Towards High-Level Languages:
Formal Language Theory

High-Level Languages

* Programs are represented using low-level machine language, which is
hard for humans to read and write.

* Assembly language is more convenient, but still low-level, and can be
difficult to write and understand.

* Humans sought to develop higher-level languages that make it easier
to express what we want our programs to do.

« Common goals of early high level languages were:

* To be able to write mathematical formulas more naturally. (FORTRAN)
* To be able to write programs using natural languages like English. (COBOL)

FORTRAN Example

A DO Nest Given an N x N square matrix A, to find those off-diagonal elements which are
with Exit symmetric and to write them on binary tape. '
and Return
FOR z
The FORTRAN O < ne | £
comment | 2 FORTRAN STATEMENT FICKTION
/ / \umeer | 8
Automatic Coding e uln o

REWIND 3

DO 3 1 =1,N

System for the IBM

/704 EDPM:
IF(ACL,J)-A(J, 1)) 3,20,3

END FILE 3
Reference Manual

(1956)

20 | | IF(I~J) 21,3,21

21 WRITE TAPE 3,1,J, AdI,J)
GO TO 3

B
!
I
i
Programmer's ; 3 | | conTinue
'1
il,,
|
l
|
l
!

COBOL Example

Here is the complete COBOL program to calculate the answer ““2’’ plus

“3.”

COBOL PROGRAM SHEET

CObO/ Simpll:fiEd [;::::::"" l;;:u'" L c:;":':: CALL EXT lm.. I osuv:ls;‘ (D RARNES l'“n = “';.“:'J:,‘... o

ousen. |c|PrinT ON [] SEQ, DECK [| INTERPRET | st] Sw N PAPER SIZE PARTS

(1968) by Mario Tl T IeT T oL [Tl [T fol TTEl 1 Rl [TRl LTl [T J[TT 1 [T T [bl TTR T e TT Rt ettt

010010 .DEN'rL'AFL'CAT'wNAADllIV|sl'l°Nl.jjllllAlLllLLllJAJJAlJl e it L e T

Lot i s B

V Farina 0‘1‘0,0,2,0 pRaGRJAi "'.D*'. MAPLE1‘1 el |

02,0010 [ENV,I ‘R‘oﬁn&umJoluv‘n.s.u,mn = i N, e A
0,2,0020 [CONFI GURAT,ION SECTIPN., , |

B OB O S U RCE - CH NPT ER . GE =635 0 et h o 4 b boa v g e by o i b T
0200 AN BB IECT -CEMBUTER ., BE =638 iy e b iy e e B

-

v L oy T T ey v O T T TN el el S e ML RS WO MY L T T e e /N W ST Y e AT

e e e o S W [LY ey e e B B e e] I s e e R L T e Tl e e e e L e

030,010 ATAlplws‘lM.“..,..1_5.“““...‘..A“.....,#_.‘.““.““...
035,020 WiSRKILNG- ST BRIAGE, SECTIGNoNIL .\, ialil s o il Ty o
R R R IR e, A L N e e e
03,0040 IC.BNSTANT SECT VN, 0 IGRE, a a ee T T,

03,0050!| 17,7, , 'FIRST-VALUE, PICTURE ,9,_UVALUE a2 ey s e ROl
030,060 17‘ USECJ lND‘ LVALUIE‘ PICTURE‘ .9. N IVALUEL AILS‘ e e T 1 A i i G ST v Y s o o T I a7 1y
040010 CEDURE DI'VISI
04,0020 CALCLULAT'I ON.. COMP ‘u,ra, .m‘sjwem P AR S, . I L U AR e NG SR e S A b s
(&4&0@50 'SEC¢N.D. VIALUE.., DI ‘Z-‘.-.PLM{l SANIS WIER G L STTA R R DN 2 0 L R 0 8 S N s

04,0040 END, PROGRAM + v vy 000y

1
)
'
) e Ul 3 Llllllllllll‘lllllIIAAAI'J‘LALJAAIIlLAJlJAlllAlllJAAAAllAllllAlLll
1

L e 0 U e RS LR WNAT S 0 Ve Ly T AL 20 T LS PR et | T 0 B e PR e Dot] L T U o Al

The Grammar of MIPS Assembly

* The "grammar" of MIPS assembly is simple to process line-by-line.

e Each line starts with zero or more label definitions.
- Read until a non-label token is found.

* Then there is optionally an instruction.
- Match against one of six possible syntax patterns for instructions.

* Then there is optionally a comment.
- Check for a semicolon, if found, skip until the end of the line.

* The only difficult part is matching label uses with their definitions.
— Solved by doing two passes and building a symbol table.

 Math and natural language are both significantly more complex in
structure than assembly, and thus, so are high-level languages.

The Grammar of High-Level Languages

if (say hello) {
printf("Hello world!\n");
} else {
if (a+b*(c+d) == 0) {
printf("Yay!\n");
} else {
printf("I'm sad!!! The number was %d\n", a+b*(c+d));
}

}

Need to match braces and parentheses (possibly across different
lines!), deal with nesting, order of arithmetic operations, distinguish
between "if(condition)" and "procedure(argl, arg2, ...)", and more!

Formal Language Theory

* It is a mathematical approach to describing and studying languages.

* A lot of early development was by linguists who were looking to
formalize the structure of natural languages.

 Computer scientists found the same ideas useful for formalizing
programming languages.

* From the early days, there was an interest in finding connections
between models of grammar and models of computation.
* A formal grammar specifies rules that can be applied to "generate" sentences.

* The idea was to find models of computation that have the same "generative
power" as a certain kind of formal grammar.

"Thus, remarkably, the same important ideas emerged independently
for the automatic translation of both natural and artificial languages:

* Separating syntax and semantics.

* Using a generative grammar to specify the set of all and only legal
sentences (programs).

* Analyzing the syntax of the sentence (program) and then using the
analysis to drive the translation (compilation)."

Formal Languages: Origins and Directions (S. A. Greibach, 1981)

Basic Definitions: Alphabets

* An alphabet is a finite set. Its elements are called symbols.

> ={a, b, c}is an alphabet containing 3 symbols.
* Up until now, the symbols in our strings have been single characters...

e 7 ={cat, dog, mouse, iguana} is an alphabet containing 4 symbols.
* Individual letters like "c" and "a" are not symbols in this alphabet!

*={(x,y):0<x,y<9,x €Z}is an alphabet containing 100 symbols.
Each symbol is an ordered pair of integers with values from 0 to 9.

* An alphabet typically cannot be infinite. For example, the set of all
integers is not an alphabet (in this course).

Basic Definitions: Strings (Words)

* A string over an alphabet % is a sequence of symbols from 2.
 Strings are frequently called "words" in formal language theory, but we
already use this term for machine-architecture words.

* The length of a string x is denoted | x| and is the total number of
symbols in the string (including repeats).

* Examples:
e x =cabba is a string over 2 = {a,b,c}. We have |x]| =5.

* x = cat dog cat dog iguana mouse is a string over Z = {cat, dog, iguana,
mouse}. We have |x| = 6.

* A sequence of zero symbols is allowed. This is called the empty string
and it is denoted by the Greek letter € (epsilon). We have |g| = 0.

Aside about String Notation

* There is no single universal notation for "sequences" in mathematics
because the cleanest notation varies wildly depending on context.

* For strings, we often just write them out with no spacing.

e catis a string over the alphabet {3, c, t}. It has length 3.
e 11110001 is a string over the alphabet {0,1}. It has length 8.

e But if the symbols consist of multiple characters, we might put spaces
between each symbol of a string for readability.

* ID REG COMMA REG is a string over {ID, REG, COMMA}. It has length 4.

* Pay attention to what the alphabet is.
e jr 531 is a string over the ASCII alphabet. It has length 6.

Basic Definitions: Languages

* A language over an alphabet % is a set of strings over 2.

e Equivalently, a language over % is a subset of Z*.
* The Kleene star of an alphabet is the set of all strings over the alphabet!

* Strings in a formal language don't necessarily have to be "meaningful”
the way strings in a natural language are.

* "The set of grammatically correct English sentences" is a language, assuming
you can agree on what "grammatically correct” means.

* The set {sfsfdsdf, fghghfgh, eivlyS} is also a language.

* The "interesting" classes of formal languages are restricted classes
that have more structure than just "a set".

Extending Regular Languages with Recursion

* What if we could use "recursion" in regular expressions?
* Forexample: Let L be described by the "recursive regular expression" alb.

* We can think of this as an equation L = alb. Is there a language L that
makes this equation true?

* Yes, the language {a"b" : n >0 } (where n is an integer).

* The notation a" means aa...a where there are n occurrences of a.
 So this language contains words with n a's followed by n b's.

* Can we recognize this language with a DFA? Or describe it with a
(non-recursive) regular expression?

The Need for Non-Regular Languages

* It is impossible to construct a DFA for {a"b":n >0 }.
* Suppose you had such a DFA, and it had m states total.

* Run the strings a, a2, a3, ... a™! through the DFA and write down the
states you get. Call them qy, 95, ... Qa1

* There are only m states, so two of these are equal. Say q; = g; but i # .

* Since a'b' is accepted, following the sequence of transitions on b' from
d; must lead to an accepting state. So this must be true for g; too.

* But alb' is not accepted since i # j! This is a contradiction, so there is
no such DFA!

The Need for Non-Regular Languages

* Does it matter that we can't handle this weird {a"b":n >0}
language? What about something more practical?

* Practical languages are harder. Consider the language of sequences of
balanced parentheses (left brackets matching with right brackets).

* We can make the same argument we just did to show there is no DFA
for this language using strings like ((((())))).

 But this language also contains more complex strings like (()())()((())).

* Both {a"b": n >0 } and the language of sequences of balanced
parentheses are examples of context-free languages.

Context-Free Languages and Grammars

* Context-free languages are conceptually like "regular languages with
recursion”, but they are usually defined in terms of formal grammars.

* A formal grammar has four elements:

* An alphabet called the terminal alphabet, which is the alphabet of the language the
grammar is describing.

* A disjoint alphabet called the nonterminal alphabet, which can be thought of as a set
of "meta-symbols" that appear in the grammar but not the language.

* A start symbol which is one of the nonterminals (meta-symbols).

* A set of production rules, which are "string rewriting rules", i.e., they tell you that it is
valid to replace certain strings of symbols with certain other strings.

* |dea: A stringis in the language if you can start with the start symbol and
repeatedly apply production rules to eventually obtain the string.

Production Rules

* A production rule, in its most general form, looks like x - y where x is
a hon-empty string and y is a string. This says x can be rewritten asy.

* In an "unrestricted" formal grammar, all productions are permitted.
The only restriction is that the left hand side is not an empty string.

* In a context-free grammar, the left hand side of each production rule
must be a single nonterminal symbol.
* We can only rewrite "meta-symbols", not actual symbols from the language.
* "Terminal" refers to the fact that terminal symbols can't be rewritten.

* Also, we can only rewrite one of these symbols at a time. No surrounding
context is allowed in context-free production rules.

Example:{a"b":n>0}

* Terminal symbols: {a, b}
* Nonterminal symbols: {S} (only one is needed)
e Start symbol: S

 Production Rules:

1. S—>aSb
2. S—> ¢

* As an example, we can produce the string aaabbb by applying rule 1
three times, then rule 2.

* S = aSb = aaSbb = aaaSbbb = aaabbb

Example: Balanced Sequences of Parentheses

e That is, strings over the alphabet { (,) } where every left parenthesis
"(" has a matching right parenthesis ")".

* These rules are not sufficient:

1. S—=>(S)
2. S—>¢

* This doesn't include things like ()().

* Adding this third rule is enough (but it's not too easy to prove):
3. S->5S5

* These two rules also work: S - (S)S and S - «.

Example: a(a|b)*a(a|b)*

* This is a simple example of a language that requires two distinct
nonterminal symbols to describe.

e Source: "Nonterminal Complexity of Some Operations on Context-Free
Languages", Dassow & Stiebe, 2008.

* Terminal symbols: {a, b}

* Nonterminal symbols: {S, B}

e Start symbol: S

* Production rules: S - aBaB, B> aB, B> bB, B—> ¢

Notation & Conventions

* Formally, a context-free grammar is a 4-tuple (N, 2, S, P), where N is
the nonterminal alphabet, Z is the terminal alphabet, Sis the start
symbol, and P is the set of production rules.

* In practice, we rarely write out all these things separately and instead
we use the following convention:
A grammar is simply written as a list of production rules.

* The symbol on the left-hand-side of the first rule in the list is assumed to be
the start symbol.

* If a symbol never appears on the left-hand-side of a rule, it's a terminal
symbol. All other symbols are nonterminal.

Notation & Conventions

* To shorten the description of grammars, we use notation that /looks
similar to regular expressions but means something different.

* We will often use the | symbol to combine multiple production rules
with the same left hand side.

 Example: Instead of S—>aBaB, B—>aB, B> bB, B> ¢
We could write S —> aBaB, B> aB | bB | €

* It is not valid to put a regular expression on the right hand side of a
production rule. You cannot use star, brackets for grouping, etc.

* This notation is just shorthand for "there are multiple production
rules that all have the same right hand side".

Notation & Conventions

* To make things easier to read at a glance, we also have conventions for
which kinds of letters correspond to which kinds of objects.

* These aren't strict rules and may be broken sometimes.

* Lowercase letters from the start of the English alphabet (a, b, c, ...) are
usually terminals, elements of 2.

* Lowercase letters from the end of the English alphabet (..., w, X, y, z) are
usually strings of terminals, elements of Z*.

e Uppercase English letters (A, B, C, ..., X, Y, Z) are usually nonterminals,
elements of N.

* Greek letters (a, B, y) are usually strings that may mix terminals and
nonterminals, that is, elements of (N U Z)*.

Notation & Conventions: Examples

* "A context-free production rule has the general form A - a."

 Itis implicit that A is a nonterminal, and a is a sequence of symbols that could
possibly mix terminals and nonterminals.

* Consider this grammar:
X—>aXa|bXb|Y
Y>al|b]e

* It is implicit that the start symbol is X.

e Since a and b don't appear on the left hand side of any rule, they are
terminals. Xand Y are nonterminals.

* There are six production rules in this grammar, not two.

Derivations

* A derivation is a sequence of production rules that can be applied to
the start symbol of a grammar to produce a string.

* We write derivations by starting with the start symbol, and showing
how string evolves with each rule application.

* Example: Find a derivation of (()()) in S = (S)S| «.
S = (S)S = ((S)S)S = (()S)S = (()(S)S)S = (()()S)S = (()())S = (()()

* In the above example, we always rewrote the leftmost nonterminal
symbol. Here is another valid derivation:

5= (3)S = (S) = ((S)S) = ((S)(S)S) = ((S)S)) = (()(S)) = (()()

The Language of a Grammar

* A derivation in a context-free grammar ends once all nonterminals
are replaced with terminals.

e Terminals cannot be replaced or changed, since only nonterminals can appear
on the left hand side of a production rule.

* The language generated by a context-free grammar, or just the
language of the grammar for short, is the set of all strings of
terminals that can be produced as the final result of a derivation.

* A formal language is a context-free language if it is the language of
some context-free grammar.

	Slide 1: Towards High-Level Languages: Formal Language Theory
	Slide 2: High-Level Languages
	Slide 3: FORTRAN Example
	Slide 4: COBOL Example
	Slide 5: The Grammar of MIPS Assembly
	Slide 6: The Grammar of High-Level Languages
	Slide 7: Formal Language Theory
	Slide 8
	Slide 9: Basic Definitions: Alphabets
	Slide 10: Basic Definitions: Strings (Words)
	Slide 11: Aside about String Notation
	Slide 12: Basic Definitions: Languages
	Slide 13: Extending Regular Languages with Recursion
	Slide 14: The Need for Non-Regular Languages
	Slide 15: The Need for Non-Regular Languages
	Slide 16: Context-Free Languages and Grammars
	Slide 17: Production Rules
	Slide 18: Example: { anbn : n ≥ 0 }
	Slide 19: Example: Balanced Sequences of Parentheses
	Slide 20: Example: a(a|b)*a(a|b)*
	Slide 21: Notation & Conventions
	Slide 22: Notation & Conventions
	Slide 23: Notation & Conventions
	Slide 24: Notation & Conventions: Examples
	Slide 25: Derivations
	Slide 26: The Language of a Grammar

