From Regular Languages to
FiInite Automata

Regular Languages

* A language (set of strings) is regular if:
1. Itisthe empty set (contains no strings).

2. ltis the set containing only the empty string (contains one string).
* We've been denoting the empty string as "", but another common notation is € (epsilon).

It is a set containing one string which consists of a single character.
It is the union of two regular languages.

It is the concatenation of two regular languages.

It is the Kleene star of a regular language.

o Uk W

* We are going to show (informally) that every regular language can be
recognized by a DFA.

From Regular Languages to NFAs

* Let's try to create an NFA for each of the 6 cases in the definition of a
regular language.

* The first 3 cases are easy and don't even need knowledge of NFAs.

1. Itis the empty set (contains no strings).

_,Q

2. Itis the set containing only the empty string (contains one string).

_,©

3. Itis a set containing one string which consists of a single character.

nONe.

From Regular Languages to NFAs

* Let's try to create an NFA for each of the 6 cases in the definition of a
regular language.

* The hard part is the "recursive" cases:
4. Itisthe union of two regular languages.
5. Itis the concatenation of two regular languages.
6. Itis the Kleene star of two regular languages.

* If we only knew DFAs, it would be difficult to proceed.
* Even with NFAs it might not be obvious what to do.
* The trick is that e-transitions make things easy.

Union of Regular Languages via NFAs

* Suppose we have two NFAs representing regular languages.

0. O
O e

* We have represented them in an abstract way above.
(They do not actually just have two disconnected states.)

* How would we create an NFA for the union of the two regular
languages by using e-transitions?

Union of Regular Languages via NFAs

* Add a new starting state, and connect it to the old starting states
using e-transitions.

NFA 1 @

NFA 2 @

Concatenation of Regular Languages via NFAS

* Suppose we have two NFAs representing regular languages.

0. O
O e

* How would we create an NFA for the concatenation of the two regular
languages by using e-transitions?

Concatenation of Regular Languages via NFAS

 Step 1: Connect all accepting states of NFA 1 to initial state of NFA 2

with e-transitions.
-O. O
NFA 1 Q . e @

 Step 2: Make the accepting states of NFA 1 non-accepting, and
change the initial state of NFA 2 into a normal state.

~-O. O
NFA 1 Q] i @

€

€

Kleene Star of Regular Languages via NFAs

* How do we take an NFA for a regular language and create an NFA for
the Kleene star of the same language?

* Recall: The Kleene star of a language consists of all strings formed by
concatenating zero or more strings from that language.

* It always includes the empty string (formed by "concatenating zero

strings").
-0 O
505

Kleene Star of Regular Languages via NFAs

e Step 1: Add a new initial state that is also accepting, to accept the
empty string. Connect it to the old initial state via an e-transition.

 Step 2: Connect all the original accepting states back to the new initial
state with e-transitions.

Examples

e Construct an NFA for the regular expression ab*|aa*c*|(ac)*.
* We create DFAs for each of the smaIIer expressions

@4@@@

* Then use e-transitions:

Examples

e Construct an NFA for the regular expression:
(ab*|[aa*c*|(ac)*)(a|b)*baba
* This is a concatenation of two NFAs we have already seen:

a,b
f e Yoo e e
-8

e Using the e-transition construction:

Examples

e Construct an NFA for the regular expression:
(ab*|[aa*c*|(ac)*)*

* Using the e-transition construction for star:

From NFAs to DFAs

* We've now seen that every regular expression can be represented by
a NFA (or at least seen the idea behind the proof).

* If we can show every language recognized by an NFA can be
recognized by a DFA, this shows every regular expression can be
represented by a DFA (our ultimate goal!)

e Recall that we traced through NFAs by thinking about the possible
"set of NFA states" we can be in.

* There are finitely many possible sets!

 For each NFA, we can create a DFA that simulates it, where the DFA
states will be sets of NFA states.

NFA Transition Tables

* Here is the NFA for (a|b)*baba (with the states renamed to numbers).

a,b
] Character 2>
* A convenient way to represent the State J
{0}

transitions (arrows) is with a lookup {0, 1}
table, where the rows are states, {2} {}
the columns are characters, and {} 3}

the table entries are sets of states. {4) {}
{} {}

NFA Transition Tables

* Here's an example with e-transitions (an extra column is added for €).

'»
@0

Character >
State \l/

{B,C}

) “ () {B} {} {A}
C

{} {} {C} {A}

The Subset Construction

* Let's use this to create a new table. The rows will be sets of states and
we start out with a set just containing the initial state.

b a b a Character >
State |
0
a, b Character >
State sL

{0, 1}
{2} {}
i} 3}
{4} {}

i} {}

The Subset Construction

 We use the NFA table to fill in the "set table".

b a b a Character >
State \l/
0,1
Character > { 0, 1)
State \l/

{0, 1}
{2} {}
i} 3}
{4} {}

i} i}

The Subset Construction

* Once all rows are filled, we add a new row for each new set we
reached that isn't already in the table.

b a b a Character >
State \l/
0,1
a, b Character > 0, 1)
Eovad

{0, 1}
{2} {}
i} 3}
{4} {}
i} i}

The Subset Construction

* For rows that contain a set of NFA states, we look at the rows of the
NFA table for each state in the set and take the union.

b a b a Character >
State \l/
0,1
a, b Character > { 0, 1)
State sL {O 2}

{0, 1}
{2} {}
i} 3}
{4} {}
i} {}

The Subset Construction

* For rows that contain a set of NFA states, we look at the rows of the
NFA table for each state in the set and take the union.

b a b a Character >
State \l/
0,1
a, b Character > { 0, 1)
State ¢ {0 2} (0,1}

{0, 1}
{2} {}
i} 3}
{4} {}

i} {}

The Subset Construction

* We continue until we stop finding new rows.

b a b a Character 2
State \l/
{0, 1}
Character 2>
0,1)
{2} {}

i} 3}
{4} {}
i} i}

The Subset Construction

* We continue until we stop finding new rows.

b a b a Character 2
Statesl,
{0, 1}
Character 2>
(0,1} 0 013
{2} {}

i} 3}
{4} {}
i} i}

The Subset Construction

* We continue until we stop finding new rows.

b a b a @ Character 2>
— State 4,
(0)

cHJEN Character - {0, 1}
State |/ {0, 1} {0, 2} {0, 1}
B o 0, 1) {0, 2} © {013
{2} {} {0, 1, 3} {0,2,4} {0, 1}
i} 3}

{4} {}
i} i}

The Subset Construction

* We continue until we stop finding new rows.

b a b a @ Character 2>
— State 4,
(0)

a,b Character 2> {0, 1}
State {0, 1} {0, 2} {0, 1}
B o 0, 1) {0, 2} © {013}

{2} {} () {0,2,4} {0, 1}
{} {3} {0, 2, 4} {0} {0, 1, 3}
{4} {}

{} {}

The Subset Construction

* Now we turn the new table into a DFA with one state for each row.
Accepting DFA states are sets which contain an accepting NFA state.

a,b

Character 2>
State |

{0} {0} {0, 1}
{0, 1} {0, 2} {0, 1}
{0, 2} {0} {0,1, 3}

{0, 1, 3} {0, 2, 4} {0, 1}
{0, 2, 4} {0} {0,1, 3}

The Subset Construction with e-transitions

* The process is similar, except for two details.
* The DFA table does not have a column for €.

 When you write a set in the DFA table, you must take the e-closure of the set.
This includes the set you write in the very first row (i.e., you must start with
the e-closure of the set containing the initial state.)

'»

Character 2>
State ¢/

L eo

{B} { } {A}
tr G (A}

The Subset Construction with e-transitions

* The process is similar, except for two details.
* The DFA table does not have a column for €.

* When you write a set in the DFA table, you must take the e-closure of the set.
This includes the set you write in the very first row (i.e., you must start with

the e-closure of the set containing the initial state.)
Character 2>
State sl/

Character =2
State ¢/

L eo

{B} { } {A}
tr G (A}

First row is e-closure({A})

The Subset Construction with e-transitions

* The process is similar, except for two details.
* The DFA table does not have a column for €.

* When you write a set in the DFA table, you must take the e-closure of the set.
This includes the set you write in the very first row (i.e., you must start with

the e-closure of the set containing the initial state.)
Character 2>
State sl/

Character =2
State ¢/

L eo

{B} { } {A}
tr G (A}

e-closure({A}) = {A} U {} ={A}

The Subset Construction with e-transitions

* The process is similar, except for two details.
* The DFA table does not have a column for €.

* When you write a set in the DFA table, you must take the e-closure of the set.
This includes the set you write in the very first row (i.e., you must start with

the e-closure of the set containing the initial state.)
Character 2>
State |
Character 2>
B,C
bl Il Il I) S

“ (8.C)

{B} { } {A}
tr G (A}

Is this correct?

The Subset Construction with e-transitions

* The process is similar, except for two details.
* The DFA table does not have a column for €.

* When you write a set in the DFA table, you must take the e-closure of the set.
This includes the set you write in the very first row (i.e., you must start with

the e-closure of the set containing the initial state.)
Character 2>
State |
LA R, =
State |

A RCE

{B} { } {A}
iy & (A}

Don't forget the e-closure!

The Subset Construction with e-transitions

* The process is similar, except for two details.
* The DFA table does not have a column for €.

* When you write a set in the DFA table, you must take the e-closure of the set.
This includes the set you write in the very first row (i.e., you must start with

the e-closure of the set containing the initial state.)
Character 2>
State |
Character 2>
{A,B,C}
'0’ - B

L eo

{B} { } {A}
tr G (A}

The Subset Construction with e-transitions

* The process is similar, except for two details.
* The DFA table does not have a column for «.

* When you write a set in the DFA table, you must take the e-closure of the set.
This includes the set you write in the very first row (i.e., you must start with

the e-closure of the set containing the initial state.)
Character 2>
State |
Character 2>
{A,B,C}
'0’ - BRI S -

{ABC}

{B} { }
tr G (A}

We'll count the empty set as a
row too.

The Subset Construction with e-transitions

* The process is similar, except for two details.
* The DFA table does not have a column for «.

* When you write a set in the DFA table, you must take the e-closure of the set.
This includes the set you write in the very first row (i.e., you must start with

the e-closure of the set containing the initial state.)
Character 2>
State |
N croacer> W [T
ate J 5.0}

{A,B,C}

{B} { }
tr G (A}

The Subset Construction with e-transitions

* The process is similar, except for two details.
* The DFA table does not have a column for «.

* When you write a set in the DFA table, you must take the e-closure of the set.
This includes the set you write in the very first row (i.e., you must start with

the e-closure of the set containing the initial state.)
Character 2>
State |
Character 2>
{A,B,C}
'0’ - BRI S

{ABC} {AB,C)

{B} { }
iy & (A}

Don't forget the e-closure.

The Subset Construction with e-transitions

* The process is similar, except for two details.
* The DFA table does not have a column for «.

* When you write a set in the DFA table, you must take the e-closure of the set.
This includes the set you write in the very first row (i.e., you must start with

the e-closure of the set containing the initial state.)
Character 2>
State |
Character 2>
{A,B,C}
'0’ - BRI S

{A B,C} {AB.Ct {A,B}

{B} { }
ity G (A}

Don't forget the e-closure.

The Subset Construction with e-transitions

* The process is similar, except for two details.
* The DFA table does not have a column for «.

* When you write a set in the DFA table, you must take the e-closure of the set.
This includes the set you write in the very first row (i.e., you must start with

the e-closure of the set containing the initial state.)
Character 2>
State |
Character 2>
{A,B,C}
'0’ - BRI S

{A B,C} {AB,C} {A,B} {A,C}

{B} { }
iy & (A}

Don't forget the e-closure.

The Subset Construction with e-transitions

* The process is similar, except for two details.
* The DFA table does not have a column for «.

* When you write a set in the DFA table, you must take the e-closure of the set.
This includes the set you write in the very first row (i.e., you must start with

the e-closure of the set containing the initial state.)
Character 2>
State |

BT

{A B,C} {AB.Ct {A,B} {A,C}

——
=
_

Character =2
State ¢/

“ (®.0)

t} t}

The Subset Construction with e-transitions

* The process is similar, except for two details.
* The DFA table does not have a column for «.

* When you write a set in the DFA table, you must take the e-closure of the set.
This includes the set you write in the very first row (i.e., you must start with

the e-closure of the set containing the initial state.)
Character 2>
State |

BT

{A B,C} {AB.Ct {A,B} {A,C}

{B} { } {A,B} {AB,C} {A,B} {}
_ C
s

Character =2
State ¢/

“ (®.0)

t} t}

The Subset Construction with e-transitions

* The process is similar, except for two details.
* The DFA table does not have a column for «.

* When you write a set in the DFA table, you must take the e-closure of the set.
This includes the set you write in the very first row (i.e., you must start with

the e-closure of the set containing the initial state.)
Character 2>
State sl/

{A B C} {A,B,C} {A,B} {A,C}

{B} { } B {AB} {
{} {c} ABC {3 {A,C}

t} t}

Character =2
State ¢/

“ (8.C)

The Subset Construction with e-transitions

* You don't really need to draw the state for the empty set row (just
leave out the corresponding transitions), so you technically don't
need to add it to the table either if you don't want to.

Character 2>
b

wech {} ()
nBC {AB} {AC}
{ABC} {A,B} {}

asc {} {AC
{} i} 1}

The Subset Construction with e-transitions

* There is an algorithm (not covered) to remove e-transitions from an
NFA. Sometimes this is less annoying than doing the subset
construction directly with e-transitions.

ABc {} {}
{ABCI {A,B} {AC}
{ABcC {AB} {}
agct {} {AC
{} {} {}

Character 2
b State |

Downsides

* We can simulate any NFA using a DFA whose states represent sets of
NFA states, so DFAs have the same "recognition power" as NFAs.

» But if the NFA has n states, there are 2" distinct sets of NFA states.

 Sometimes the DFA requires all 2" possible states, meaning the DFA
could require exponentially more space!

* Try the subset construction yourself with this innocent-looking NFA.

b,c

Consequences

* If every regular language can be recognized by a DFA, then DFAs can
specify any language we can specify with a regular expression.

* Regular expressions are sometimes easier or more concise, like the
example of (a|b)*baba, but DFAs have the same "power".

* A DFA is essentially a simple computer with finite memory:
* The states can be thought of as "possible states of the computer's memory".
* Reading a character updates memory in some way.

* Instead of a monitor showing different images based on the contents of
memory, a DFA can only say whether or not the memory state is "accepting".

 All regular languages can be recognized using finite memory!

Kleene's Theorem

* It is also true that every language recognized by a DFA is regular.
e This is a little unintuitive. Proved in CS 360 or CS 365.

* Kleene's Theorem is the combined statement that a language is
regular if and only if it is recognized by a DFA.

A DFA is equivalent in language recognition "power" to a computer
(more formally, a Turing machine) with finite memory.

* Sort of intuitive, but tricky to prove. Proved in CS 462.

* This leads to the fact that a language is regular if and only if it has
recognition program that uses a fixed constant amount of memory!

Languages That Need Infinite Memory

* What kinds of languages can only be recognized with an infinite
amount of memory?

* Most high-level programming languages!

if (condition) {
if (condition) {

—_
}

* Unless there is a hardcoded limit on nesting depth, to track whether
the curly braces { } match up, we need to count arbitrarily high.

* Real computers have finite memory, so there's always a limit in practice.

Finite Memory and Nesting

e Because all real-world computers have a finite amount of memory,
they can technically only recognize regular languages.

* But regular languages are not always the best model to use.

 Example: Write a program that reads a string of a's and b's and
determines whether the number of a's and b's are equal.
* This problem is impossible to solve. It requires infinite memory.

* Most people would be happy with a solution that counts the a's and b's using
e.g. a 32-bit int variable. But, this only solves the problem for some strings.

 Also, a DFA representation of this solution would need around 232 states to
keep track of all the different counter values!!

Beyond Regular Languages

* Everything in the real world is technically regular, but some problems
are cumbersome to solve with regular language methods like DFAs.

* In particular, for anything involving nested structures, which are
extremely common in high-level programming languages, a DFA
requires at least n states to handle n levels of nesting depth.

* Regular expressions have a similar problem.

* We typically want a very high limit on nesting depth that no practical
program will reach, so DFAs and regular expressions are cumbersome
for specifying high-level languages.

* Once you get beyond the scanning/tokenization phase, at least.

Conclusions

* We've seen that DFAs and regular languages are useful for specifying
valid tokens and for scanning a string into tokens.

* In our assembler, the next phase was parsing, which was fairly
straightforward and just involved reading the tokens in sequence.

* Parsing for high-level languages, which do not have a simple line-
based structure, is an extremely complicated problem, which regular
languages are ill-suited for due to the presence of nested structures.

* Next, we'll study a new, larger class of languages called context-free
languages that are more suitable for describing the syntax of high-
level programming languages.

	Default Section
	Slide 1: From Regular Languages to Finite Automata
	Slide 2: Regular Languages
	Slide 3: From Regular Languages to NFAs
	Slide 4: From Regular Languages to NFAs
	Slide 5: Union of Regular Languages via NFAs
	Slide 6: Union of Regular Languages via NFAs
	Slide 7: Concatenation of Regular Languages via NFAs
	Slide 8: Concatenation of Regular Languages via NFAs
	Slide 9: Kleene Star of Regular Languages via NFAs
	Slide 10: Kleene Star of Regular Languages via NFAs
	Slide 11: Examples
	Slide 12: Examples
	Slide 13: Examples
	Slide 14: From NFAs to DFAs
	Slide 15: NFA Transition Tables
	Slide 16: NFA Transition Tables
	Slide 17: The Subset Construction
	Slide 18: The Subset Construction
	Slide 19: The Subset Construction
	Slide 20: The Subset Construction
	Slide 21: The Subset Construction
	Slide 22: The Subset Construction
	Slide 23: The Subset Construction
	Slide 24: The Subset Construction
	Slide 25: The Subset Construction
	Slide 26: The Subset Construction
	Slide 27: The Subset Construction with ε-transitions
	Slide 28: The Subset Construction with ε-transitions
	Slide 29: The Subset Construction with ε-transitions
	Slide 30: The Subset Construction with ε-transitions
	Slide 31: The Subset Construction with ε-transitions
	Slide 32: The Subset Construction with ε-transitions
	Slide 33: The Subset Construction with ε-transitions
	Slide 34: The Subset Construction with ε-transitions
	Slide 35: The Subset Construction with ε-transitions
	Slide 36: The Subset Construction with ε-transitions
	Slide 37: The Subset Construction with ε-transitions
	Slide 38: The Subset Construction with ε-transitions
	Slide 39: The Subset Construction with ε-transitions
	Slide 40: The Subset Construction with ε-transitions
	Slide 41: The Subset Construction with ε-transitions
	Slide 42: The Subset Construction with ε-transitions
	Slide 43: Downsides
	Slide 44: Consequences
	Slide 45: Kleene's Theorem
	Slide 46: Languages That Need Infinite Memory
	Slide 47: Finite Memory and Nesting
	Slide 48: Beyond Regular Languages
	Slide 49: Conclusions

