3-Register Format
Machine-code encoding (big-endian)

Instruction Assembly syntax | Behaviour Opcode Xm Flags Xn xd

Add add xd, xn, xm xd = xn + xm 10001011 001 | mmmmm | 011000 | nn nnn | ddddd
Subtract sub xd, xn, xm xd = Xxn - xm 11001011 001 | mmmmm | 011000 | nn nnn | ddddd
Multiply mul xd, xn, xm xd = (xn * xm) % 2%2 10011011 000 | mmmmm | 011111 | nn nnn | ddddd
Multiply Overflow Signed smulh xd, xn, xm | xd = (xn * xm) / 2%7 10011011 010 | mmmmm | 011111 | nn nnn | ddddd
Multiply Overflow Unsigned | umulh xd, xn, xm | xd = (xn * xm) / 2%7 10011011 110 | mmmmm | 011111 | nn nnn | ddddd
Divide Signed sdiv xd, xn, xm xd = xn / xm 10011010 110 | mmmmm | 000011 | nn nnn | ddddd
Divide Unsigned udiv xd, xn, xm xd = xn / xm 10011010 110 | mmmmm | 000010 | nn nnn | ddddd
Compare cmp Xn, Xm compare xn and xm 11101011 001 | mmmmm | 011000 | nn nnn | 11111
Branch to Register br xn NPC = xn 11010110 000 | 11111 | 000000 | nn nnn | 00000
Branch & Link Register blr xn NPC = xn; x30 = PC + 4 | 11010110 001 | 11111 | 000000 | nn nnn | 00000

2-Register Format

Machine-code encoding (big-endian)
Instruction Assembly syntax | Behaviour Opcode Immediate | Unused | xn xd
Load Register ldur xd, [xn, i] xd = MEM[xn + i] | 11111000 010 | iiiii iiii 00 nn nnn | ddddd
Store Register | stur xd, [xn, i] MEM[xn + i] = xd | 11111000 000 | iiiii iiii 00 nn nnn | ddddd

1-Register Format

Machine-code encoding (big-endian)
Instruction Assembly syntax | Behaviour Opcode | Immediate xd
PC-Relative Load | 1ldr xd, i xd = MEM[PC + i(*4)] | 01011000 | iiiiiiii iiiiiiii iii | ddddd

Branching Format

Machine-code encoding (big-endian)
Instruction Assembly syntax | Behaviour Opcode | Immediate (& Condition)
Branch bi NPC = PC + i(*4) 000101 ii 1iiiiiii iidididididii iddidididii
Conditional Branch | b.cond i if (cond) NPC = PC + i(*4) | 01010100 iiiijiii iiiiiiii iiiccecce
Condition codes
Condition Assembly syntax | Bits
Equals eq 00000
Not equals ne 00001
Greater than or equals (unsigned) | hs 00010
Less than (unsigned) lo 00011
Greater than (unsigned) hi 01000
Less than or equals (unsigned) 1s 01001
Greater than or equals (signed) ge 01010
Less than (signed) 1t 01011
Greater than (signed) gt 01100
Less than or equals (signed) le 01101

e 1dr, b, b. cond: In assembly code, i represents bytes, but in machine code, i represents halfwords.
e I/0:

— When a word is stored to memory location 0xc000 0000 0001 0008, the least-significant byte of the word is sent to standard output.
— When a word is read from memory location 0xc000 0000 0001 0000, a byte is read from standard input, with EOF represented as -1.

