
3-Register Format

Machine-code encoding (big-endian)

Instruction Assembly syntax Behaviour Opcode xm Flags xn xd

Add add xd, xn, xm xd = xn + xm 10001011 001 mmmmm 011000 nn nnn ddddd

Subtract sub xd, xn, xm xd = xn - xm 11001011 001 mmmmm 011000 nn nnn ddddd

Multiply mul xd, xn, xm xd = (xn * xm) % 264 10011011 000 mmmmm 011111 nn nnn ddddd

Multiply Overflow Signed smulh xd, xn, xm xd = (xn * xm) / 264 10011011 010 mmmmm 011111 nn nnn ddddd

Multiply Overflow Unsigned umulh xd, xn, xm xd = (xn * xm) / 264 10011011 110 mmmmm 011111 nn nnn ddddd

Divide Signed sdiv xd, xn, xm xd = xn / xm 10011010 110 mmmmm 000011 nn nnn ddddd

Divide Unsigned udiv xd, xn, xm xd = xn / xm 10011010 110 mmmmm 000010 nn nnn ddddd

Compare cmp xn, xm compare xn and xm 11101011 001 mmmmm 011000 nn nnn 11111

Branch to Register br xn NPC = xn 11010110 000 11111 000000 nn nnn 00000

Branch & Link Register blr xn NPC = xn; x30 = PC + 4 11010110 001 11111 000000 nn nnn 00000

2-Register Format

Machine-code encoding (big-endian)

Instruction Assembly syntax Behaviour Opcode Immediate Unused xn xd

Load Register ldur xd, [xn, i] xd = MEM[xn + i] 11111000 010 iiiii iiii 00 nn nnn ddddd

Store Register stur xd, [xn, i] MEM[xn + i] = xd 11111000 000 iiiii iiii 00 nn nnn ddddd

1-Register Format

Machine-code encoding (big-endian)

Instruction Assembly syntax Behaviour Opcode Immediate xd

PC-Relative Load ldr xd, i xd = MEM[PC + i(*4)] 01011000 iiiiiiii iiiiiiii iii ddddd

Branching Format

Machine-code encoding (big-endian)

Instruction Assembly syntax Behaviour Opcode Immediate (& Condition)

Branch b i NPC = PC + i(*4) 000101 ii iiiiiiii iiiiiiii iiiiiiii

Conditional Branch b.cond i if (cond) NPC = PC + i(*4) 01010100 iiiiiiii iiiiiiii iiiccccc

Condition codes

Condition Assembly syntax Bits

Equals eq 00000

Not equals ne 00001

Greater than or equals (unsigned) hs 00010

Less than (unsigned) lo 00011

Greater than (unsigned) hi 01000

Less than or equals (unsigned) ls 01001

Greater than or equals (signed) ge 01010

Less than (signed) lt 01011

Greater than (signed) gt 01100

Less than or equals (signed) le 01101

• ldr, b, b.cond: In assembly code, i represents bytes, but in machine code, i represents halfwords.

• I/O:

– When a word is stored to memory location 0xc000 0000 0001 0008, the least-significant byte of the word is sent to standard output.

– When a word is read from memory location 0xc000 0000 0001 0000, a byte is read from standard input, with EOF represented as -1.


