Top-Down Parsing: Implementation & Limitations

Predicting with Lookahead

- The example we did last time suggests how to implement Predict.
- We were able to determine the correct rule to use just by looking at two pieces of information: the **current nonterminal** to expand, and the **next symbol** of input.
- This might not work for more complicated grammars, but we'll develop this idea and see how well it works.
- In our pseudocode, we allowed the Predict function to depend on the whole "derivedString" but we will work with a simpler idea.
- We will develop Predict(current nonterminal, next symbol).

- Given a nonterminal "A" (on top of the stack) and a terminal "a" (at the front of unread input), we need to predict the next rule to apply.
- The terminal "a" is the next unmatched symbol of input, so we want to expand "A" into something that *starts with* "a".
- Suppose A can *derive* a string that starts with "a". Then any rule that appears as the *first step* of such a derivation could be valid to apply.
- We introduce some notation: **First(A)** is the set of all *terminal* symbols such that A can derive a string that starts with the terminal symbol.
- If "a" is in First(A), then Predict should try to find an appropriate rule.

- Given a nonterminal "A" (on top of the stack) and a terminal "a" (at the front of unread input), we need to predict the next rule to apply.
- If "a" is in First(A), there should be at least one valid rule to try.
- What if "a" is not in First(A)? Do we give up the parse?
- No. Consider the possibility that $A \Rightarrow^* \epsilon$.
 - That is, A can be "deleted" (replaced by the empty string).
- If the next thing on the stack after A is "a", and we can "delete" A, then the parse might still be possible to complete.
- We will say **A** is *nullable* if $A \Rightarrow^* \epsilon$ and say that **Nullable(A)** is true.

- Given a nonterminal "A" (on top of the stack) and a terminal "a" (at the front of unread input), we need to predict the next rule to apply.
- If "a" is in First(A), there should be at least one valid rule to try.
- If "a" is not in First(A), consider whether Nullable(A) is true.
- If A is nullable, it might be the case that "a" can *follow* (appear after) A in a derivation. In this case, we should apply rules that "delete" A.
- We define **Follow(A)** to be the set of *terminal* symbols that can possibly follow A in a derivation starting from the start symbol.
- If Nullable(A) is true and "a" is in Follow(A), then Predict should try to find a rule that either "deletes" A, or works towards this goal.

- If "A" is the nonterminal on top of the stack, there are exactly three possibilities:
- 1. The next input terminal is in First(A).
- 2. Nullable(A) is true, and the next input terminal is in Follow(A).
- 3. The parse is impossible to complete.
 - Why? If 1 is false, there is no sequence of rules that can expand A into something that starts with the next input terminal. We need to get rid of A.
 - If 2 is also false, either Nullable(A) is false (so we can't get rid of A) or the next input terminal cannot possibly follow A in a derivation (so getting rid of A would leave us with a mismatch between terminals).

- If "A" is the nonterminal on top of the stack, and "a" is the next input terminal, there are two *valid* possibilities (and one error case).
- 1. The next input terminal "a" is in First(A).
- 2. Nullable(A) is true, and the next input terminal "a" is in Follow(A).
- In these two cases, how should Predict find a rule to use?
 - Let's not worry about the problem of choosing between *multiple valid rules*. We'll just try to find at least one rule that works.
- In Case 1, look for rules that expand A, and have "a" at the start of the right hand side...?

- If "A" is the nonterminal on top of the stack, and "a" is the next input terminal, there are two *valid* possibilities (and one error case).
- 1. The next input terminal "a" is in First(A).
- 2. Nullable(A) is true, and the next input terminal "a" is in Follow(A).
- In Case 1, look for rules that expand A, and have "a" at the start of the right hand side...?
- This doesn't cover all possibilities. Consider a scenario like this:

$$A \rightarrow CBC$$
 $B \rightarrow CCa$ $C \rightarrow \varepsilon$

• This set of rules still implies "a" is in First(A)!

First of a String

- It is not enough to just define First for nonterminals.
- We want to be able to look at the *right hand side of a rule* and determine whether a particular terminal symbol can appear "first" in anything derived from that right hand side.

$$A \rightarrow CBC$$
 $B \rightarrow CCa$ $C \rightarrow \varepsilon$

- For example, we want to be able to say that "a" is in First(CBC) because CBC ⇒ BC ⇒ CCaC ⇒ CaC ⇒ aC.
- Define $First(\alpha)$, where α can be any sequence of terminals and nonterminals, to be the set of terminal symbols that can appear first in anything derived from α .

- If "A" is the nonterminal on top of the stack, and "a" is the next input terminal, there are two *valid* possibilities (and one error case).
- 1. The next input terminal "a" is in First(A).
- 2. Nullable(A) is true, and the next input terminal "a" is in Follow(A).
- In Case 1, look for rules of the form A $\rightarrow \alpha$ where "a" is in First(α).
- In Case 2, look for rules of the form A $\rightarrow \epsilon$...?
- We have a similar problem: it might be complicated to "nullify" A.

 $A \rightarrow BCD$ $B \rightarrow \epsilon$ $C \rightarrow DE$ $D \rightarrow \epsilon$ $E \rightarrow \epsilon$

• Similarly to First, we can define **Nullable(\alpha)** for a string α .

- If "A" is the nonterminal on top of the stack, and "a" is the next input terminal, there are two *valid* possibilities (and one error case).
- 1. The next input terminal "a" is in First(A).
- 2. Nullable(A) is true, and the next input terminal "a" is in Follow(A).
- In Case 1, look for rules of the form A $\rightarrow \alpha$ where "a" is in First(α).
- In Case 2, look for rules of the form A $\rightarrow \alpha$ where Nullable(α) is true.
- If we are in neither case, or no rule is found, the parse is impossible to complete and we return "null" (no rule).

Implementing Nullable, First, and Follow

- If we have algorithms for computing Nullable, First, and Follow, then Predict is straightforward: loop over the rules in the grammar and check the conditions on the previous slide.
- However, computing these is a little tricky.

$$A \rightarrow B$$
 $B \rightarrow A$ $B \rightarrow \varepsilon$

Consider Nullable(A). If you tried to compute this recursively, you
might get stuck in an infinite loop of "A is nullable if B is nullable if A is
nullable if B is nullable..." depending on the order in which you
process the rules.

Implementing Nullable

- We will use a *fixed point algorithm* to avoid this infinite recursion.
- We compute Nullable(B) for every nonterminal B at the same time.
 - Iterate through all the rules and figure out which nonterminals are "directly" nullable, i.e., there is a rule B \rightarrow ϵ .
 - On the next iteration, figure out which nonterminals can derive a string of nonterminals that are all known to be nullable. That is, there is a rule B \rightarrow β and every symbol in the right hand side β was previously found to be nullable.
 - Repeat until we reach a "fixed point": We do an iteration but we gain no new information about which nonterminals are nullable.
- Nullable(β) is true if and only if every symbol in β is nullable. This can be computed easily using Nullable for nonterminals.

Iteration	Nullable(A)	Nullable(B)	Nullable(C)	Nullable(D)	Nullable(E)
Start	?	?	?	?	?

Iteration	Nullable(A)	Nullable(B)	Nullable(C)	Nullable(D)	Nullable(E)
Start	?	?	?	?	?
1	?	?	?	True	True

Iteration	Nullable(A)	Nullable(B)	Nullable(C)	Nullable(D)	Nullable(E)
Start	?	?	?	?	?
1	?	?	?	True	True
2	?	?	True	True	True

Iteration	Nullable(A)	Nullable(B)	Nullable(C)	Nullable(D)	Nullable(E)
Start	?	?	?	?	?
1	?	?	?	True	True
2	?	?	True	True	True
3	True	?	True	True	True

Iteration	Nullable(A)	Nullable(B)	Nullable(C)	Nullable(D)	Nullable(E)
Start	?	?	?	?	?
1	?	?	?	True	True
2	?	?	True	True	True
3	True	?	True	True	True
4	True	?	True	True	True

Iteration	Nullable(A)	Nullable(B)	Nullable(C)	Nullable(D)	Nullable(E)
Start	?	?	?	?	?
1	?	?	?	True	True
2	?	?	True	True	True
3	True	?	True	True	True
4	True	?	True	True	True
End	True	False	True	True	True

Implementing First

- We start with First for nonterminals.
- Like Nullable, we compute First(B) for every nonterminal B at the same time, using a fixed point algorithm.
 - For each nonterminal B, and each rule B \rightarrow β , loop over the symbols in β .
 - 1. If the current symbol in the loop is a terminal "b", add "b" to First(B) and stop the loop.
 - 2. If it is a nonterminal C, add everything in First(C) to First(B). Then, if Nullable(C) is *false*, stop the loop. Otherwise, continue the loop and examine the next symbol in β .
- Idea: β could start with a bunch of nullable nonterminals. We process all of these until we find either a terminal, or a nonterminal that is not nullable. At that point, any further symbols in β are irrelevant.

 $A \rightarrow BCD$ $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø

$$A \rightarrow BCD$$
 $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø ∪ First(B)	Ø	Ø	Ø

B is nullable, so take the union with First(B) and continue

 $A \rightarrow BCD$ $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø ∪ First(C)	Ø	Ø	Ø

B is nullable, so take the union with First(B) and continue

C is nullable, so take the union with First(C) and continue

$$A \rightarrow BCD$$
 $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)	B is nullable, so take
Start	Ø	Ø	Ø	Ø	the union with First(B)
1	Ø ∪ First(D)	Ø	Ø	Ø	and continue
					C is nullable, so take the union with First(C) and continue
					D is not nullable, so take the union with First(D) and stop

 $A \rightarrow BCD$ $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)	B is nullable, so take
Start	Ø	Ø	Ø	Ø	the union with First(B)
1	Ø	Ø	Ø	Ø	and continue
					C is nullable, so take the union with First(C) and continue
					D is not nullable, so take the union with First(D) and stop

$$A \rightarrow BCD$$
 $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	Ø	Ø

Right hand side starts with a terminal "b", add "b" to First(B) and stop

 $A \rightarrow BCD$ $B \rightarrow b$ $B \rightarrow \varepsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \varepsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	Ø	Ø

Nothing happens

 $A \rightarrow BCD$ $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	Ø ∪ First(C)	Ø

C is nullable, so take the union with First(C) and continue

 $A \rightarrow BCD$ $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)	C is nu
Start	Ø	Ø	Ø	Ø	the un
1	Ø	{b}	Ø ∪ {c}	Ø	(from pand co
					Next is
					"c", ad

C is nullable, so take the union with First(C) (from previous step) and continue

Next is the terminal "c", add it to the set and stop

$$A \rightarrow BCD$$
 $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)	C is nullable, so
Start	Ø	Ø	Ø	Ø	the union with F
1	Ø	{b}	{c}	Ø	 (from previous s and continue
					Next is the term
					"c", add it to the and stop

take First(C) step)

ninal ie set

 $A \rightarrow BCD$ $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	<pre>{c} U First(D)</pre>	Ø

D is not nullable, so take the union with First(D) and stop

 $A \rightarrow BCD$ $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	{c}	Ø

D is not nullable, so take the union with First(D) and stop

 $A \rightarrow BCD$ $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	{c}	Ø

Nothing happens

$$A \rightarrow BCD$$
 $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	{c}	{d}

Right hand side starts with a terminal "d", add "d" to First(D) and stop

 $A \rightarrow BCD$ $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	{c}	{d}

Right hand side starts with a terminal "d", add "d" to First(D) and stop

 $A \rightarrow BCD$ $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)	B is nullable, so take
Start	Ø	Ø	Ø	Ø	the union with First(B) and continue
1	Ø	{b}	{c}	{d}	and continue
2	{b,c,d}	{b}	{c}	{d}	C is nullable, so take
					the union with First(C) and continue
					and continue
					D is not nullable, so
					take the union with First(D) and stop

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	{c}	{d}
2	{b,c,d}	{b}	{c}	{d}

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	{c}	{d}
2	{b,c,d}	{b}	{c}	{d}

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	{c}	{d}
2	{b,c,d}	{b}	{c}	{d}

 $A \rightarrow BCD$ $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	{c}	{d}
2	{b,c,d}	{b}	{c,d}	{d}

D is not nullable, so take the union with First(D) and stop

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	{c}	{d}
2	{b,c,d}	{b}	{c,d}	{d}

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	{c}	{d}
2	{b,c,d}	{b}	{c,d}	{d}

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	{c}	{d}
2	{b,c,d}	{b}	{c,d}	{d}

 $A \rightarrow BCD$ $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	{c}	{d}
2	{b,c,d}	{b}	{c,d}	{d}
3	{b,c,d}	{b}	{c,d}	{d}

Nothing new happens on the third iteration through the rules

Iteration	First(A)	First(B)	First(C)	First(D)
Start	Ø	Ø	Ø	Ø
1	Ø	{b}	{c}	{d}
2	{b,c,d}	{b}	{c,d}	{d}
3	{b,c,d}	{b}	{c,d}	{d}
End	{b,c,d}	{b}	{c,d}	{d}

Implementing First

- Computing First of a string is exactly the same process as the inner loop for First of a nonterminal.
- 1. Start with First(β) = \emptyset .
- 2. Loop over the symbols in β .
 - i. If the current symbol is a terminal, add it to First(β) and stop.
 - ii. If it's a nonterminal C, and the nonterminal is not nullable, add First(C) to First(β) and stop.
 - iii. If it's a nullable nonterminal C, add First(C) to First(β), then continue the loop to the next symbol in β .
- $A \rightarrow BCD$ $B \rightarrow b$ $B \rightarrow \epsilon$ $C \rightarrow Ccb$ $C \rightarrow De$ $C \rightarrow \epsilon$ $D \rightarrow d$
- First(BCD) = First(B) U First(C) U First(D), First(CcB) = First(C) U {c}.

Implementing Follow

- This is the trickiest one.
- We use the same strategy: Compute Follow(B) for all nonterminals B at once using a single fixed point algorithm.
- The basic idea is to look at the right hand sides of rules, and find occurrences of nonterminals.
- If we find a nonterminal B on the right hand side of a rule, then we know everything in First(whatever string comes after B) can follow B.
- But there's also a special case: When B is at the far right of a rule and has nothing after it, OR when everything after B is nullable.

Follow Special Case

- If a nonterminal B appears at the far right end of a rule, can we conclude anything about what can follow B?
- **Yes.** In this case, anything that can follow the *left hand side* of the rule can follow B.
- Example: $S \rightarrow SABC$, $S \rightarrow \varepsilon$, $A \rightarrow a$, $A \rightarrow \varepsilon$, $B \rightarrow b$, $C \rightarrow c$, $C \rightarrow \varepsilon$
- Follow(C) contains Follow(S), because if the string β can follow S in a derivation, then it can also follow C since $S\beta \Rightarrow SABC\beta$.
- Follow(B) also contains Follow(S), since C is nullable, so $S\beta \Rightarrow SABC\beta \Rightarrow SAB\beta$. So this case also applies when everything that appears after a nonterminal is nullable.

Implementing Follow

- For each nonterminal B and each B \rightarrow β , loop over each symbol in β .
- If the current symbol is a terminal, ignore it and continue.
- If the current symbol is a nonterminal C, let γ denote the rest of β that comes *after* C.
 - Add everything in First(γ) to Follow(C).
 - Additionally, if Nullable(γ) is true, add everything in Follow(B) to Follow(C) (where B is the left hand side of the current rule). Note that this applies in the case where $\gamma = \epsilon$, meaning C was the last symbol in β .
- The above describes *one iteration* of a fixed-point algorithm. Repeat this process until no new information about Follow sets is obtained.

- S \rightarrow SABC S $\rightarrow \epsilon$ A \rightarrow a A $\rightarrow \epsilon$ B \rightarrow b C \rightarrow c C $\rightarrow \epsilon$
- In this grammar, S → SABC is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)
Start	Ø	Ø	Ø	Ø

- $S \rightarrow SABC$ $S \rightarrow \epsilon$ $A \rightarrow a$ $A \rightarrow \epsilon$ $B \rightarrow b$ $C \rightarrow c$ $C \rightarrow \epsilon$
- In this grammar, S → SABC is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)	We consider First(ABC).
Start	Ø	Ø	Ø	Ø	"a" is in First(ABC) but
1	Ø	Ø	Ø	Ø	"a" is in First(ABC), but so is "b" since A is
					nullable and First(B) =
					{b}.
					So First(ABC) = $\{a,b\}$.

- $S \rightarrow SABC$ $S \rightarrow \varepsilon$ $A \rightarrow a$ $A \rightarrow \varepsilon$ $B \rightarrow b$ $C \rightarrow c$ $C \rightarrow \varepsilon$
- In this grammar, S → SABC is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)
Start	Ø	Ø	Ø	Ø
1	{a,b}	Ø	Ø	Ø

Add First(ABC) to Follow(S).

Nullable(ABC) is false, so we move on.

- $S \rightarrow SABC$ $S \rightarrow \epsilon$ $A \rightarrow a$ $A \rightarrow \epsilon$ $B \rightarrow b$ $C \rightarrow c$ $C \rightarrow \epsilon$
- In this grammar, S → SABC is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)
Start	Ø	Ø	Ø	Ø
1	{a,b}	Ø	Ø	Ø

Now consider First(BC).

Since B is not nullable, we have First(BC) = {b}.

- $S \rightarrow SABC$ $S \rightarrow \epsilon$ $A \rightarrow a$ $A \rightarrow \epsilon$ $B \rightarrow b$ $C \rightarrow c$ $C \rightarrow \epsilon$
- In this grammar, S → SABC is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)
Start	Ø	Ø	Ø	Ø
1	{a,b}	{b}	Ø	Ø

We add First(BC) to Follow(A).

Nullable(BC) is false, so we move on.

•
$$S \rightarrow SABC$$
 $S \rightarrow \epsilon$ $A \rightarrow a$ $A \rightarrow \epsilon$ $B \rightarrow b$ $C \rightarrow c$ $C \rightarrow \epsilon$

• In this grammar, S → SABC is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)
Start	Ø	Ø	Ø	Ø
1	{a,b}	{b}	Ø	Ø

Consider First(C). This is just {c}.

- $S \rightarrow SABC$ $S \rightarrow \epsilon$ $A \rightarrow a$ $A \rightarrow \epsilon$ $B \rightarrow b$ $C \rightarrow c$ $C \rightarrow \epsilon$
- In this grammar, S → SABC is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)
Start	Ø	Ø	Ø	Ø
1	{a,b}	{b}	{c}	Ø

We add First(C) to Follow(B).

But Nullable(C) is true, so we are not done.

- $S \rightarrow SABC$ $S \rightarrow \varepsilon$ $A \rightarrow a$ $A \rightarrow \varepsilon$ $B \rightarrow b$ $C \rightarrow c$ $C \rightarrow \varepsilon$
- In this grammar, S → SABC is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)
Start	Ø	Ø	Ø	Ø
1	{a,b}	{b}	{a,b,c}	Ø

Since we are processing S → SABC, we add Follow(S) to Follow(B) since S is the left hand side of the rule.

- $S \rightarrow SABC$ $S \rightarrow \varepsilon$ $A \rightarrow a$ $A \rightarrow \varepsilon$ $B \rightarrow b$ $C \rightarrow c$ $C \rightarrow \varepsilon$
- In this grammar, S → SABC is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)
Start	Ø	Ø	Ø	Ø
1	{a,b}	{b}	{a,b,c}	Ø

Now we are done with handling the nonterminal B.

- $S \rightarrow SABC$ $S \rightarrow \epsilon$ $A \rightarrow a$ $A \rightarrow \epsilon$ $B \rightarrow b$ $C \rightarrow c$ $C \rightarrow \epsilon$
- In this grammar, S → SABC is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)
Start	Ø	Ø	Ø	Ø
1	{a,b}	{b}	{a,b,c}	Ø

There is nothing after C in this rule, so we don't consider the First set of anything.

- $S \rightarrow SABC$ $S \rightarrow \varepsilon$ $A \rightarrow a$ $A \rightarrow \varepsilon$ $B \rightarrow b$ $C \rightarrow c$ $C \rightarrow \varepsilon$
- In this grammar, S → SABC is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)
Start	Ø	Ø	Ø	Ø
1	{a,b}	{b}	{a,b,c}	{a,b}

But since C is at the far right end of the rule, we add Follow(S) to Follow(C).

- $S \rightarrow SABC$ $S \rightarrow \epsilon$ $A \rightarrow a$ $A \rightarrow \epsilon$ $B \rightarrow b$ $C \rightarrow c$ $C \rightarrow \epsilon$
- In this grammar, S → SABC is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)	We are done
Start	Ø	Ø	Ø	Ø	processing the first rule.
1	{a,b}	{b}	{a,b,c}	{a,b}	ruie.
					None of the other rules have nonterminals on
					the right hand side, so they are irrelevant.

- $S \rightarrow SABC$ $S \rightarrow \epsilon$ $A \rightarrow a$ $A \rightarrow \epsilon$ $B \rightarrow b$ $C \rightarrow c$ $C \rightarrow \epsilon$
- In this grammar, S → SABC is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)
Start	Ø	Ø	Ø	Ø
1	{a,b}	{b}	{a,b,c}	{a,b}
2	{a,b}	{b}	{a,b,c}	{a,b}
End	{a,b}	{b}	{a,b,c}	{a,b}

On the second iteration, nothing ends up changing, so we get this result.

Predict Tables

- It is common to implement Predict as a lookup table, where you look up a (nonterminal, terminal) pair and it tells you which rules are valid.
- To fill out this table, loop over all productions A $\rightarrow \alpha$ in the grammar.
 - For each symbol "a" in First(α), add A $\rightarrow \alpha$ to Predict(A, a).
 - If Nullable(α) is true, then for each symbol "a" in Follow(A), add A $\rightarrow \alpha$ to Predict(A, a).
- Note that each cell of the table is a *set* of rules. The set may be empty (no rule is valid), it may contain one element (unique valid rule) or it may contain multiple elements (multiple choices of rule).
- We'll discuss the "multiple choices of rule" case soon.

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	F	Н	а	b	С	d	е
S'							
S							
С							

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	H	Н	а	b	С	d	е
S'							
S							
С							

Look at First($\vdash S \dashv$) = { \vdash }

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	H	Н	а	b	С	d	е
S'	{1}						
S							
С							

Look at First($\vdash S \dashv$) = { \vdash }, add rule 1 to Predict(S', \vdash).

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	H	Н	а	b	С	d	е
S'	{1}						
S							
С							

Nullable($\vdash S \dashv$) is false so we continue.

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	H	Н	а	b	C	d	е
S'	{1}						
S			{2}				
C							

First(aSb) = {a}, so add rule 2 to Predict(S, a).

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	F	Н	а	b	С	d	е
S'	{1}						
S			{2}				
С							

Nullable(aSb) is false, so continue.

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	H	Н	а	b	С	d	е
S'	{1}						
S			{2}			{3}	
С							

First(dSe) = {d}, so add rule 3 to Predict(S, d).

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	F	Н	а	b	С	d	е
S'	{1}						
S			{2}			{3}	
С							

Nullable(dSe) is false, so continue.

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	H	Н	а	b	С	d	е
S'	{1}						
S			{2}		{4 }	{3}	
С							

First(C) = {c}, so add rule 4 to Predict(S, c).

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	H	Н	а	b	С	d	е
S'	{1}						
S			{2}		{4 }	{3}	
С							

Nullable(C) is true, so consider Follow(S).

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	H	Н	а	b	С	d	е
S'	{1}						
S		{4 }	{2}	{4 }	{4}	{3}	{4 }
С							

Follow(S) = $\{b,e,\dashv\}$, so add rule $\{4\}$ for each of those terminals.

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	F	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4 }	{3}	{4}
С					{5 }		

First(cC) = {c}, so add rule 5 to Predict(C, c).

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	H	Н	а	b	С	d	е
S'	{1}						
S		{4 }	{2}	{4 }	{4 }	{3}	{4}
С					{5}		

Nullable(cC) is false, so continue.

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	F	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4}	{3}	{4}
С					{5}		

First(ϵ) is empty, so do nothing.

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	H	Н	а	b	С	d	е
S'	{1}						
S		{4 }	{2}	{4}	{4 }	{3}	{4}
С					{5}		

Nullable(ϵ) is true, so consider Follow(C).

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	F	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4}	{3}	{4}
С		{6 }		{6 }	{5}		{6 }

Follow(C) = $\{b,e,\dashv\}$ so add rule 6 for each of those terminals.

1.
$$S' \rightarrow \vdash S \dashv$$

- 2. $S \rightarrow aSb$
- 3. $S \rightarrow dSe$
- 4. $S \rightarrow C$
- 5. $C \rightarrow cC$
- 6. $C \rightarrow \epsilon$

	F	Н	а	b	С	d	е
S'	{1}						
S		{4 }	{2}	{4 }	{4 }	{3}	{4}
С		{6}		{6}	{5}		{6}

Predict table complete.

Multiple Choices of Rule

• Consider this very simple (though ambiguous) expression grammar:

$$(1) E \rightarrow E + E$$
 $(2) E \rightarrow 3$

{1, 2}

- Let's compute the predict table. Nothing is nullable, so just consider First sets.
 - First(E+E) = {3}, so add rule 1 to Predict(E, 3).
 - First(3) = {3}, so add rule 2 to Predict(E, 3)
- Notice that this table is totally useless. It says "if the next symbol is 3, it could be either of the two rules in the grammar".
 - In other words, the behaviour of Predict is "figure it out yourself".
- But the rules are not interchangeable. For example, if the string is 3 + 3 + 3, then starting with E → 3 will not work.

LL(1) Parsing

- The technique we have developed is called **LL(1)** parsing:
 - Left-to-right scan of the input
 - Leftmost derivation is produced
 - 1 symbol of "lookahead" used for prediction
- This works well if each cell in the Predict table contains at most one rule. But there are many grammars where this isn't the case.
- If the Predict table for a grammar has cells with multiple rules, we throw our hands up and say "this grammar is **not LL(1)**, we can't parse it with this technique".
 - Technically, we could use backtracking, but this sacrifices one of the main strong points of LL(1) which is that it is efficient (linear time).

1.
$$S' \rightarrow \vdash S \rightarrow 4$$
. $S \rightarrow C$

2.
$$S \rightarrow aSb$$
 5. $C \rightarrow cC$

3.
$$S \rightarrow dSe$$
 6. $C \rightarrow \epsilon$

	Н	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4}	{3}	{4}
С		{6}		{6}	{5}		{6}

Input: **Hacbe-**

Top of Stack: S'

Unread	Matched	(T) Stack (B)	Action
⊢dacbe⊣		S'	

1.
$$S' \rightarrow \vdash S \dashv 4. S \rightarrow C$$

2.
$$S \rightarrow aSb$$
 5. $C \rightarrow cC$

3.
$$S \rightarrow dSe$$
 6. $C \rightarrow \epsilon$

6.
$$C \rightarrow \epsilon$$

	H	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4}	{3}	{4}
С		{6}		{6}	{5}		{6}

⊢dacbe⊣ Input:

Top of Stack:

Unread	Matched	(T) Stack (B)	Action
⊢dacbe⊣		S'	Apply (1)
⊢dacbe⊣		⊢S⊣	

1.
$$S' \rightarrow \vdash S \rightarrow A$$
 4. $S \rightarrow C$

2.
$$S \rightarrow aSb$$
 5. $C \rightarrow cC$

3.
$$S \rightarrow dSe$$
 6. $C \rightarrow \epsilon$

	Н	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4}	{3}	{4}
С		{6}		{6}	{5}		{6}

Input:

⊢dacbe⊣

Top of Stack: **S**

Unread	Matched	(T) Stack (B)	Action
⊢dacbe⊣		S'	Apply (1)
⊢dacbe⊣		⊢S⊣	Match
dacbe⊣	⊢	S-I	

1.
$$S' \rightarrow \vdash S \rightarrow 4$$
. $S \rightarrow C$

2.
$$S \rightarrow aSb$$
 5. $C \rightarrow cC$

3.
$$S \rightarrow dSe$$
 6. $C \rightarrow \epsilon$

	Н	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4}	{3}	{4}
С		{6}		{6}	{5}		{6}

⊢dacbe⊣ Input:

Top of Stack:

Unread	Matched	(T) Stack (B)	Action
⊢dacbe⊣		S'	Apply (1)
⊢dacbe⊣		⊢S⊣	Match
dacbe⊣	⊢	S-I	Apply (3)
dacbe⊣	⊢	dSe⊣	

1.
$$S' \rightarrow \vdash S \rightarrow 4$$
. $S \rightarrow C$

2.
$$S \rightarrow aSb$$
 5. $C \rightarrow cC$

3.
$$S \rightarrow dSe$$
 6. $C \rightarrow \epsilon$

	Н	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4}	{3}	{4}
С		{6}		{6}	{5}		{6}

Input:

⊢dacbe⊣

Top of Stack: **S**

Unread	Matched	(T) Stack (B)	Action
⊢dacbe⊣		S'	Apply (1)
⊢dacbe⊣		⊢S⊣	Match
dacbe⊣	⊢	S-I	Apply (3)
dacbe⊣	⊢	dSe⊣	Match
acbe⊣	⊢d	Se⊣	

1.
$$S' \rightarrow \vdash S \rightarrow 4$$
. $S \rightarrow C$

2.
$$S \rightarrow aSb$$
 5. $C \rightarrow cC$

3.
$$S \rightarrow dSe$$
 6. $C \rightarrow \epsilon$

	Н	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4}	{3}	{4}
С		{6}		{6}	{5}		{6}

Input:

⊢dacbe⊣

Top of Stack: a

Unread	Matched	(T) Stack (B)	Action
⊢dacbe⊣		S'	Apply (1)
⊢dacbe⊣		⊢S⊣	Match
dacbe⊣	⊢	S-I	Apply (3)
dacbe⊣	⊢	dSe⊣	Match
acbe⊣	⊢d	Se⊣	Apply (2)
acbe⊣	⊢d	aSbe⊣	

1.
$$S' \rightarrow \vdash S \rightarrow 4$$
. $S \rightarrow C$

2.
$$S \rightarrow aSb$$
 5. $C \rightarrow cC$

3.
$$S \rightarrow dSe$$
 6. $C \rightarrow \epsilon$

	Н	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4}	{3}	{4}
С		{6}		{6}	{5}		{6}

Input:

⊢da**cbe**⊢

Top of Stack: **S**

Unread	Matched	(T) Stack (B)	Action
⊢dacbe⊣		S'	Apply (1)
⊢dacbe⊣		⊢S⊣	Match
dacbe⊣	⊢	SH	Apply (3)
dacbe⊣	⊢	dSe⊣	Match
acbe⊣	⊢d	Se⊣	Apply (2)
acbe⊣	⊢d	aSbe⊣	Match
cbe⊣	⊢da	Sbe⊣	

1.
$$S' \rightarrow \vdash S \rightarrow A$$
 4. $S \rightarrow C$

2.
$$S \rightarrow aSb$$
 5. $C \rightarrow cC$

3.
$$S \rightarrow dSe$$
 6. $C \rightarrow \epsilon$

	Н	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4}	{3}	{4}
С		{6}		{6}	{5}		{6}

Input:

⊢da**cbe**⊢

Top of Stack: **C**

Unread	Matched	(T) Stack (B)	Action
⊢dacbe⊣		S'	Apply (1)
⊢dacbe⊣		⊢S⊣	Match
dacbe⊣	⊢	S-I	Apply (3)
dacbe⊣	⊢	dSe⊣	Match
acbe⊣	⊢d	Se⊣	Apply (2)
acbe⊣	⊢d	aSbe⊣	Match
cbe⊣	⊢da	Sbe⊣	Apply (4)
cbe⊣	⊢da	Cbe⊣	

1.
$$S' \rightarrow \vdash S \rightarrow 4$$
. $S \rightarrow C$

2.
$$S \rightarrow aSb$$
 5. $C \rightarrow cC$

3.
$$S \rightarrow dSe$$
 6. $C \rightarrow \epsilon$

	Н	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4}	{3}	{4}
С		{6}		{6}	{5}		{6}

Input:

⊢da**cbe**⊢

Top of Stack: **c**

Unread	Matched	(T) Stack (B)	Action
⊢dacbe⊣		S'	Apply (1)
⊢dacbe⊣		⊢S⊣	Match
dacbe⊣	⊢	S-I	Apply (3)
dacbe⊣	⊢	dSe⊣	Match
acbe⊣	⊢d	Se⊣	Apply (2)
acbe⊣	⊢d	aSbe⊣	Match
cbe⊣	⊢da	Sbe⊣	Apply (4)
cbe⊣	⊢da	Cbe⊣	Apply (5)
cbe⊣	⊢da	cCbe⊣	

1.
$$S' \rightarrow \vdash S \dashv 4. S \rightarrow C$$

2.
$$S \rightarrow aSb$$
 5. $C \rightarrow cC$

3.
$$S \rightarrow dSe$$
 6. $C \rightarrow \epsilon$

6.
$$C \rightarrow \epsilon$$

	Н	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4}	{3}	{4}
С		{6}		{6}	{5}		{6}

Input: ⊢dac**be**⊣

Top of Stack: **C**

Unread	Matched	(T) Stack (B)	Action
⊢dacbe⊣		S'	Apply (1)
⊢dacbe⊣		⊢S⊣	Match
dacbe⊣	⊢	SH	Apply (3)
dacbe⊣	⊢	dSe⊣	Match
acbe⊣	⊢d	Se⊣	Apply (2)
acbe⊣	⊢d	aSbe⊣	Match
cbe⊣	⊢da	Sbe⊣	Apply (4)
cbe⊣	⊢da	Cbe⊣	Apply (5)
cbe⊣	⊢da	cCbe⊣	Match
be⊣	⊢dac	Cbe⊣	

1.
$$S' \rightarrow \vdash S \rightarrow 4$$
. $S \rightarrow C$

2.
$$S \rightarrow aSb$$
 5. $C \rightarrow cC$

3.
$$S \rightarrow dSe$$
 6. $C \rightarrow \epsilon$

6.
$$C \rightarrow \epsilon$$

	Н	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4}	{3}	{4}
С		{6}		{6}	{5}		{6}

Input: ⊢dac**be**⊣

Top of Stack:

Unread	Matched	(T) Stack (B)	Action
⊢dacbe⊣		S'	Apply (1)
⊢dacbe⊣		⊢S⊣	Match
dacbe⊣	⊢	S-I	Apply (3)
dacbe⊣	⊢	dSe⊣	Match
acbe⊣	⊢d	Se⊣	Apply (2)
acbe⊣	⊢d	aSbe⊣	Match
cbe⊣	⊢da	Sbe⊣	Apply (4)
cbe⊣	⊢da	Cbe⊣	Apply (5)
cbe⊣	⊢da	cCbe⊣	Match
be⊣	⊢dac	Cbe⊣	Apply (6)
be⊣	⊢dac	be⊣	

1.
$$S' \rightarrow \vdash S \rightarrow 4$$
. $S \rightarrow C$

2.
$$S \rightarrow aSb$$
 5. $C \rightarrow cC$

3.
$$S \rightarrow dSe$$
 6. $C \rightarrow \epsilon$

	Н	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4}	{3}	{4}
С		{6}		{6}	{5}		{6}

⊢dacb**e**⊣ Input:

Top of Stack: **e**

Unread	Matched	(T) Stack (B)	Action
⊢dacbe⊣		S'	Apply (1)
be⊣	⊢dac	be⊣	Match
е⊣	⊢dacb	е-	

1.
$$S' \rightarrow \vdash S \rightarrow 4$$
. $S \rightarrow C$

2.
$$S \rightarrow aSb$$
 5. $C \rightarrow cC$

3.
$$S \rightarrow dSe$$
 6. $C \rightarrow \epsilon$

	Н	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4 }	{4}	{3}	{4}
С		{6}		{6}	{5}		{6}

⊢dacbe**⊣** Input:

Top of Stack: ⊢

Unread	Matched	(T) Stack (B)	Action
⊢dacbe⊣		S'	Apply (1)
be⊣	⊢dac	be⊣	Match
е⊣	⊢dacb	e⊣	Match
4	⊢dacbe	4	

1.
$$S' \rightarrow \vdash S \rightarrow 4$$
. $S \rightarrow C$

2.
$$S \rightarrow aSb$$
 5. $C \rightarrow cC$

3.
$$S \rightarrow dSe$$
 6. $C \rightarrow \epsilon$

6.
$$C \rightarrow \epsilon$$

	F	Н	а	b	С	d	е
S'	{1}						
S		{4}	{2}	{4}	{4}	{3}	{4}
С		{6}		{6}	{5}		{6}

Input: ⊢dacbe⊣

Top of Stack: (empty)

(none) Lookahead:

Unread	Matched	(T) Stack (B)	Action
⊢dacbe⊣		S'	Apply (1)
be⊣	⊢dac	be⊣	Match
е⊣	⊢dacb	е⊣	Match
4	⊢dacbe	4	Match
	⊢dacbe⊣		Accept

Rules applied (in order): 1, 3, 2, 4, 5, 6 Leftmost derivation: