
CS 241
Foundations of Sequential Programs

Course Website and Piazza

• The course website is: https://student.cs.uwaterloo.ca/~cs241/
• You can find it by searching for CS 241 in your favourite search engine.

• Read the course logistics page and the course outline.
• The outline is available on https://outline.uwaterloo.ca.

• Two assignment questions have been posted already.
• You can start on them if you want. They are due next Friday.

• Piazza is where important announcements will be made:
https://piazza.com/uwaterloo.ca/fall2023/cs241
• Make sure you get enrolled in Piazza as soon as possible.

https://student.cs.uwaterloo.ca/~cs241/
https://outline.uwaterloo.ca/
https://piazza.com/uwaterloo.ca/fall2023/cs241

Course Staff and Office Hours

• Sylvie Davies (me)
• Mon 3:30-4:30pm in-person (DC 3133), Fri 3:30-4:30pm online (Teams)

• Edward Lee (instructor for the other two sections)
• Tue/Thu 4-5pm, in-person (DC 3548)

• Instructional Support Assistant: Evan Girardin
• Thu 1-2pm and Fri 11am-12pm, in-person (MC 4065)

• Instructional Support Tutor (part time): Deven Wolff
• Tue 1-2pm in-person (MC 4065), Wed 11am-12pm online (Teams)

• Instructional Apprentice: Kris Frasheri

• Instructional Support Coordinator: Gang Lu

Course Notes

• Course notes are available on the course website.

• They are being updated for this term and it is a work in progress. New
chapters will be released periodically.

• Right now, the first 2 chapters are available.

• The course notes should be a useful reference, but are not meant to
be a substitute for lectures.

• We may cover topics in lectures that are not in the notes.

• You are expected to know all material covered in lectures, unless we
specifically say it’s optional.

Evaluation Structure

• Assignments are worth 30%:
• 10 shorter “questions”, worth 1% each

• 5 larger “projects”, worth 4% each

• Both questions and projects will be submitted to Marmoset and
automatically tested and graded (no hand-marking).

• Midterm exam worth 30%, scheduled for Wed Oct 25, 7:00-8:50pm.

• Final exam worth 40%, not yet scheduled.

• You must pass the weighted average of the midterm and final exams
to pass the course.

Late Policy

• Assignments can be submitted late up until the last day of classes.

• Your mark will be the average of your best on-time mark and your
best overall (on-time or late) mark.

• Assignments often build on each other, so we want to encourage you
to try to complete all of them.

• Particularly, try to complete all the projects because they come
together to produce a compiler for a simple high-level language!
Building your own complete compiler can be very satisfying.

Bonus Marks

• A bonus of up to 5% on your final grade can be earned as follows:
• Up to 3.5% for attending lectures and completing feedback surveys.

• Up to 1.5% for answering bonus assignment questions, and for “linguistic
diversity” when implementing the projects (using a mix of C++ and Racket).

• The course website contains the exact breakdown of bonus marks.

• To earn the survey bonus marks, you need to actually attend lectures.
We will check attendance using iClicker Cloud.
• We’re still working out the details of this; we’ll make a Piazza announcement

soon. For attendance checking, iClicker Cloud does not cost money for
students and a mobile device or laptop can be used for check-ins.

Tutorials

• There are tutorials on Wednesdays where the ISA and IA will cover
additional material.

• Tutorials are optional, but it’s recommended you attend unless you
are doing very well in the course and don’t need extra help.

• Tutorials will generally be focused on working through examples or
practice problems related to course content.

• Tutorial-exclusive material is not tested on assignments or exams.

• The first tutorial will be next week. There was no tutorial yesterday.

Goal of the Course

• How does code in a high-level language like C actually get executed?

• Compilation: A program called a compiler translates the code into an
executable file containing low-level instructions for the computer.
• C and C++ are compiled languages.

• Interpretation: A program called an interpreter reads the code and
performs the actions specified by the code.
• Racket and Python are interpreted languages.

• You can write interpreters in interpreted languages, but at some point
the computer needs those low-level instructions to know what to do.

• The goal of this course is to learn about the process of compilation.

Data Representations

Abstraction

• To abstract something is to remove details.

• In computer science, the goal is usually to remove irrelevant or
unimportant details and focus on what is essential.

• It’s often said that computers store data as 0s and 1s (binary).

• Computers actually store data using two-state electronic circuits.

• But the construction and physical properties of these circuits are
generally irrelevant to computer scientists.

• By abstracting the details away, we can focus on how patterns of
these two states (0 and 1) let us store different kinds of data.

Bits

• Through abstraction, a computer’s memory can be thought of as a
huge collection of 0s and 1s.

• To do anything useful with computers, we need to build more
abstractions.

• An individual bit (binary digit, 0 or 1) can only represent two distinct
pieces of data.

• By grouping bits together, we can use patterns of bits to represent
larger collections of data.

• Numbers, text, programs…

Common Groupings of Bits

• A byte is a sequence of 8 bits, e.g., 01101001.

• A nibble is a sequence of 4 bits.

• A word is a sequence whose length is context-dependent, based on
the computer architecture being used.

• Most modern computer architectures use 64-bit words, but in this
course, a word will be a sequence of 32 bits.

00000011111000000000000000001000

• Game consoles used to use word size as a marketing point. The
Nintendo 64 even included the word size in the console name.

Representing Numbers

• If we want to do calculations on a computer, we need a way to
represent numbers using groupings of bits.

• A grouping of n bits can represent 2n different values.

• We’ll focus on representations of integers.

• A simple one is base 2 representation for non-negative integers.

• Base 10 (decimal) : 1234 = 1 ∙ 103 + 2 ∙ 102 + 3 ∙ 101 + 4 ∙ 100

• Base 2 (binary): 10101 = 1 ∙ 24 + 0 ∙ 23 + 1 ∙ 22 + 0 ∙ 21 + 1 ∙ 20

• With n bits, we can represent integers from 0 to 2n – 1.

• This is also called unsigned representation in a computing context.

Hexadecimal Notation

• Base 16, hexadecimal, is also widely used in computer science. Why?

• Since 16 = 24, each hexadecimal digit corresponds to exactly four bits.

 Binary 0000 0001 0010 0011 0100 0101 0110 0111

 Hex 0 1 2 3 4 5 6 7

 Binary 1000 1001 1010 1011 1100 1101 1110 1111

 Hex 8 9 A B C D E F

• This means hexadecimal is useful as a shorthand for writing down
long sequences of binary data.

• The prefix 0x is often used for hexadecimal, e.g., 11110001 = 0xF1.

Hexadecimal Notation: Example

• Here we have a 32 bit binary sequence:

00011011101011011111000000001101

• Break it into nibbles, and convert each nibble to hex:

0001 1011 1010 1101 1111 0000 0000 1101
 1 B A D F 0 0 D

00011011101011011111000000001101 = 0x1BADF00D

• We can convert from hex to binary in the same way:

 0xDEADBEEF → D E A D B E E F
 → 1101 1110 1010 1101 1011 1110 1110 1111

Fixed-Width Representations

• In unsigned representation, larger numbers require more bits to
represent them.

• The number of bits used to represent a value is often called the width
of the value.

• In practice, computer architectures prefer to operate on groupings of
bits with the same width.

• It is usually faster and often mixed-width operations are not even
provided.

• We will focus on fixed-width representations of values in this course.

Fixed-Width Unsigned Representation

• We specify a fixed-width unsigned representations by stating the
number of bits, e.g., “8-bit unsigned”.

• Recall: With n bits, we can represent integers from 0 to 2n – 1.

• In C++, the “unsigned int” type is 32 bits on most systems, so the
maximum representable value is 232 – 1 = 4294967295.

• What happens if you type this on a system with 32-bit unsigned ints?

 unsigned int uh_oh = 4294967296;

• You could declare that this is an error, or undefined behaviour.

• A common solution is to instead use modular arithmetic.

Modular Arithmetic Review

• Arithmetic modulo n can be thought of as integer arithmetic that
“loops around” every n values.

• “24-hour clock arithmetic” is a simple example: 23:00 + 02:00 = 01:00

• More formally, arithmetic modulo n is performed on equivalence
classes, which are sets of integers, instead of plain integers.

• [m] = {m + nk : k ∈ ℤ} is the set of integers equivalent to m modulo n.

• So [0] = [n] = [2n] = … and [1] = [n+1] = [2n+1] = …

• We can define addition, subtraction and multiplication (not division)
on these classes and it makes sense, e.g., [a] + [b] = [a + b].

Fixed-Width and Modular Arithmetic

• We can interpret n-bit unsigned representation in two ways:
• As representing integers from 0 to 2n – 1.

• As representing the equivalence classes of these integers modulo 2n.

• We are flexible, and switch our interpretation depending on context.

unsigned int uh_oh = 4294967295 + 1;

• Here we do the arithmetic modulo 232:

[4294967295] + [1] = [4294967295 + 1] = [4294967296] = [0]

• But if we wanted to print uh_oh, we would forget the equivalence
class interpretation, and print a single integer in the range 0 to 2n – 1.

Unsigned Arithmetic and Overflow

• Let’s say we wanted to add the 8-bit unsigned integers 10010110 and
01110010, and express the result as an 8-bit unsigned integer.

• We could recast them as equivalence classes of decimal numbers:

 10010110 = [150] and 01110010 = [114]

 [150] + [114] = [264] = [8] (modulo 28 = 256) which is 00001000.

• But we can also just do “grade school addition”:

• The result is 9 bits – integer overflow.

1 1 1 1 1 1

1 0 0 1 0 1 1 0

+ 0 1 1 1 0 0 1 0

1 0 0 0 0 1 0 0 0

Unsigned Arithmetic and Overflow

• Let’s say we wanted to add the 8-bit unsigned integers 10010110 and
01110010, and express the result as an 8-bit unsigned integer.

• We could recast them as equivalence classes of decimal numbers:

 10010110 = [150] and 01110010 = [114]

 [150] + [114] = [264] = [8] (modulo 28 = 256) which is 00001000.

• But we can also just do “grade school addition”:

• The result is 9 bits – integer overflow.

• Discarding extra bits beyond the 8th has the
same effect as reducing modulo 28.

1 1 1 1 1 1

1 0 0 1 0 1 1 0

+ 0 1 1 1 0 0 1 0

1 0 0 0 0 1 0 0 0

Binary and Decimal Conversions

• Binary to Decimal:
• Write down the powers of 2 corresponding to each “1” bit and add them up.

• Decimal to Binary:
• Greedy method: Take the largest power of 2 that fits in the decimal number,

subtract it, and repeat until you’ve written the number as a sum of powers.

• Division method: Repeatedly divide the decimal number by 2 and keep track
of the remainders, which will always be 0 or 1. Once the decimal number is
reduced to 0, read remainders from last to first to obtain the binary number.

• What is 11110001 in decimal?
• 27 + 26 + 25 + 24 + 20 = 128 + 64 + 32 + 16 + 1 = 160 + 80 + 1 = 241 ☺

Binary and Decimal Conversions: Examples

• Convert 170 to binary using the greedy method.
170 → 128 + 42 → 128 + 32 + 10 → 128 + 32 + 8 + 2 → 27 + 25 + 23 + 21

• Result: 10101010

• Convert 203 to binary using the division method.
203 / 2 = 101 r1
101 / 2 = 50 r1
 50 / 2 = 25 r0
 25 / 2 = 12 r1
 12 / 2 = 6 r0
 6 / 2 = 3 r0
 3 / 2 = 1 r1
 1 / 2 = 0 r1

• Result: 11001011

Abstraction, Again

• We abstracted away the physical details of the electronic circuits in a
computer to view everything as 0s and 1s.

• Unsigned representation is a further abstraction: We view groupings
of 0s and 1s as representing numbers (or equivalence classes).

• It is important to remember in this course that we are building
abstractions, not truths or universal laws.

• The statement “11110001 in binary is 241 in decimal” is only true in
the context of the unsigned representation abstraction that we built.

• We can interpret 11110001 in other ways – like as a negative number.

Representing Negative Integers

• In base 10 notation, we represent negative integers by just appending
a negative sign: -1234

• As mathematicians, we can do the same thing for base 2: -10101

• As computer scientists, we cannot!

• Computers use two-state electronic circuits.

• We would need three states (0, 1, and negative sign) to represent
negative base 2 numbers in the mathematical way.

• We need to represent negation using just two states, somehow.

The Obvious Way: Sign-Magnitude

• Probably the first solution most people would think of is to use a
fixed-size representation, but reserve one bit to mean “negative sign”.

• This is called sign-magnitude representation.

• In 8-bit sign-magnitude representation:
• 00001000 is 8 and 10001000 is -8
• 01111111 is 127 and 11111111 is -127
• 00000000 is 0 and 10000000 is also 0 (negative zero?)

• We can no longer use “grade school arithmetic”:
• 8 + (-8) should be 0, but 00001000 + 10001000 gives 10010000 = -16.

• Sign-magnitude is flawed and only saw use in early computers.

The Method of Complements

• Centuries before the invention of computers and digital calculators,
many intricate mechanical calculators were developed.

• It was (and still is!) useful to be able to use the same hardware to
perform addition and subtraction.

Below: Adding machine keypad with nines’ complements as subscripts. The nines’
complement of a number is given by replacing each digit with 9 minus the digit.

18 27 36

45 54 63 09

72 81 90

The Method of Complements

• Centuries before the invention of computers and digital calculators,
many intricate mechanical calculators were developed.

• It was (and still is!) useful to be able to use the same hardware to
perform addition and subtraction.

To perform addition, enter the numbers normally.

2 4 1

+ 2 4 0

4 8 1

18 27 36

45 54 63 09

72 81 90

The Method of Complements

• Centuries before the invention of computers and digital calculators,
many intricate mechanical calculators were developed.

• It was (and still is!) useful to be able to use the same hardware to
perform addition and subtraction.

To perform subtraction, enter the nines’ complement of the first number, then
read off the nines’ complement of the result.

2 4 1

+ 2 4 0

4 8 1

72 54 81

+ 2 4 0

90 90 81

18 27 36

45 54 63 09

72 81 90

The Method of Complements

• Centuries before the invention of computers and digital calculators,
many intricate mechanical calculators were developed.

• It was (and still is!) useful to be able to use the same hardware to
perform addition and subtraction.

Alternatively, enter the ten’s complement (nines’ complement plus 1) of the
second number, and ignore the final carry (if any).

2 4 1

+ 2 4 0

4 8 1

72 54 81

+ 2 4 0

90 90 81

2 4 1

+ 72 54 90

18 27 36

45 54 63 09

72 81 90

The Method of Complements

• Centuries before the invention of computers and digital calculators,
many intricate mechanical calculators were developed.

• It was (and still is!) useful to be able to use the same hardware to
perform addition and subtraction.

Alternatively, enter the ten’s complement (nines’ complement plus 1) of the
second number, and ignore the final carry (if any).

2 4 1

+ 2 4 0

4 8 1

72 54 81

+ 2 4 0

90 90 81

2 4 1

+ 7 6 0 +1

18 27 36

45 54 63 09

72 81 90

The Method of Complements

• Centuries before the invention of computers and digital calculators,
many intricate mechanical calculators were developed.

• It was (and still is!) useful to be able to use the same hardware to
perform addition and subtraction.

Alternatively, enter the ten’s complement (nines’ complement plus 1) of the
second number, and ignore the final carry (if any).

2 4 1

+ 2 4 0

4 8 1

72 54 81

+ 2 4 0

90 90 81

2 4 1

+ 7 6 0

1 0 0 1

18 27 36

45 54 63 09

72 81 90

The Method of Complements

• Centuries before the invention of computers and digital calculators,
many intricate mechanical calculators were developed.

• It was (and still is!) useful to be able to use the same hardware to
perform addition and subtraction.

Alternatively, enter the ten’s complement (nines’ complement plus 1) of the
second number, and ignore the final carry (if any).

2 4 1

+ 2 4 0

4 8 1

72 54 81

+ 2 4 0

90 90 81

2 4 1

+ 7 6 0

1 0 0 1

18 27 36

45 54 63 09

72 81 90

Complements and Negative Numbers

• What happens if the result is negative? Nine’s complement method:

• Ten’s complement method:

2 4 0

+ 2 4 1

4 8 1

72 54 90

+ 2 4 1

18 09 09 09

2 4 0

+ 72 54 81

2 4 0

+ 7 5 9

2 4 0

+ 7 5 9

9 9 9

Ignore the carry?

+1

18 27 36

45 54 63 09

72 81 90

18 27 36

45 54 63 09

72 81 90

Representing Negative Numbers

• For an n-digit number m, the nines’ complement is 10n – 1 – m.

• Therefore, the ten’s complement is 10n – m.

• Working in a system with a maximum of n decimal digits, and ignoring
overflowing digits, is essentially the same as working modulo 10n.

• So in the context of a fixed number of decimal digits, ten’s
complement behaves exactly like (modular arithmetic) negation.

• The n-digit tens’ complement of 1 is 999…99 (n nines).

• If we treat this as a representation of -1, the ten’s complement
addition on the previous slide becomes correct.

Two’s Complement

• Nines’ complement and ten’s complement are tied to base 10.

• We can apply the same ideas to base 2 to obtain ones’ complement
and two’s complement (ones’ complement plus 1).

• When working with n-bit numbers:
• Taking the two’s complement behaves exactly like negation modulo 2n.

• Negative numbers can be represented by taking the two’s complement of the
corresponding positive number.

• Notice that ones’ complement is just “flipping the bits”, since 1 – 1 = 0
and 1 – 0 = 1. This makes ones’ complement and two’s complement
easy to compute.

Representing Integers in Two’s Complement

• What does the 8-bit sequence 11111111 represent?

• In 8-bit unsigned, it is 255.

• Let’s take the two’s complement (flip the bits and add one):
11111111 → 00000000 → 00000001

• So the representation of -255 is 00000001.

• …This is also the representation of positive 1.

• That’s okay, because [1] = [-255] modulo 28 = 256.

• But if we were to print out this integer, we would have to decide
whether it’s more reasonable to print out 1 or -255.

Relationship to Unsigned Representation

• Recall that we can interpret n-bit unsigned in two ways:
• Bit patterns are integers from 0 to 2n – 1.

• Bit patterns are equivalence classes of these integers modulo 2n.

• In n-bit two’s complement, the interpretation as equivalence classes
works the same as for n-bit unsigned.

• But should we do when interpreting bit patterns as integers?

• We want the range of representable integers to be balanced (each
positive number is matched with a negative number).

• Sadly, this is impossible. There are 2n numbers and one of them is 0.

The Range of Representable Integers

• In n-bit unsigned representation, we chose 0 to 2n – 1 as the range of
representable integers.

• For n-bit two’s complement, we will use -2n-1 to 2n-1 – 1.

• There are 2n integers available, so we shift the range of representable
integers to the left by 2n-1 (half of the available integers).

• This ensures every positive integer has a negative counterpart.

• However, one negative number (-2n-1) has no positive counterpart!

• In unsigned, 2n-1 is 1000…000. If we take the two’s complement:

1000…000 → 0111…111 → 0111…111 + 1 = 1000…000 (no change!)

Two’s Complement: Additional Notes

• “Flipping the bits and adding 1” is equivalent to “flipping the bits to
the left of the rightmost 1”.
• Flip the bits and add 1: 00101000 → 11010111 → 11011000

• Flip the bits to the left of the rightmost 1: 00101000 → 11011000

• Two’s complement can be thought of as a variant of fixed-size
unsigned representation where the leftmost bit has negative weight.
• n-bit unsigned: 2n-1∙bn-1 + 2n-2∙bn-2 + … + 21∙b1 + 20∙b0

• n-bit two’s complement: -2n-1∙bn-1 + 2
n-2∙bn-2 + … + 2

1∙b1 + 2
0∙b0

11010110 = -27 + 26 + 24 + 22 + 21 = -128 + 64 + 16 + 4 + 2 = -42

• The leftmost bit indicates sign! (1 for negative, 0 for non-negative)

Two’s Complement: Summary

• A fixed-size integer representation that includes negative integers.

• Negative integers are represented by taking the “two’s complement”
of the corresponding positive integer (flip the bits and add 1).

• We can reuse hardware used for unsigned arithmetic.
• Addition and subtraction are identical between unsigned / two’s complement.

• Multiplication is almost identical (more on this later). Division is different.

• The range of n-bit two’s complement is -2n-1 to 2n-1 – 1.
• The smallest number, -2n-1, has no positive counterpart. Be careful.

• Like unsigned but the leftmost bit represents a negative power of 2.

Abstractions So Far

• Computers store everything as binary data (0s and 1s, bits).

• We can view groupings of 0s and 1s as numbers.

• Using unsigned representation we can represent non-negative
integers in the range 0 to 2n – 1 as sequences of n bits.

• Using two’s complement representation we can represent integers in
the range -2n-1 to 2n-1 – 1 as sequences of n bits.

• But how do we represent the text that you’re reading right now?

• That’s outside the scope of this course but we can talk about a simple
(yet still relevant) representation of text called ASCII.

ASCII Representation for Text

• The American Standard Code for Information Interchange (ASCII) was
developed in the 1960s based on telegraph codes.

• ASCII originally used 7-bit codes to represent characters, giving 27 =
128 different characters, enough for English text but not much else.

• On modern computers, it’s more convenient to group things into
bytes, so we use 8 bits (one byte) per ASCII character.

• The modern standard for text is Unicode.

• Unicode is backwards-compatible with ASCII, but also allows multi-
byte characters, to support other languages and special symbols.

ASCII Overview: Letters, Digits, Punctuation

• Uppercase A to Z: 01000001 (0x41) to 01011010 (0x5A)

• Lowercase a to z: 01100001 (0x61) to 01111010 (0x7A)

If you add 00100000 (0x20) to the code of an uppercase letter, you get
its lowercase counterpart!

• Digits 0 to 9: 00110000 (0x30) to 00111001 (0x39)

To get the code for digit n, take the code for digit 0 and add n.

• Space character: 00100000 (0x20)

• The following punctuation characters are available:

! " # $ % & ' () * + , - . / : ; < = > ? @ [\] ^ _ ` { | } ~

ASCII Overview: Control Characters

• When ASCII was developed, electromechanical devices like
teleprinters were still in common use.

• ASCII included a number of control characters which were not
printed, but could be used to manipulate these devices.

• Only a handful of these still do anything on modern computers.

• When a program is asked to display a control character that no longer
has a function, various things can happen:
• It could display nothing.

• It could display some kind of code that represents the control character.

• It could display a special symbol representing the control character.

Table of Control Characters

Character Code Character Code Character Code Character Code

Null 00000000 (0x00) Backspace 00001000 (0x08) Data Link Escape 00010000 (0x10) Cancel 00011000 (0x18)

Start of Heading 00000001 (0x01) Horizontal Tab 00001001 (0x09) Device Control 1 00010001 (0x11) End of Medium 00011001 (0x19)

Start of Text 00000010 (0x02) Line Feed 00001010 (0x0A) Device Control 2 00010010 (0x12) Substitute 00011010 (0x1A)

End of Text 00000011 (0x03) Vertical Tab 00001011 (0x0B) Device Control 3 00010011 (0x13) Escape 00011011 (0x1B)

End of
Transmission

00000100 (0x04) Form Feed 00001100 (0x0C) Device Control 4 00010100 (0x14) File Separator 00011100 (0x1C)

Enquiry 00000101 (0x05) Carriage Return 00001101 (0x0D) Negative
Acknowledgement

00010101 (0x15) Group Separator 00011101 (0x1D)

Acknowledgement 00000110 (0x06) Shift Out 00001110 (0x0E) Synchronous Idle 00010110 (0x16) Record Separator 00011110 (0x1E)

Bell 00000111 (0x07) Shift In 00001111 (0x0F) End of
Transmission Block

00010111 (0x17) Unit Separator 00011111 (0x1F)

Delete 01111111 (0x7F)

Most of these are no longer useful, but some still retain functionality in modern computers.

Summary

• What does the byte 10000000 (or 0x80 in hexadecimal) represent?

• It could be the 8-bit unsigned value 128.

• It could be the 8-bit two’s complement value -128, the smallest 8-bit
two’s complement number, which has no positive counterpart.

• We could also think of it as representing the equivalence class [128]
modulo 28 = 256. This equivalence class contains both 128 and -128.

• It’s not a valid ASCII character, but maybe it represents something in
another text encoding system.

• It is a grouping of eight electrical signals that can represent
anything. It all depends on the abstractions we build.

	Slide 1: CS 241
	Slide 2: Course Website and Piazza
	Slide 3: Course Staff and Office Hours
	Slide 4: Course Notes
	Slide 5: Evaluation Structure
	Slide 6: Late Policy
	Slide 7: Bonus Marks
	Slide 8: Tutorials
	Slide 9: Goal of the Course
	Slide 10: Data Representations
	Slide 11: Abstraction
	Slide 12: Bits
	Slide 13: Common Groupings of Bits
	Slide 14: Representing Numbers
	Slide 15: Hexadecimal Notation
	Slide 16: Hexadecimal Notation: Example
	Slide 17: Fixed-Width Representations
	Slide 18: Fixed-Width Unsigned Representation
	Slide 19: Modular Arithmetic Review
	Slide 20: Fixed-Width and Modular Arithmetic
	Slide 21: Unsigned Arithmetic and Overflow
	Slide 22: Unsigned Arithmetic and Overflow
	Slide 23: Binary and Decimal Conversions
	Slide 24: Binary and Decimal Conversions: Examples
	Slide 25: Abstraction, Again
	Slide 26: Representing Negative Integers
	Slide 27: The Obvious Way: Sign-Magnitude
	Slide 28: The Method of Complements
	Slide 29: The Method of Complements
	Slide 30: The Method of Complements
	Slide 31: The Method of Complements
	Slide 32: The Method of Complements
	Slide 33: The Method of Complements
	Slide 34: The Method of Complements
	Slide 35: Complements and Negative Numbers
	Slide 36: Representing Negative Numbers
	Slide 37: Two’s Complement
	Slide 38: Representing Integers in Two’s Complement
	Slide 39: Relationship to Unsigned Representation
	Slide 40: The Range of Representable Integers
	Slide 41: Two’s Complement: Additional Notes
	Slide 42: Two’s Complement: Summary
	Slide 43: Abstractions So Far
	Slide 44: ASCII Representation for Text
	Slide 45: ASCII Overview: Letters, Digits, Punctuation
	Slide 46: ASCII Overview: Control Characters
	Slide 47: Table of Control Characters
	Slide 48: Summary

