
Towards High-Level Languages: 
Formal Language Theory



High-Level Languages

• Programs are represented using low-level machine language, which is 
hard for humans to read and write.

• Assembly language is more convenient, but still low-level, and can be 
difficult to write and understand. 

• Humans sought to develop higher-level languages that make it easier 
to express what we want our programs to do.

• Common goals of early high level languages were:
• To be able to write mathematical formulas more naturally. (FORTRAN)

• To be able to write programs using natural languages like English. (COBOL)



FORTRAN Example

The FORTRAN 
Automatic Coding 
System for the IBM 
704 EDPM: 
Programmer's 
Reference Manual 
(1956)



COBOL Example

Cobol Simplified 
(1968) by Mario 
V. Farina



The Grammar of MIPS Assembly

• The "grammar" of MIPS assembly is simple to process line-by-line.
• Each line starts with zero or more label definitions. 
→ Read until a non-label token is found.

• Then there is optionally an instruction.
→ Match against one of six possible syntax patterns for instructions.

• Then there is optionally a comment.
→ Check for a semicolon, if found, skip until the end of the line. 

• The only difficult part is matching label uses with their definitions.
→ Solved by doing two passes and building a symbol table.

• Math and natural language are both significantly more complex in 
structure than assembly, and thus, so are high-level languages.



The Grammar of High-Level Languages

if (say_hello) {
     printf("Hello world!\n");
} else {
  if (a+b*(c+d) == 0) {
     printf("Yay!\n");
  } else {
     printf("I'm sad!!! The number was %d\n", a+b*(c+d));
  }
}

Need to match braces and parentheses (possibly across different 
lines!), deal with nesting, order of arithmetic operations, distinguish 
between "if(condition)" and "procedure(arg1, arg2, …)", and more!



Formal Language Theory

• It is a mathematical approach to describing and studying languages.

• A lot of early development was by linguists who were looking to 
formalize the structure of natural languages.

• Computer scientists found the same ideas useful for formalizing 
programming languages.

• From the early days, there was an interest in finding connections 
between models of grammar and models of computation.
• A formal grammar specifies rules that can be applied to "generate" sentences.

• The idea was to find models of computation that have the same "generative 
power" as a certain kind of formal grammar.



"Thus, remarkably, the same important ideas emerged independently 
for the automatic translation of both natural and artificial languages:

• Separating syntax and semantics.

• Using a generative grammar to specify the set of all and only legal 
sentences (programs).

• Analyzing the syntax of the sentence (program) and then using the 
analysis to drive the translation (compilation)."

Formal Languages: Origins and Directions (S. A. Greibach, 1981)



Basic Definitions: Alphabets

• An alphabet is a finite set. Its elements are called symbols.

• Σ = {a, b, c} is an alphabet containing 3 symbols.
• Up until now, the symbols in our strings have been single characters…

• Σ = {cat, dog, mouse, iguana} is an alphabet containing 4 symbols.
• Individual letters like "c" and "a" are not symbols in this alphabet!

• Σ = { (x, y) : 0 ≤ x, y ≤ 9, x ∈ ℤ } is an alphabet containing 100 symbols. 
Each symbol is an ordered pair of integers with values from 0 to 9.

• An alphabet typically cannot be infinite. For example, the set of all 
integers is not an alphabet (in this course).



Basic Definitions: Strings (Words)

• A string over an alphabet Σ is a sequence of symbols from Σ.
• Strings are frequently called "words" in formal language theory, but we 

already use this term for machine-architecture words.

• The length of a string x is denoted |x| and is the total number of 
symbols in the string (including repeats).

• Examples:
• x = cabba is a string over Σ = {a,b,c}. We have |x| = 5.
• x = cat dog cat dog iguana mouse is a string over Σ = {cat, dog, iguana, 

mouse}. We have |x| = 6.

• A sequence of zero symbols is allowed. This is called the empty string 
and it is denoted by the Greek letter ε (epsilon). We have |ε| = 0.



Aside about String Notation

• There is no single universal notation for "sequences" in mathematics 
because the cleanest notation varies wildly depending on context. 

• For strings, we often just write them out with no spacing.
• cat is a string over the alphabet {a, c, t}. It has length 3.

• 11110001 is a string over the alphabet {0,1}. It has length 8.

• But if the symbols consist of multiple characters, we might put spaces 
between each symbol of a string for readability.
• ID REG COMMA REG is a string over {ID, REG, COMMA}. It has length 4.

• Pay attention to what the alphabet is.
• jr $31 is a string over the ASCII alphabet. It has length 6.



Basic Definitions: Languages

• A language over an alphabet Σ is a set of strings over Σ.

• Equivalently, a language over Σ is a subset of Σ*.
• The Kleene star of an alphabet is the set of all strings over the alphabet!

• Strings in a formal language don't necessarily have to be "meaningful" 
the way strings in a natural language are.
• "The set of grammatically correct English sentences" is a language, assuming 

you can agree on what "grammatically correct" means.

• The set {sfsfdsdf, fghghfgh, eivlyS} is also a language.

• The "interesting" classes of formal languages are restricted classes 
that have more structure than just "a set".



Extending Regular Languages with Recursion

• What if we could use "recursion" in regular expressions?
• For example: Let L be described by the "recursive regular expression" aLb.

• We can think of this as an equation L = aLb. Is there a language L that 
makes this equation true?

• Yes, the language { anbn : n ≥ 0 } (where n is an integer).
• The notation an means aa…a where there are n occurrences of a.

• So this language contains words with n a's followed by n b's.

• Can we recognize this language with a DFA? Or describe it with a 
(non-recursive) regular expression?



The Need for Non-Regular Languages

• It is impossible to construct a DFA for { anbn : n ≥ 0 }.

• Suppose you had such a DFA, and it had m states total. 

• Run the strings a, a2, a3, … am+1 through the DFA and write down the 
states you get. Call them q1, q2, … qm+1.

• There are only m states, so two of these are equal. Say qi = qj
 but i ≠ j.

• Since aibi is accepted, following the sequence of transitions on bi from 
qi must lead to an accepting state. So this must be true for qj too.

• But ajbi is not accepted since i ≠ j! This is a contradiction, so there is 
no such DFA!



The Need for Non-Regular Languages

• Does it matter that we can't handle this weird { anbn : n ≥ 0 } 
language? What about something more practical?

• Practical languages are harder. Consider the language of sequences of 
balanced parentheses (left brackets matching with right brackets).

• We can make the same argument we just did to show there is no DFA 
for this language using strings like ((((())))).

• But this language also contains more complex strings like (()())()((())).

• Both { anbn : n ≥ 0 } and the language of sequences of balanced 
parentheses are examples of context-free languages.



Context-Free Languages and Grammars

• Context-free languages are conceptually like "regular languages with 
recursion", but they are usually defined in terms of formal grammars.

• A formal grammar has four elements:
• An alphabet called the terminal alphabet, which is the alphabet of the language the 

grammar is describing.
• A disjoint alphabet called the nonterminal alphabet, which can be thought of as a set 

of "meta-symbols" that appear in the grammar but not the language.
• A start symbol which is one of the nonterminals (meta-symbols).
• A set of production rules, which are "string rewriting rules", i.e., they tell you that it is 

valid to replace certain strings of symbols with certain other strings.

• Idea: A string is in the language if you can start with the start symbol and 
repeatedly apply production rules to eventually obtain the string.



Production Rules

• A production rule, in its most general form, looks like x → y where x is 
a non-empty string and y is a string. This says x can be rewritten as y.

• In an "unrestricted" formal grammar, all productions are permitted. 
The only restriction is that the left hand side is not an empty string.

• In a context-free grammar, the left hand side of each production rule 
must be a single nonterminal symbol. 
• We can only rewrite "meta-symbols", not actual symbols from the language.

• "Terminal" refers to the fact that terminal symbols can't be rewritten.

• Also, we can only rewrite one of these symbols at a time. No surrounding 
context is allowed in context-free production rules.



Example: { anbn : n ≥ 0 } 

• Terminal symbols: {a, b}

• Nonterminal symbols: {S} (only one is needed)

• Start symbol: S

• Production Rules:
1. S → aSb

2. S → ε

• As an example, we can produce the string aaabbb by applying rule 1 
three times, then rule 2. 

• S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb



Example: Balanced Sequences of Parentheses

• That is, strings over the alphabet { ( , ) } where every left parenthesis 
"(" has a matching right parenthesis ")".

• These rules are not sufficient:
1. S → (S)

2. S → ε

• This doesn't include things like ()().

• Adding this third rule is enough (but it's not too easy to prove):
3. S → SS

• These two rules also work: S → (S)S and S → ε.



Example: a(a|b)*a(a|b)*

• This is a simple example of a language that requires two distinct 
nonterminal symbols to describe.
• Source: "Nonterminal Complexity of Some Operations on Context-Free 

Languages", Dassow & Stiebe, 2008.

• Terminal symbols: {a, b}

• Nonterminal symbols: {S, B}

• Start symbol: S

• Production rules: S → aBaB,  B → aB,  B → bB,  B → ε



Notation & Conventions

• Formally, a context-free grammar is a 4-tuple (N, Σ, S, P), where N is 
the nonterminal alphabet, Σ is the terminal alphabet, S is the start 
symbol, and P is the set of production rules.

• In practice, we rarely write out all these things separately and instead 
we use the following convention:
• A grammar is simply written as a list of production rules.

• The symbol on the left-hand-side of the first rule in the list is assumed to be 
the start symbol.

• If a symbol never appears on the left-hand-side of a rule, it's a terminal 
symbol. All other symbols are nonterminal.



Notation & Conventions

• To shorten the description of grammars, we use notation that looks 
similar to regular expressions but means something different.

• We will often use the | symbol to combine multiple production rules 
with the same left hand side.

• Example: Instead of S → aBaB,  B → aB,  B → bB,  B → ε
 We could write S → aBaB,  B → aB | bB | ε

• It is not valid to put a regular expression on the right hand side of a 
production rule. You cannot use star, brackets for grouping, etc.

• This notation is just shorthand for "there are multiple production 
rules that all have the same right hand side".



Notation & Conventions

• To make things easier to read at a glance, we also have conventions for 
which kinds of letters correspond to which kinds of objects. 

• These aren't strict rules and may be broken sometimes.

• Lowercase letters from the start of the English alphabet (a, b, c, …) are 
usually terminals, elements of Σ.

• Lowercase letters from the end of the English alphabet (…, w, x, y, z) are 
usually strings of terminals, elements of Σ*.

• Uppercase English letters (A, B, C, …, X, Y, Z) are usually nonterminals, 
elements of N.

• Greek letters (α, β, γ) are usually strings that may mix terminals and 
nonterminals, that is, elements of (N ∪ Σ)*.



Notation & Conventions: Examples

• "A context-free production rule has the general form A → α."
• It is implicit that A is a nonterminal, and α is a sequence of symbols that could 

possibly mix terminals and nonterminals.

• Consider this grammar:
X → aXa | bXb | Y
Y → a | b | ε

• It is implicit that the start symbol is X.

• Since a and b don't appear on the left hand side of any rule, they are 
terminals. X and Y are nonterminals.

• There are six production rules in this grammar, not two.



Derivations

• A derivation is a sequence of production rules that can be applied to 
the start symbol of a grammar to produce a string. 

• We write derivations by starting with the start symbol, and showing 
how string evolves with each rule application.

• Example: Find a derivation of (()()) in S → (S)S| ε.

S ⇒ (S)S ⇒ ((S)S)S ⇒ (()S)S ⇒ (()(S)S)S ⇒ (()()S)S ⇒ (()())S ⇒ (()())

• In the above example, we always rewrote the leftmost nonterminal 
symbol. Here is another valid derivation:

S ⇒ (S)S ⇒ (S) ⇒ ((S)S) ⇒ ((S)(S)S) ⇒ ((S)(S)) ⇒ (()(S)) ⇒ (()())



The Language of a Grammar

• A derivation in a context-free grammar ends once all nonterminals 
are replaced with terminals.
• Terminals cannot be replaced or changed, since only nonterminals can appear 

on the left hand side of a production rule.

• The language generated by a context-free grammar, or just the 
language of the grammar for short, is the set of all strings of 
terminals that can be produced as the final result of a derivation.

• A formal language is a context-free language if it is the language of 
some context-free grammar.


	Slide 1: Towards High-Level Languages: Formal Language Theory
	Slide 2: High-Level Languages
	Slide 3: FORTRAN Example
	Slide 4: COBOL Example
	Slide 5: The Grammar of MIPS Assembly
	Slide 6: The Grammar of High-Level Languages
	Slide 7: Formal Language Theory
	Slide 8
	Slide 9: Basic Definitions: Alphabets
	Slide 10: Basic Definitions: Strings (Words)
	Slide 11: Aside about String Notation
	Slide 12: Basic Definitions: Languages
	Slide 13: Extending Regular Languages with Recursion
	Slide 14: The Need for Non-Regular Languages
	Slide 15: The Need for Non-Regular Languages
	Slide 16: Context-Free Languages and Grammars
	Slide 17: Production Rules
	Slide 18: Example: { anbn : n ≥ 0 } 
	Slide 19: Example: Balanced Sequences of Parentheses
	Slide 20: Example: a(a|b)*a(a|b)*
	Slide 21: Notation & Conventions
	Slide 22: Notation & Conventions
	Slide 23: Notation & Conventions
	Slide 24: Notation & Conventions: Examples
	Slide 25: Derivations
	Slide 26: The Language of a Grammar

