Towards High-Level Languages: Formal Language Theory

High-Level Languages

- Programs are represented using low-level machine language, which is hard for humans to read and write.
- Assembly language is more convenient, but still low-level, and can be difficult to write and understand.
- Humans sought to develop higher-level languages that make it easier to express what we want our programs to do.
- Common goals of early high level languages were:
- To be able to write mathematical formulas more naturally. (FORTRAN)
- To be able to write programs using natural languages like English. (COBOL)

FORTRAN Example

A DO Nest
with Exit and Return

Given an $\mathrm{N} \times \mathrm{N}$ square matrix A , to find those off-diagonal elements which are symmetric and to write them on binary tape.

The FORTRAN
Automatic Coding System for the IBM 704 EDPM:
Programmer's Reference Manual (1956)

COBOL Example

Cobol Simplified (1968) by Mario V. Farina

Here is the complete COBOL program to calculate the answer " 2 " plus " 3 ."

The Grammar of MIPS Assembly

- The "grammar" of MIPS assembly is simple to process line-by-line.
- Each line starts with zero or more label definitions.
\rightarrow Read until a non-label token is found.
- Then there is optionally an instruction.
\rightarrow Match against one of six possible syntax patterns for instructions.
- Then there is optionally a comment.
\rightarrow Check for a semicolon, if found, skip until the end of the line.
- The only difficult part is matching label uses with their definitions.
\rightarrow Solved by doing two passes and building a symbol table.
- Math and natural language are both significantly more complex in structure than assembly, and thus, so are high-level languages.

The Grammar of High-Level Languages

```
if (say_hello) {
    printf("Hello world!\n");
} else {
    if (a+b*(c+d) == 0) {
        printf("Yay!\n");
    } else {
        printf("I'm sad!!! The number was %d\n", a+b*(c+d));
    }
}
Need to match braces and parentheses (possibly across different lines!), deal with nesting, order of arithmetic operations, distinguish between "if(condition)" and "procedure(arg1, arg2, ...)", and more!
```


Formal Language Theory

- It is a mathematical approach to describing and studying languages.
- A lot of early development was by linguists who were looking to formalize the structure of natural languages.
- Computer scientists found the same ideas useful for formalizing programming languages.
- From the early days, there was an interest in finding connections between models of grammar and models of computation.
- A formal grammar specifies rules that can be applied to "generate" sentences.
- The idea was to find models of computation that have the same "generative power" as a certain kind of formal grammar.
"Thus, remarkably, the same important ideas emerged independently for the automatic translation of both natural and artificial languages:
- Separating syntax and semantics.
- Using a generative grammar to specify the set of all and only legal sentences (programs).
- Analyzing the syntax of the sentence (program) and then using the analysis to drive the translation (compilation)."
Formal Languages: Origins and Directions (S. A. Greibach, 1981)

Basic Definitions: Alphabets

- An alphabet is a finite set. Its elements are called symbols.
- $\Sigma=\{a, b, c\}$ is an alphabet containing 3 symbols.
- Up until now, the symbols in our strings have been single characters...
- $\Sigma=\{$ cat, dog, mouse, iguana $\}$ is an alphabet containing 4 symbols.
- Individual letters like "c" and "a" are not symbols in this alphabet!
$\cdot \Sigma=\{(x, y): 0 \leq x, y \leq 9, x \in \mathbb{Z}\}$ is an alphabet containing 100 symbols. Each symbol is an ordered pair of integers with values from 0 to 9 .
- An alphabet typically cannot be infinite. For example, the set of all integers is not an alphabet (in this course).

Basic Definitions: Strings (Words)

- A string over an alphabet Σ is a sequence of symbols from Σ.
- Strings are frequently called "words" in formal language theory, but we already use this term for machine-architecture words.
- The length of a string x is denoted $|x|$ and is the total number of symbols in the string (including repeats).
- Examples:
- $x=c a b b a$ is a string over $\Sigma=\{a, b, c\}$. We have $|x|=5$.
- $x=$ cat dog cat dog iguana mouse is a string over $\Sigma=\{c a t$, dog, iguana, mouse $\}$. We have $|x|=6$.
- A sequence of zero symbols is allowed. This is called the empty string and it is denoted by the Greek letter ε (epsilon). We have $|\varepsilon|=0$.

Aside about String Notation

- There is no single universal notation for "sequences" in mathematics because the cleanest notation varies wildly depending on context.
- For strings, we often just write them out with no spacing.
- cat is a string over the alphabet $\{\mathrm{a}, \mathrm{c}, \mathrm{t}\}$. It has length 3 .
- 11110001 is a string over the alphabet $\{0,1\}$. It has length 8 .
- But if the symbols consist of multiple characters, we might put spaces between each symbol of a string for readability.
- ID REG COMMA REG is a string over \{ID, REG, COMMA\}. It has length 4.
- Pay attention to what the alphabet is.
- $j r \$ 31$ is a string over the ASCII alphabet. It has length 6.

Basic Definitions: Languages

- A language over an alphabet Σ is a set of strings over Σ.
- Equivalently, a language over Σ is a subset of Σ^{*}.
- The Kleene star of an alphabet is the set of all strings over the alphabet!
- Strings in a formal language don't necessarily have to be "meaningful" the way strings in a natural language are.
- "The set of grammatically correct English sentences" is a language, assuming you can agree on what "grammatically correct" means.
- The set $\{s f s f d s d f, f g h g h f g h, ~ e i v l y S\}$ is also a language.
- The "interesting" classes of formal languages are restricted classes that have more structure than just "a set".

Extending Regular Languages with Recursion

- What if we could use "recursion" in regular expressions?
- For example: Let L be described by the "recursive regular expression" aLb.
- We can think of this as an equation $L=a L b$. Is there a language L that makes this equation true?
- Yes, the language $\left\{a^{n} b^{n}: n \geq 0\right\}$ (where n is an integer).
- The notation a^{n} means aa...a where there are n occurrences of a .
- So this language contains words with n a's followed by n b's.
- Can we recognize this language with a DFA? Or describe it with a (non-recursive) regular expression?

The Need for Non-Regular Languages

- It is impossible to construct a DFA for $\left\{a^{n} b^{n}: n \geq 0\right\}$.
- Suppose you had such a DFA, and it had m states total.
- Run the strings $a, a^{2}, a^{3}, \ldots a^{m+1}$ through the DFA and write down the states you get. Call them $q_{1}, q_{2}, \ldots q_{m+1}$.
- There are only m states, so two of these are equal. Say $q_{i}=q_{j}$ but $i \neq j$.
- Since $a^{i} b^{i}$ is accepted, following the sequence of transitions on b^{i} from q_{i} must lead to an accepting state. So this must be true for q_{j} too.
- But $a^{i} b^{i}$ is not accepted since $\mathrm{i} \neq \mathrm{j}$! This is a contradiction, so there is no such DFA!

The Need for Non-Regular Languages

- Does it matter that we can't handle this weird $\left\{a^{n} b^{n}: n \geq 0\right\}$ language? What about something more practical?
- Practical languages are harder. Consider the language of sequences of balanced parentheses (left brackets matching with right brackets).
- We can make the same argument we just did to show there is no DFA for this language using strings like $(((()))))$).
- But this language also contains more complex strings like (()())()((())).
- Both $\left\{a^{n} b^{n}: n \geq 0\right\}$ and the language of sequences of balanced parentheses are examples of context-free languages.

Context-Free Languages and Grammars

- Context-free languages are conceptually like "regular languages with recursion", but they are usually defined in terms of formal grammars.
- A formal grammar has four elements:
- An alphabet called the terminal alphabet, which is the alphabet of the language the grammar is describing.
- A disjoint alphabet called the nonterminal alphabet, which can be thought of as a set of "meta-symbols" that appear in the grammar but not the language.
- A start symbol which is one of the nonterminals (meta-symbols).
- A set of production rules, which are "string rewriting rules", i.e., they tell you that it is valid to replace certain strings of symbols with certain other strings.
- Idea: A string is in the language if you can start with the start symbol and repeatedly apply production rules to eventually obtain the string.

Production Rules

- A production rule, in its most general form, looks like $x \rightarrow y$ where x is a non-empty string and y is a string. This says x can be rewritten as y .
- In an "unrestricted" formal grammar, all productions are permitted. The only restriction is that the left hand side is not an empty string.
- In a context-free grammar, the left hand side of each production rule must be a single nonterminal symbol.
- We can only rewrite "meta-symbols", not actual symbols from the language.
- "Terminal" refers to the fact that terminal symbols can't be rewritten.
- Also, we can only rewrite one of these symbols at a time. No surrounding context is allowed in context-free production rules.

Example: $\left\{a^{n} b^{n}: n \geq 0\right\}$

- Terminal symbols: $\{\mathrm{a}, \mathrm{b}\}$
- Nonterminal symbols: $\{\mathrm{S}\}$ (only one is needed)
- Start symbol: S
- Production Rules:

1. $\mathrm{S} \rightarrow \mathrm{aSb}$
2. $S \rightarrow \varepsilon$

- As an example, we can produce the string aaabbb by applying rule 1 three times, then rule 2.
$-\mathrm{S} \Rightarrow \mathrm{aSb} \Rightarrow \mathrm{aaSbb} \Rightarrow$ aaaSbbb \Rightarrow aaabbb

Example: Balanced Sequences of Parentheses

- That is, strings over the alphabet $\{()$,$\} where every left parenthesis$ "(" has a matching right parenthesis ")".
- These rules are not sufficient:

1. $S \rightarrow(S)$
2. $S \rightarrow \varepsilon$

- This doesn't include things like ()().
- Adding this third rule is enough (but it's not too easy to prove):

3. $S \rightarrow S S$

- These two rules also work: $S \rightarrow(\mathrm{~S}) \mathrm{S}$ and $\mathrm{S} \rightarrow \varepsilon$.

Example: $a(a \mid b)^{*} a(a \mid b)^{*}$

- This is a simple example of a language that requires two distinct nonterminal symbols to describe.
- Source: "Nonterminal Complexity of Some Operations on Context-Free Languages", Dassow \& Stiebe, 2008.
- Terminal symbols: $\{\mathrm{a}, \mathrm{b}\}$
- Nonterminal symbols: $\{\mathrm{S}, \mathrm{B}\}$
- Start symbol: S
- Production rules: $\mathrm{S} \rightarrow \mathrm{aBaB}, \mathrm{B} \rightarrow \mathrm{aB}, \mathrm{B} \rightarrow \mathrm{bB}, \mathrm{B} \rightarrow \varepsilon$

Notation \& Conventions

- Formally, a context-free grammar is a 4-tuple (N, Σ, S, P), where N is the nonterminal alphabet, Σ is the terminal alphabet, S is the start symbol, and P is the set of production rules.
- In practice, we rarely write out all these things separately and instead we use the following convention:
- A grammar is simply written as a list of production rules.
- The symbol on the left-hand-side of the first rule in the list is assumed to be the start symbol.
- If a symbol never appears on the left-hand-side of a rule, it's a terminal symbol. All other symbols are nonterminal.

Notation \& Conventions

- To shorten the description of grammars, we use notation that looks similar to regular expressions but means something different.
- We will often use the | symbol to combine multiple production rules with the same left hand side.
- Example: Instead of $\mathrm{S} \rightarrow \mathrm{aBaB}, \mathrm{B} \rightarrow \mathrm{aB}, \mathrm{B} \rightarrow \mathrm{bB}, \mathrm{B} \rightarrow \varepsilon$

We could write $\quad \mathrm{S} \rightarrow \mathrm{aBaB}, \mathrm{B} \rightarrow \mathrm{aB}|\mathrm{bB}| \varepsilon$

- It is not valid to put a regular expression on the right hand side of a production rule. You cannot use star, brackets for grouping, etc.
- This notation is just shorthand for "there are multiple production rules that all have the same right hand side".

Notation \& Conventions

- To make things easier to read at a glance, we also have conventions for which kinds of letters correspond to which kinds of objects.
- These aren't strict rules and may be broken sometimes.
- Lowercase letters from the start of the English alphabet (a, b, c, \ldots) are usually terminals, elements of Σ.
- Lowercase letters from the end of the English alphabet (..., w, x, y, z) are usually strings of terminals, elements of Σ^{*}.
- Uppercase English letters (A, B, C, ..., X, Y, Z) are usually nonterminals, elements of N.
- Greek letters (α, β, γ) are usually strings that may mix terminals and nonterminals, that is, elements of $(N \cup \Sigma)^{*}$.

Notation \& Conventions: Examples

- "A context-free production rule has the general form $\mathrm{A} \rightarrow \alpha$."
- It is implicit that A is a nonterminal, and α is a sequence of symbols that could possibly mix terminals and nonterminals.
- Consider this grammar:

$$
\begin{aligned}
& X \rightarrow a X a|b X b| Y \\
& Y \rightarrow a|b| \varepsilon
\end{aligned}
$$

- It is implicit that the start symbol is X.
- Since a and b don't appear on the left hand side of any rule, they are terminals. X and Y are nonterminals.
- There are six production rules in this grammar, not two.

Derivations

- A derivation is a sequence of production rules that can be applied to the start symbol of a grammar to produce a string.
- We write derivations by starting with the start symbol, and showing how string evolves with each rule application.
- Example: Find a derivation of (()()) in $S \rightarrow(S) S \mid \varepsilon$.

$$
\mathrm{S} \Rightarrow(\mathrm{~S}) \mathrm{S} \Rightarrow((\mathrm{~S}) \mathrm{S}) \mathrm{S} \Rightarrow(() \mathrm{S}) \mathrm{S} \Rightarrow(()(\mathrm{S}) \mathrm{S}) \mathrm{S} \Rightarrow(()() \mathrm{S}) \mathrm{S} \Rightarrow(()()) \mathrm{S} \Rightarrow(()())
$$

- In the above example, we always rewrote the leftmost nonterminal symbol. Here is another valid derivation:

$$
\mathrm{S} \Rightarrow(\mathrm{~S}) \mathrm{S} \Rightarrow(\mathrm{~S}) \Rightarrow((\mathrm{S}) \mathrm{S}) \Rightarrow((\mathrm{S})(\mathrm{S}) \mathrm{S}) \Rightarrow((\mathrm{S})(\mathrm{S})) \Rightarrow(()(\mathrm{S})) \Rightarrow(()())
$$

The Language of a Grammar

- A derivation in a context-free grammar ends once all nonterminals are replaced with terminals.
- Terminals cannot be replaced or changed, since only nonterminals can appear on the left hand side of a production rule.
- The language generated by a context-free grammar, or just the language of the grammar for short, is the set of all strings of terminals that can be produced as the final result of a derivation.
- A formal language is a context-free language if it is the language of some context-free grammar.

