))

o f(n) € o(g(n)) = f(n) € O(g(n))
f(n) € o(g(n)) = f(n) & Q2(g(n))
o f(n) € w(g(n)) = f(n) € Ag(n))
f(n) € w(g(n)) = f(n) ¢ O(g(n))

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026

29 / 43

Outline

@ Introduction and Asymptotic Analysis

@ Analysis of Algorithms Il

A. Jamshidpey (CS-UW) CS240 - Module 1

Techniques for Run-time Analysis

@ Goal: Use asymptotic notation to simplify run-time analysis.

@ Running time of an algorithm depends on the input size n.

Test1(n)

1. sum <+ 0

2 for i < 1 to ndo

3. for j < i to n do

4 sum + sum + (i — j)?
5 return sum

e Identify primitive operations that require ©(1) time.

@ The complexity of a loop is expressed as the sum of the complexities
of each iteration of the loop.

@ Nested loops: start with the innermost loop and proceed outwards.
This gives nested summations.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 30 /43

Techniques for Run-time Analysis
Two general strategies are as follows.

Strategy I: Use ©-bounds throughout the analysis and obtain a ©-bound
for the complexity of the algorithm.

Strategy Il: Prove a O-bound and a matching Q-bound separately.
Use upper bounds (for O-bounds) and lower bounds (for Q2-bound) early
and frequently.

This may be easier because upper/lower bounds are easier to sum.

Test2(A, n)

1. max < 0

2. for i< 1to ndo

3. for j < i to ndo

4. sum <+ 0

5. for k + i to j do
6. sum < A[K]
7. return max

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 31/43

Complexity of Algorithms

@ Algorithm can have different running times on two instances of the
same size.

Test3(A, n)

A: array of size n

1. fori<1ton—1do

J—i

while j > 0 and A[j] < A[j — 1] do
swap A[j] and A[j — 1]
j=i—1

ok wnN

Let T4(/) denote the running time of an algorithm A on instance /.
Worst-case complexity of an algorithm: take the worst /

Average-case complexity of an algorithm: average over /

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 32 /43

Complexity of Algorithms

Worst-case complexity of an algorithm: The worst-case running time
of an algorithm A is a function f : ZT — R mapping n (the input size) to
the longest running time for any input instance of size n:

Ta(n) = max{Ta(l): Size(l) = n}.

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is a function f : ZT — R mapping n (the input
size) to the average running time of A over all instances of size n:

1

T3%(n) = . Ta(l).
A [{I: Size(l) = n}| {I:Siz%:l)n}
A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026

33 /43

O-notation and Complexity of Algorithms

@ It is important not to try and make comparisons between algorithms
using O-notation.

@ For example, suppose algorithm A; and A5 both solve the same
problem, A; has worst-case run-time O(n®) and A, has worst-case
run-time O(n?).

@ Observe that we cannot conclude that A, is more efficient than A;
for all input!
@ The worst-case run-time may only be achieved on some instances.
© O-notation is an upper bound. A; may well have worst-case run-time
O(n). If we want to be able to compare algorithms, we should always
use ©-notation.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 34 /43

Outline

@ Introduction and Asymptotic Analysis

@ Example: Analysis of MergeSort

A. Jamshidpey (CS-UW) CS240 - Module 1

Design Idea for MergeSort

Input: Array A of n integers

e Step 1: We split A into two subarrays: A, consists of the first [7]
elements in A and Ag consists of the last | 7] elements in A.

@ Step 2: Recursively run MergeSort on Ay and Ag.

@ Step 3: After A; and Agr have been sorted, use a function Merge to
merge them into a single sorted array.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 35 /43

MergeSort

© N AN

if S

is NIL

MergeSort(A, n, £ < 0,r < n—1,5 < NIL)
A: array of size n, 0 </ <r<n-1
initialize it as array S[0..n — 1]

if (r <) then

else

return

m=(r+1¢)/2
MergeSort(A, n, £, m,S)
MergeSort(A,n,m+1,r,S)
Merge(A, €, m, r,S)

Two tricks to reduce run-time and auxiliary space:

@ The recursion uses parameters that indicate the range of the array
that needs to be sorted.

@ The array used for copying is passed along as parameter.

A. Jamshidpey (CS-UW)

CS240 - Module 1

Winter 2026

36 / 43

Merge

1
2
3
4.
5
6
7

Merge(A, €, m,r,S)

A[0..n — 1] is an array, A[¢..m] is sorted, A[m + 1..r] is sorted
S[0..n — 1] is an array

copy A[l..r] into S[{..r]

int iy < ¢;int ipg < m+1;

for (k < ¢; k < r; k++) do

if (ip > m) Alk] < S[ir++]

else if (ir > r) A[k] < S[iL++]

else if (S[ir] < S[ir]) Alk] < SliL++]
else Alk] < S[ir++]

Merge takes time ©(r — ¢ + 1), i.e., ©(n) time for merging n elements.

A. Jamshidpey (CS-UW)

CS240 - Module 1 Winter 2026

37 /43

Analysis of MergeSort

Let T(n) denote the time to run MergeSort on an array of length n.
@ Step 1 takes time ©(n)
o Step 2 takes time T([5]) + T([5])
o Step 3 takes time ©(n)

The recurrence relation for T(n) is as follows:

. { (15 + T(13) +0(n) ifn>1
O(1) if n=1.

It suffices to consider the following exact recurrence, with constant factor
c replacing ©'s:

T(n):{:([SWHT(LSJch :::

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 38 /43

Analysis of MergeSort

@ The following is the corresponding sloppy recurrence
(it has floors and ceilings removed):

T(n) = 2T(5)4cn ifn>1
c if n=1.

@ The exact and sloppy recurrences are identical when n is a power of 2.

@ The recurrence can easily be solved by various methods when n = 2/.
The solution has growth rate T(n) € ©(nlog n).

@ It is possible to show that T(n) € ©(nlogn) for all n
by analyzing the exact recurrence.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 39 /43

Some Recurrence Relations

’ Recursion resolves to example
T(n)=T(n/2)+ ©(1) T(n) € ©(log n) Binary search
T(n)=2T(n/2) + ©(n) T(n) € ©(nlogn) Mergesort
T(n) = 2T(n/2) + 8(logn) | T(n) € 6(n) Heapify (%)

T(n) = T(cn) + ©(n) T(n) € ©(n) Selection (*)
forsome 0 < c <1

T(n)=2T(n/4) +©(1) T(n) € ©(+v/n) Range Search (*)
T(n) = T(yv/n)+ ©(y/n) T(n) € ©(+v/n) Interpol. Search (*)
T(n)=T(v/n)+©(1) T(n) € ©(loglogn) | Interpol. Search (*)

@ Once you know the result, it is (usually) easy to prove by induction.

@ Many more recursions, and some methods to find the result, in cs341.

(*) These will be studied later in the course.

A. Jamshidpey (CS-UW)

CS240 - Module 1

Winter 2026 40 / 43

Outline

@ Introduction and Asymptotic Analysis

o Helpful Formulas

A. Jamshidpey (CS-UW) CS240 - Module 1

Order Notation Summary

O-notation: f(n) € O(g(n)) if there exist constants ¢ > 0 and ny > 0
such that |f(n)| < c|g(n)| for all n > no.

Q-notation: f(n) € Q(g(n)) if there exist constants ¢ > 0 and ng > 0
such that c|g(n)| < |f(n)]| for all n > no.
©(g(n)) if there exist constants c¢i, ¢, > 0 and ng > 0

©-notation: f(n)
(

S
such that ¢ |g(n)| < |f(n)| < c2|g(n)| for all n > n.

|
o-notation: f(n) € o(g(n)) if for all constants ¢ > 0, there exists a
constant ng > 0 such that |f(n)| < c|g(n)| for all n > ng.

w-notation: f(n) € w(g(n)) if for all constants ¢ > 0, there exists a
constant ng > 0 such that ¢ |g(n)| < |f(n)| for all n > ng.

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 41 /43

Useful Sums

Arithmetic sequence:

Srdi=177 S d(a+ di) = na+ N c ©(n2) if d #0.
Geometric sequence:
arr”_—ll eO(r") ifr>1
27:—01 i — 7277 27:—01 ari=1{ na € O(n) ifr=1
311—_rr” co(l) if0<r<l.
Harmonic sequence:
S, b= Hpi= Y0y 1 = Inn+ 7+ o(1) € O(log)
A few more:
Pip=177 Y s = %2 € 0(1)
n k=11 " ikeo(n) for k>0

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 42 /43

Useful Math Facts

Logarithms:

o ¢ = log,(a) means b° = a. E.g. n = 2\°&",

log(a) (in this course) means log,(a)

log(a- c) = log(a)+ log(c), log(a) = clog(a), logx < x

_ logca _ 1 log,c _— logya
log,(a) = log. b~ Tog,(B)' ? - ¢

@ In(x) = natural log = log,(x), d% Inx = %

@ concavity: alogx+(1—a)logy < log(ax+(1—a)y) for 0 <a <1
Factorial:

e nl:=n(n—1)(n—2)----2-1= # ways to permute n elements

o log(n!) =logn+log(n—1)+---+log2+logl € ©(nlogn)
Probability and moments:

o ElaX] = aE[X], E[X + Y] = E[X] + E[Y] (linearity of expectation)

A. Jamshidpey (CS-UW) CS240 - Module 1 Winter 2026 43 /43

	Introduction and Asymptotic Analysis
	CS240 Overview
	Course Objectives: What is this course about?
	Course Objectives: What is this course about?
	Course Topics
	CS Background

	Algorithm Design
	Problems (terminology)
	Algorithms and Programs
	Algorithms and Programs
	Algorithms and Programs

	Analysis of Algorithms I
	Efficiency of Algorithms/Programs
	Running Time of Algorithms/Programs
	Running Time of Algorithms/Programs
	Overview of Algorithm Analysis
	Random Access Machine
	Running Time Simplifications

	Asymptotic Notation
	Order Notation
	Example of Order Notation
	Aymptotic Lower Bound
	Example of Order Notation
	Strictly smaller/larger asymptotic bounds
	Algebra of Order Notations
	Techniques for Order Notation
	Example 1
	Example 2
	Example 3
	Growth rates
	Common Growth Rates
	How Growth Rates Affect Running Time
	Relationships between Order Notations

	Analysis of Algorithms II
	Techniques for Run-time Analysis
	Techniques for Run-time Analysis
	Complexity of Algorithms
	Complexity of Algorithms
	O-notation and Complexity of Algorithms

	Example: Analysis of MergeSort
	Design Idea for MergeSort
	MergeSort
	Merge
	Analysis of MergeSort
	Analysis of MergeSort
	Some Recurrence Relations

	Helpful Formulas
	Order Notation Summary
	Useful Sums
	Useful Math Facts

