Nondeterministic Finite
Automata



DFA: Strings Ending in "baba”

* In an earlier lecture, we constructed this DFA for the regular
expression (a|b)*baba.

* The DFA is much more complicated than the regular expression.




Multiple Choices

* Why not represent (a|b)*baba with this drawing?

* The diagram has the same structure as the regular expression.

e But if we read 'b' in the first state, it requires making a choice about
which state to go (stay in the first state or go to B).

e Our automaton is no longer deterministic.



Nondeterministic Computation

* Is it a problem if our automaton's behaviour is nondeterministic?
* In a practical context, yes, but in a theoretical context, not really.

* There are two theoretical interpretations of what it means to solve a
problem with nondeterministic computation.

1. When there is a choice between multiple states, the computer
always picks the right one. The problem is solved if there is any
sequence of choices that leads to a solution.

2. When thereisac

noice between states, the computer takes all

choices simultaneously. In other words, it occupies multiple states

at once. The prob

em is solved if it is solved in any occupied state.



Nondeterministic Finite Automata

* A nondeterministic finite automaton (NFA) has the same
components as a DFA:
* Afinite set of states (represented as circles).
* Aninitial or starting state (marked with an arrow pointing inwards).
* A set of accepting states (the double-circled states).
e A collection of arrows between the states, where each arrow is labelled with

a character.
 The difference is that there are no restrictions on the arrows.

* In a DFA, a state cannot have two arrows leading out that are labelled with
the same character. NFAs have no such restriction.



DFA or NFA?

 |s this a DFA or an NFA?

* It is an NFA. The state 3 has two arrows leading out of it that are both
labelled with the letter c.



DFA or NFA?

 |s this a DFA or an NFA?

* |It's both! There are no nondeterministic arrows, but we still consider
it an NFA because NFAs simply remove restrictions on arrows.



Terminology Notes

 An NFA is just a DFA with the restriction on arrows removed.
* Therefore, every DFA is an NFA.
* However, not all NFAs are DFAs.

* The "nondeterministic" in NFA should be thought of as saying
"nondeterminism allowed" instead of "it must be nondeterministic".

* By the way, "arrows" in NFAs and DFAs are usually called transitions.
* There is a transition from X to Y on a.

OO0



Language Recognition for NFAs

* We introduced DFAs to specify language recognition programs.

* These programs take a string as input, and return "true" or "false" indicating
whether the string is in a particular language (set of strings).

* As mentioned, we can think about nondeterminism in two ways, and
this leads to two ways to think about language recognition.

* An NFA will “always make the correct choice” if a correct choice exists, so if
there exists a path to an accepting state for the current string, it will find such
a path and accept the string. Otherwise it rejects the string.

* An NFA will “make all possible choices”, potentially occupying multiple states
at once. Once it finishes reading the string, it accepts if at least one of the
states it occupiesis accepting. If none are accepting, it rejects the string.



Language Recognition Example

e Let's consider this NFA.

* How do we tell whether it recognizes "abbaba"?

* From the "always makes the correct choice" perspective, we just need
to find some path that leads to the NFA accepting the string.



Language Recognition Example

e Let's consider this NFA.

: ‘ . ' ‘BABA

Input String: abbaba
a,b
* How do we tell whether it recognizes "abbaba"?

* From the "always makes the correct choice" perspective, we just need
to find some path that leads to the NFA accepting the string.



Language Recognition Example

e Let's consider this NFA.

: ‘ . ' ‘BABA

Input String: bbaba
a,b
* How do we tell whether it recognizes "abbaba"?

* From the "always makes the correct choice" perspective, we just need
to find some path that leads to the NFA accepting the string.



Language Recognition Example

e Let's consider this NFA.

: ‘ . ' ‘BABA

Input String: baba
a,b
* How do we tell whether it recognizes "abbaba"?

* From the "always makes the correct choice" perspective, we just need
to find some path that leads to the NFA accepting the string.



Language Recognition Example

e Let's consider this NFA.

* How do we tell whether it recognizes "abbaba"?

* From the "always makes the correct choice" perspective, we just need
to find some path that leads to the NFA accepting the string.



Language Recognition Example

e Let's consider this NFA.

Input String: ba

a,b A

* How do we tell whether it recognizes "abbaba"?

* From the "always makes the correct choice" perspective, we just need
to find some path that leads to the NFA accepting the string.



Language Recognition Example

e Let's consider this NFA.

* How do we tell whether it recognizes "abbaba"?

* From the "always makes the correct choice" perspective, we just need
to find some path that leads to the NFA accepting the string.



Language Recognition Example

e Let's consider this NFA.

Input String:
Accepted!

a,b

* How do we tell whether it recognizes "abbaba"?

* From the "always makes the correct choice" perspective, we just need
to find some path that leads to the NFA accepting the string.



Language Recognition Example

e Let's consider this NFA.

* How do we tell whether it recognizes "abbaba"?

* From the "makes all possible choices" perspective, we view the NFA
as occupying multiple states at once. If any state is accepting at the
end, we accept.



Language Recognition Example

e Let's consider this NFA.

: ‘ . ' ‘BABA

Input String: abbaba
a,b

* How do we tell whether it recognizes "abbaba"?

* From the "makes all possible choices" perspective, we view the NFA
as occupying multiple states at once. If any state is accepting at the
end, we accept.



Language Recognition Example

e Let's consider this NFA.

: ‘ . ' ‘BABA

Input String: bbaba
a,b

* How do we tell whether it recognizes "abbaba"?

* From the "makes all possible choices" perspective, we view the NFA
as occupying multiple states at once. If any state is accepting at the
end, we accept.



Language Recognition Example

e Let's consider this NFA.

b a b a
B BAB BABA

U Input String: baba
a,b A

* How do we tell whether it recognizes "abbaba"?

* From the "makes all possible choices" perspective, we view the NFA
as occupying multiple states at once. If any state is accepting at the
end, we accept.



Language Recognition Example

e Let's consider this NFA.

b a b a
B BAB BABA

U Input String: aba

a,b A

* How do we tell whether it recognizes "abbaba"?

* From the "makes all possible choices" perspective, we view the NFA
as occupying multiple states at once. If any state is accepting at the
end, we accept.



Language Recognition Example

e Let's consider this NFA.

G ‘ o

Input String:

a,b A

* How do we tell whether it recognizes "abbaba"?

* From the "makes all possible choices" perspective, we view the NFA
as occupying multiple states at once. If any state is accepting at the
end, we accept.



Language Recognition Example

e Let's consider this NFA.

Pafa0a0n0
B BAB BABA
U Input String: a

a,b A

* How do we tell whether it recognizes "abbaba"?

* From the "makes all possible choices" perspective, we view the NFA
as occupying multiple states at once. If any state is accepting at the
end, we accept.



Language Recognition Example

e Let's consider this NFA.

Input String:

ab Accepted!

* How do we tell whether it recognizes "abbaba"?

* From the "makes all possible choices" perspective, we view the NFA
as occupying multiple states at once. If any state is accepting at the
end, we accept.



More Nondeterminism?!

* Here’s an NFA corresponding to the regular expression ab™|ac*.
* What if we want an NFA for (ab*|ac™*)*?




More Nondeterminism?!

* Let’s try to turn this into an NFA for (ab™*|ac*)*.

* If in state B, and the next input is “a”, it could be the start of an “ab*”
word OR a “ac*” word.




More Nondeterminism?!

* Let’s try to turn this into an NFA for (ab™*|ac*)*.

* If in state B, and the next input is “a”, it could be the start of an “ab*”
word OR a “ac*” word. So we could go back to B or go to C.




More Nondeterminism?!

* Let’s try to turn this into an NFA for (ab™*|ac*)*.

au_n

 Similarly, if in state C, if we see an “a”, we can should either go to B or
stay in C.




More Nondeterminism?!

* Let’s try to turn this into an NFA for (ab™*|ac*)*.

* Because the star of a language always contains the empty string, we
need to make the initial state accepting as well.




More Nondeterminism?!

* Let’s try to turn this into an NFA for (ab™*|ac*)*.

* This works (we don’t need to add any more transitions) but it’s hard
to tell that it works and it’s a little complicated.




More Nondeterminism?!

* Let’s try to turn this into an NFA for (ab™*|ac*)*.

* It would be nice if we could express this idea: “Any time we’re in an
accepting state, we can take a free move back to the initial state.”

Free move?



NFAs with e-transitions

* We will use symbol € to denote a “free move”.
* £ (epsilon) is sometimes used as a symbol for the empty string.




NFAs with e-transitions

* An e-transition is a transition that is optional to take, and can be
taken without consuming input.

* This is inherently nondeterministic since we have a choice of whether
to take the e-transition.




Recognition with e-transitions

* In the "always makes the correct choice" perspective, a string is
accepted if there is some possible path to an accepting state.

* An e-transition is a "free move" you can take without reading a
character. These must be considered in your paths.

* In the "makes all possible choices" perspective, you must consider all
possible e-transitions you can take before reading a character.

* Given a set of states S, the e-closure of S is the set of all states you
can reach by following a sequence of zero or more e-transitions from
states in S.



NFA Recognition with e-transitions

* Let’s trace through the NFA recognition process with the NFA below
and the string abac.

Input string:
abac

Occupied states:
{A}

Current step:
None

Next step:
Apply e-closure




NFA Recognition with e-transitions

* Let’s trace through the NFA recognition process with the NFA below
and the string abac.

Input string:
abac

Occupied states:
{A} (no change)

Current step:
Apply e-closure

Next step:
Read symbol a




NFA Recognition with e-transitions

* Let’s trace through the NFA recognition process with the NFA below
and the string abac.

Input string:
abac

Occupied states:
{B,C} previously {A}

Current step:
Read symbol a

Next step:
Apply e-closure




NFA Recognition with e-transitions

* Let’s trace through the NFA recognition process with the NFA below
and the string abac.

Input string:
abac

Occupied states:
{A,B,C} previously {B,C}

Current step:
Apply e-closure

Next step:
Read symbol b




NFA Recognition with e-transitions

* Let’s trace through the NFA recognition process with the NFA below
and the string abac.

Input string:
abac

Occupied states:
{B} previously {A,B,C}

Current step:
Read symbol b

Next step:
Apply e-closure




NFA Recognition with e-transitions

* Let’s trace through the NFA recognition process with the NFA below
and the string abac.

Input string:
abac

Occupied states:
{A,B} previously {B}

Current step:
Apply e-closure

Next step:
Read symbol a




NFA Recognition with e-transitions

* Let’s trace through the NFA recognition process with the NFA below
and the string abac.

Input string:
abac

Occupied states:
{B,C} previously {A,B}

Current step:
Read symbol a

Next step:
Apply e-closure




NFA Recognition with e-transitions

* Let’s trace through the NFA recognition process with the NFA below
and the string abac.

Input string:
abac

Occupied states:
{A,B,C} previously {B,C}

Current step:
Apply e-closure

Next step:
Read symbol ¢




NFA Recognition with e-transitions

* Let’s trace through the NFA recognition process with the NFA below
and the string abac.

Input string:
abac

Occupied states:
{C} previously {A,B,C}

Current step:
Read symbol ¢

Next step:
Apply e-closure




NFA Recognition with e-transitions

* Let’s trace through the NFA recognition process with the NFA below
and the string abac.

Input string:
abac

Occupied states:
{A,C} previously {C}

Current step:
Apply e-closure

Next step:
Acceptor reject




NFA Recognition with e-transitions

* Let’s trace through the NFA recognition process with the NFA below
and the string abac.

Input string:
abac

Occupied states:
{A,C}

Current step:
Accept or reject

We accept because
{A,C} contains two
accepting states.




The Recognition Power of NFAs

* NFAs give us extra convenience compared to DFAs, and e-transitions
add even more convenience.

e But can NFAs actually recognize any languages that DFAs cannot?

* We originally introduced DFAs as an alternative to regular expressions
for specifying regular languages.

* It turns out that DFAs, NFAs (with e-transitions) and regular
expressions are all equivalent in recognition power in the sense that
they all specify precisely the class of regular languages.

 We won't see a full proof of this but we'll see some of the ideas.



	Slide 1: Nondeterministic Finite Automata
	Slide 2: DFA: Strings Ending in "baba"
	Slide 3: Multiple Choices
	Slide 4: Nondeterministic Computation
	Slide 5: Nondeterministic Finite Automata
	Slide 6: DFA or NFA?
	Slide 7: DFA or NFA?
	Slide 8: Terminology Notes
	Slide 9: Language Recognition for NFAs
	Slide 10: Language Recognition Example
	Slide 11: Language Recognition Example
	Slide 12: Language Recognition Example
	Slide 13: Language Recognition Example
	Slide 14: Language Recognition Example
	Slide 15: Language Recognition Example
	Slide 16: Language Recognition Example
	Slide 17: Language Recognition Example
	Slide 18: Language Recognition Example
	Slide 19: Language Recognition Example
	Slide 20: Language Recognition Example
	Slide 21: Language Recognition Example
	Slide 22: Language Recognition Example
	Slide 23: Language Recognition Example
	Slide 24: Language Recognition Example
	Slide 25: Language Recognition Example
	Slide 26: More Nondeterminism?!
	Slide 27: More Nondeterminism?!
	Slide 28: More Nondeterminism?!
	Slide 29: More Nondeterminism?!
	Slide 30: More Nondeterminism?!
	Slide 31: More Nondeterminism?!
	Slide 32: More Nondeterminism?!
	Slide 33: NFAs with ε-transitions
	Slide 34: NFAs with ε-transitions
	Slide 35: Recognition with ε-transitions 
	Slide 36: NFA Recognition with ε-transitions
	Slide 37: NFA Recognition with ε-transitions
	Slide 38: NFA Recognition with ε-transitions
	Slide 39: NFA Recognition with ε-transitions
	Slide 40: NFA Recognition with ε-transitions
	Slide 41: NFA Recognition with ε-transitions
	Slide 42: NFA Recognition with ε-transitions
	Slide 43: NFA Recognition with ε-transitions
	Slide 44: NFA Recognition with ε-transitions
	Slide 45: NFA Recognition with ε-transitions
	Slide 46: NFA Recognition with ε-transitions
	Slide 47: The Recognition Power of NFAs

