
Parse Trees & Ambiguity



Parse Trees

• Each derivation uniquely defines a parse tree for a string, which 
represents the structure of the string in terms of the grammar.

S ⇒ (S)S ⇒ ((S)S)S ⇒ (()S)S ⇒ (()(S)S)S ⇒ (()()S)S ⇒ (()())S ⇒ (()())
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Parse Trees

• Each derivation uniquely defines a parse tree for a string, which 
represents the structure of the string in terms of the grammar.

S ⇒ (S)S ⇒ (S) ⇒ ((S)S) ⇒ ((S)(S)S) ⇒ ((S)(S)) ⇒ (()(S)) ⇒ (()())



Parse Trees

• Each derivation uniquely defines a parse tree for a string, which 
represents the structure of the string in terms of the grammar.

S 
⇒ (S)S 
⇒ (S) 
⇒ ((S)S) 
⇒ ((S)(S)S) 
⇒ ((S)(S)) 
⇒ (()(S)) 
⇒ (()()) Same tree.
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Ambiguous Grammars

• Can the same string have multiple parse trees?

• For some grammars, yes.

• Consider S → X | Y,  X → a,  Y → a. Two parse trees for "a".

• If there are two distinct parse trees for the same string, the grammar 
is ambiguous.
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Ambiguity and Derivations

• We saw that even if there are multiple derivations for a string, they 
might correspond to the same tree.

• Thus a string having multiple derivations does not imply the grammar 
is ambiguous.

• However, if a string has multiple derivations, and those derivations 
expand nonterminal symbols in a consistent order, this does imply the 
grammar is ambiguous.

• A leftmost derivation is a derivation that always expands the leftmost 
nonterminal when there is a choice. Similarly, a rightmost derivation 
always expands the rightmost nonterminal.



Ambiguity and Derivations

• Consider this grammar: S → (S) | SS | ε

• There are two leftmost derivations of the string ()()(). Both start with:

S ⇒ SS

• Then we have two choices for how to expand the leftmost S:

 S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()SS ⇒ ()(S)S ⇒ ()()S ⇒ ()()(S) ⇒ ()()()
 S ⇒ SS ⇒ SSS ⇒(S)SS ⇒ ()SS ⇒ ()(S)S ⇒ ()()S ⇒ ()()(S) ⇒ ()()()

• Actually, there are infinitely many leftmost derivations of this string. 
Can you think of a third one?



Ambiguity and Derivations

• Consider this grammar: S → (S) | SS | ε

• There are two leftmost derivations of the string ()()(). 

 S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()SS ⇒ ()(S)S ⇒ ()()S ⇒ ()()(S) ⇒ ()()()
 S ⇒ SS ⇒ SSS ⇒(S)SS ⇒ ()SS ⇒ ()(S)S ⇒ ()()S ⇒ ()()(S) ⇒ ()()()

• Notice that these correspond to different parse trees, since we used 
two different rules to expand the same symbol at the same point.
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Ambiguity in Arithmetic Expressions

• The following example shows that ambiguity can cause real problems 
in the context of parsing programming languages.

• Here's an ambiguous grammar for arithmetic expressions with 
addition, multiplication and 3: 

E → E + E | E * E | 3

• The expression 3 + 3 * 3 has two distinct parse trees, corresponding 
to these two derivations:

E ⇒ E + E ⇒ 3 + E ⇒ 3 + E * E ⇒ 3 + 3 * E ⇒ 3 + 3 * 3
E ⇒ E * E ⇒ E + E * E ⇒ 3+  E * E ⇒ 3 + 3 * E ⇒ 3 + 3 * 3



Ambiguity in Arithmetic Expressions

• Ambiguous grammar for arithmetic expressions with addition, 
multiplication and 3: 

E → E + E | E * E | 3

•  Parse tree 1:

E ⇒ E + E ⇒ 3 + E ⇒ 3 + E * E ⇒ 3 + 3 * E ⇒ 3 + 3 * 3
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Ambiguity in Arithmetic Expressions

• Ambiguous grammar for arithmetic expressions with addition, 
multiplication and 3: 

E → E + E | E * E | 3

• If we used this tree to evaluate the expression, we would get:
3 + 3 * 3 =  3 + 9 = 12
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Ambiguity in Arithmetic Expressions

• Ambiguous grammar for arithmetic expressions with addition, 
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E → E + E | E * E | 3

• If we used this tree to evaluate the expression, we would get:
3 + 3 * 3 =  3 + 9 = 12
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Ambiguity in Arithmetic Expressions

• Ambiguous grammar for arithmetic expressions with addition, 
multiplication and 3: 

E → E + E | E * E | 3

• If we used this tree to evaluate the expression, we would get:
3 + 3 * 3 =  3 + 9 = 12
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Ambiguity in Arithmetic Expressions

• Ambiguous grammar for arithmetic expressions with addition, 
multiplication and 3: 

E → E + E | E * E | 3

• If we used this tree to evaluate the expression, we would get:
3 + 3 * 3 =  3 + 9 = 12
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Ambiguity in Arithmetic Expressions

• Ambiguous grammar for arithmetic expressions with addition, 
multiplication and 3: 

E → E + E | E * E | 3

• If we used this tree to evaluate the expression, we would get:
3 + 3 * 3 =  3 + 9 = 12

12



Ambiguity in Arithmetic Expressions

• Ambiguous grammar for arithmetic expressions with addition, 
multiplication and 3: 

E → E + E | E * E | 3

•  Parse tree 2:

E ⇒ E * E ⇒ E + E * E ⇒ 3+  E * E ⇒ 3 + 3 * E ⇒ 3 + 3 * 3
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Ambiguity in Arithmetic Expressions

• Ambiguous grammar for arithmetic expressions with addition, 
multiplication and 3: 

E → E + E | E * E | 3

•  If we use this tree to evaluate the expression…
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Ambiguity in Arithmetic Expressions

• Ambiguous grammar for arithmetic expressions with addition, 
multiplication and 3: 

E → E + E | E * E | 3

•  If we use this tree to evaluate the expression…

E

E*E

3 + 3 3



Ambiguity in Arithmetic Expressions

• Ambiguous grammar for arithmetic expressions with addition, 
multiplication and 3: 

E → E + E | E * E | 3

•  If we use this tree to evaluate the expression…
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Ambiguity in Arithmetic Expressions

• Ambiguous grammar for arithmetic expressions with addition, 
multiplication and 3: 

E → E + E | E * E | 3

•  If we use this tree to evaluate the expression…
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Ambiguity in Arithmetic Expressions

• Ambiguous grammar for arithmetic expressions with addition, 
multiplication and 3: 

E → E + E | E * E | 3

• If we use this tree to evaluate the expression…
We get 3 + 3 * 3 = 18 (Wrong!!)

18



Ambiguity in Arithmetic Expressions

• Ambiguous grammar for arithmetic expressions with addition, 
multiplication and 3: 

E → E + E | E * E | 3

• There are two parse trees, but only one corresponds to the correct 
order of operations.
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Ambiguity in Arithmetic Expressions

• Ambiguous grammar for arithmetic expressions with addition, 
multiplication and 3: 

E → E + E | E * E | 3

• It's not enough to just find any parse tree. We need to ensure we 
unambiguously find the correct one.
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Resolving Ambiguity

• There is no general way to do this. 

• In fact, there are context-free languages that are inherently 
ambiguous, i.e., all grammars for the language are ambiguous.

• However, there are tricks that work with practical grammars, e.g., 
grammars for programming languages.

• We will discuss specifically how to design a grammar for arithmetic 
expressions that enforces a specific order of operations.

• There are three aspects we will discuss: precedence, associativity, 
and grouping.



Operator Precedence

• Precedence refers to the order of priority for evaluating operations, 
e.g., multiplication comes before addition.

• When evaluating an expression using a tree, the operations that are 
lowest in the tree get evaluated first.

• We create levels in our grammar to enforce precedence.
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Operator Precedence

• When evaluating an expression using a tree, the operations that are 
lowest in the tree get evaluated first.

• Make a list of operators in your language and group them into levels, 
where the lowest numbered level is the highest precedence.

• If the relative order can vary (e.g. multiplication and division), group 
the operators on the same level.

• Create one nonterminal per level, and allow the level to decrease. The 
lowest level can become a number or variable.

• Example: Instead of E → E + E | E * E | 3,

L2 → L2 + L1 | L1          L1 → L1 * L0 | L0         L0 → 3



Operator Associativity

• Associativity determines how operators at the same precedence level 
are evaluated.

• An operator is called associative if the order of evaluation doesn't 
matter, e.g. 1 + 2 + 3 = (1 + 2) + 3 = 1 + (2 + 3).

• Addition and multiplication are associative, but subtraction and 
division are not:

(1 – 2) – 3 = -4 but 1 – (2 – 3) = 2 

• Subtraction and division are left associative, meaning we normally 
just evaluate them from left to right. 

• Exponentiation is right associative: 23
2

 is 29 rather than 82. 



Operator Associativity

• Operators at the same precedence level must either all be left 
associative or all right associative.
• "Associative" operations like addition and multiplication count as both, since 

it doesn't matter whether we view the operation as left or right associative.

• Why? Suppose two operations with different associativity had the 
same precedence, e.g., subtraction and exponentiation.

2 – 32

• Because subtraction is left associative, this should be (2 – 3)2 = 1.

• Because exponentiation is right associative, this should be 2 – 32 = -7.

• There are two valid answers and precedence doesn't let us choose one.



Operator Associativity

• Because levels of precedence must share a common associativity 
direction, associativity is enforced separately on each level.

• To enforce left associativity, the productions should be left recursive:

Ln
 → Ln

 – Ln-1 | Ln / Ln-1 | Ln-1

• To enforce right associativity, they should be right recursive:

Ln
 → Ln-1

 ** Ln | Ln-1 = Ln | Ln-1

• The C/C++ assignment operator, which returns the assigned value, is 
another example of a right associative operator.
• a = b = c = 4 evaluates as a = b = (c = 4) ⇒ a = (b = 4) ⇒ a = 4 ⇒ 4.



Operator Grouping

• It is important to be able to override precedence and associativity 
rules by grouping expressions with parentheses.

• 5 – (4 – 3 * (2 + 1)) forces the subtraction to be done right 
associatively, and the addition to be done before the multiplication.

• This is simple to handle. At the level of terms (numbers, variables, 
etc.) add the following production:

L0 → ( Lmax )

• Lmax means the highest-numbered level (lowest precedence). 

• Parenthesized expressions appear lower in the tree than everything 
unparenthesized, and thus get evaluated first.



Example: Unambiguous Expression Grammar

L2 → L2 + L1 | L2 – L1 | L1

L1 → L1 * L0 | L1 / L0 | L0

L0 → a | b | c | (L2)

b – a – b * (a + c)

• Left associative operations

• * and / before + and –

(b – a) – (b * (a + c))
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Example: Unambiguous Expression Grammar

L2 → L1 * L2 | L1 / L2 | L1

L1 → L0 + L1 | L0 – L1 | L0

L0 → a | b | c | (L2)

b – a – b * (a + c)

• Right associative operations

• + and – before * and /

(b – (a – b)) * (a + c)
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"Practical" Example: WLP4 Grammar

expr → term 
expr → expr PLUS term 
expr → expr MINUS term 

term → factor 
term → term STAR factor 
term → term SLASH factor 
term → term PCT factor 

factor → ID  
factor → NUM  
factor → NULL  
factor → LPAREN expr RPAREN  
factor → AMP lvalue
factor → STAR factor
factor → NEW INT LBRACK expr RBRACK
factor → ID LPAREN RPAREN
factor → ID LPAREN arglist RPAREN



Top-Down Parsing



Parsing Algorithms

• A parsing algorithm finds a derivation for a string with respect to a 
CFG, if one exists, and otherwise reports a parsing error.

• Since a derivation uniquely determines a parse tree, such an 
algorithm can also produce a parse tree by building a tree as each 
derivation step is found.

• Aside from the parser detecting syntax errors, obtaining a tree 
representation of a program is very useful for further analysis.

• Let's take a look at the outline of a simple parsing algorithm.



A Parsing Algorithm: Informal Pseudocode

• We will make the following assumptions:
• We are working with an unambiguous grammar.
• We want to produce a leftmost derivation.
• We have a magic function called Predict which takes the string derived so far and 

magically predicts the next rule to use. This function returns "null" if the parse is 
impossible to complete no matter what rule we use.

• The input string is "s" and the start symbol is "S".

derivedString = S
while derivedString != s
  if Predict(derivedString) returns a rule 
    store the rule in the list of derivation steps 
    apply the rule to the leftmost nonterminal in derivedString
  else ERROR
output the sequence of derivation steps



Top-Down Parsing

• This might seem like basically the only way to do parsing (with all the 
difficulty hidden inside the "Predict" function) but we actually made a 
significant decision: we are parsing from the top down.

• That is, we are starting from the start symbol and expanding it to obtain 
the input string, producing a derivation in the usual order.

• Bottom-up parsing starts from the input string and reduces it to the start 
symbol, producing a "reverse-order" derivation. 

• First we will learn about LL parsing, a simple top-down parsing algorithm, 
and its limitations. We ultimately decide not to use a top-down approach.

• Then we will learn about LR parsing, a complicated bottom-up parsing 
algorithm, and the one we end up using in this course.



More Realistic Pseudocode

• The most obvious problem with our previous pseudocode is that we 
need to explain how to implement the magic Predict function.

• However, this line is also very vague:
apply the rule to the leftmost nonterminal in derivedString

• If we do this in the naïve way (string replacement) then every time we 
apply a rule, we need to do a search-and-replace.

• This is linear time in (length of derivedString) + (length of rule RHS).

• We can reduce this to linear time in just (length of rule RHS) with 
smart use of data structures.



Parsing with a Stack

• Instead of storing the "derivedString" (current derivation step) as a 
string, we will store it as a sequence of symbols on a stack.

• Furthermore, whenever there are terminal symbols on top of the 
stack, we will pop them and "match" them against the input string.

• After matching as many terminal symbols as possible, the top of the 
stack will be a nonterminal – the one we want to expand.

• We can then expand it by popping the nonterminal and pushing the 
right hand side of the rule we expand by (in reverse order).

• We maintain the following invariant: The current derivation step is 
(matched symbols) + (stack symbols).



Example: Top-Down Parsing with Stack

• S → AeB,  A → ab | cd,  B → f | gh,  input string "abegh"

Unread Input Matched Symbols (Top)  Stack  (Bottom) Action

abegh S



Example: Top-Down Parsing with Stack

• S → AeB,  A → ab | cd,  B → f | gh,  input string "abegh"
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Example: Top-Down Parsing with Stack

• S → AeB,  A → ab | cd,  B → f | gh,  input string "abegh"

Unread Input Matched Symbols (Top)  Stack  (Bottom) Action

abegh S Apply S → AeB

abegh AeB Apply A → ab

abegh abeB Match a

begh a beB Match b

egh ab eB Match e

gh abe B Apply B → gh
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