
Top-Down Parsing: 
Implementation & Limitations



Predicting with Lookahead

• The example we did last time suggests how to implement Predict.

• We were able to determine the correct rule to use just by looking at 
two pieces of information: the current nonterminal to expand, and 
the next symbol of input.

• This might not work for more complicated grammars, but we'll 
develop this idea and see how well it works.

• In our pseudocode, we allowed the Predict function to depend on the 
whole "derivedString" but we will work with a simpler idea.

• We will develop Predict(current nonterminal, next symbol).



Implementing Predict

• Given a nonterminal "A" (on top of the stack) and a terminal "a" (at 
the front of unread input), we need to predict the next rule to apply.

• The terminal "a" is the next unmatched symbol of input, so we want 
to expand "A" into something that starts with "a".

• Suppose A can derive a string that starts with "a". Then any rule that 
appears as the first step of such a derivation could be valid to apply.

• We introduce some notation: First(A) is the set of all terminal symbols 
such that A can derive a string that starts with the terminal symbol.

• If "a" is in First(A), then Predict should try to find an appropriate rule.



Implementing Predict

• Given a nonterminal "A" (on top of the stack) and a terminal "a" (at 
the front of unread input), we need to predict the next rule to apply.

• If "a" is in First(A), there should be at least one valid rule to try.

• What if "a" is not in First(A)? Do we give up the parse?

• No. Consider the possibility that A ⇒* ε.
• That is, A can be "deleted" (replaced by the empty string).

• If the next thing on the stack after A is "a", and we can "delete" A, 
then the parse might still be possible to complete.

• We will say A is nullable if A ⇒* ε and say that Nullable(A) is true.



Implementing Predict

• Given a nonterminal "A" (on top of the stack) and a terminal "a" (at 
the front of unread input), we need to predict the next rule to apply.

• If "a" is in First(A), there should be at least one valid rule to try.

• If "a" is not in First(A), consider whether Nullable(A) is true.

• If A is nullable, it might be the case that "a" can follow (appear after) 
A in a derivation. In this case, we should apply rules that "delete" A.

• We define Follow(A) to be the set of terminal symbols that can 
possibly follow A in a derivation starting from the start symbol.

• If Nullable(A) is true and "a" is in Follow(A), then Predict should try to 
find a rule that either "deletes" A, or works towards this goal.



Implementing Predict

• If "A" is the nonterminal on top of the stack, there are exactly three 
possibilities:

1. The next input terminal is in First(A).

2. Nullable(A) is true, and the next input terminal is in Follow(A).

3. The parse is impossible to complete.
• Why? If 1 is false, there is no sequence of rules that can expand A into 

something that starts with the next input terminal. We need to get rid of A.

• If 2 is also false, either Nullable(A) is false (so we can't get rid of A) or the next 
input terminal cannot possibly follow A in a derivation (so getting rid of A 
would leave us with a mismatch between terminals).



Implementing Predict

• If "A" is the nonterminal on top of the stack, and "a" is the next input 
terminal, there are two valid possibilities (and one error case).

1. The next input terminal "a" is in First(A).

2. Nullable(A) is true, and the next input terminal "a" is in Follow(A).

• In these two cases, how should Predict find a rule to use?
• Let's not worry about the problem of choosing between multiple valid rules. 

We'll just try to find at least one rule that works.

• In Case 1, look for rules that expand A, and have "a" at the start of the 
right hand side…?



Implementing Predict

• If "A" is the nonterminal on top of the stack, and "a" is the next input 
terminal, there are two valid possibilities (and one error case).

1. The next input terminal "a" is in First(A).

2. Nullable(A) is true, and the next input terminal "a" is in Follow(A).

• In Case 1, look for rules that expand A, and have "a" at the start of the 
right hand side…?

• This doesn't cover all possibilities. Consider a scenario like this:

A → CBC B → CCa C → ε

• This set of rules still implies "a" is in First(A)!



First of a String

• It is not enough to just define First for nonterminals. 

• We want to be able to look at the right hand side of a rule and 
determine whether a particular terminal symbol can appear "first" in 
anything derived from that right hand side.

A → CBC B → CCa C → ε

• For example, we want to be able to say that "a" is in First(CBC) 
because CBC ⇒ BC ⇒ CCaC ⇒ CaC ⇒ aC.

• Define First(α), where α can be any sequence of terminals and 
nonterminals, to be the set of terminal symbols that can appear first 
in anything derived from α.



Implementing Predict

• If "A" is the nonterminal on top of the stack, and "a" is the next input 
terminal, there are two valid possibilities (and one error case).

1. The next input terminal "a" is in First(A).

2. Nullable(A) is true, and the next input terminal "a" is in Follow(A).

• In Case 1, look for rules of the form A → α where "a" is in First(α).

• In Case 2, look for rules of the form A → ε ...?

• We have a similar problem: it might be complicated to "nullify" A.

A → BCD        B → ε        C → DE        D → ε        E → ε 

• Similarly to First, we can define Nullable(α) for a string α.



Implementing Predict

• If "A" is the nonterminal on top of the stack, and "a" is the next input 
terminal, there are two valid possibilities (and one error case).

1. The next input terminal "a" is in First(A).

2. Nullable(A) is true, and the next input terminal "a" is in Follow(A).

• In Case 1, look for rules of the form A → α where "a" is in First(α).

• In Case 2, look for rules of the form A → α where Nullable(α) is true.

• If we are in neither case, or no rule is found, the parse is impossible to 
complete and we return "null" (no rule).



Implementing Nullable, First, and Follow

• If we have algorithms for computing Nullable, First, and Follow, then 
Predict is straightforward: loop over the rules in the grammar and 
check the conditions on the previous slide.

• However, computing these is a little tricky.

A → B        B → A        B → ε

• Consider Nullable(A). If you tried to compute this recursively, you 
might get stuck in an infinite loop of "A is nullable if B is nullable if A is 
nullable if B is nullable…" depending on the order in which you 
process the rules.



Implementing Nullable

• We will use a fixed point algorithm to avoid this infinite recursion.

• We compute Nullable(B) for every nonterminal B at the same time.
• Iterate through all the rules and figure out which nonterminals are "directly" 

nullable, i.e., there is a rule B → ε.
• On the next iteration, figure out which nonterminals can derive a string of 

nonterminals that are all known to be nullable. That is, there is a rule B → β 
and every symbol in the right hand side β was previously found to be nullable.

• Repeat until we reach a "fixed point": We do an iteration but we gain no new 
information about which nonterminals are nullable.

• Nullable(β) is true if and only if every symbol in β is nullable. This can 
be computed easily using Nullable for nonterminals.



Computing Nullable: Example

A → BD        A → CC       B → b        C → DE        D → ε        E → ε

Iteration Nullable(A) Nullable(B) Nullable(C) Nullable(D) Nullable(E)

Start ? ? ? ? ?



Computing Nullable: Example

A → BD        A → CC       B → b        C → DE        D → ε        E → ε

Iteration Nullable(A) Nullable(B) Nullable(C) Nullable(D) Nullable(E)

Start ? ? ? ? ?

1 ? ? ? True True



Computing Nullable: Example

A → BD        A → CC       B → b        C → DE        D → ε        E → ε

Iteration Nullable(A) Nullable(B) Nullable(C) Nullable(D) Nullable(E)

Start ? ? ? ? ?

1 ? ? ? True True

2 ? ? True True True



Computing Nullable: Example

A → BD        A → CC       B → b        C → DE        D → ε        E → ε

Iteration Nullable(A) Nullable(B) Nullable(C) Nullable(D) Nullable(E)

Start ? ? ? ? ?

1 ? ? ? True True

2 ? ? True True True

3 True ? True True True



Computing Nullable: Example

A → BD        A → CC       B → b        C → DE        D → ε        E → ε

Iteration Nullable(A) Nullable(B) Nullable(C) Nullable(D) Nullable(E)

Start ? ? ? ? ?

1 ? ? ? True True

2 ? ? True True True

3 True ? True True True

4 True ? True True True



Computing Nullable: Example

A → BD        A → CC       B → b        C → DE        D → ε        E → ε

Iteration Nullable(A) Nullable(B) Nullable(C) Nullable(D) Nullable(E)

Start ? ? ? ? ?

1 ? ? ? True True

2 ? ? True True True

3 True ? True True True

4 True ? True True True

End True False True True True



Implementing First

• We start with First for nonterminals.

• Like Nullable, we compute First(B) for every nonterminal B at the 
same time, using a fixed point algorithm.
• For each nonterminal B, and each rule B → β, loop over the symbols in β.

1. If the current symbol in the loop is a terminal "b", add "b" to First(B) and stop the loop.

2. If it is a nonterminal C, add everything in First(C) to First(B). Then, if Nullable(C) is false, 
stop the loop. Otherwise, continue the loop and examine the next symbol in β.

• Idea: β could start with a bunch of nullable nonterminals. We process 
all of these until we find either a terminal, or a nonterminal that is 
not nullable. At that point, any further symbols in β are irrelevant.



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ ∪ First(B) ∅ ∅ ∅

B is nullable, so take 
the union with First(B) 
and continue



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ ∪ First(C) ∅ ∅ ∅

B is nullable, so take 
the union with First(B) 
and continue

C is nullable, so take 
the union with First(C) 
and continue



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ ∪ First(D) ∅ ∅ ∅

B is nullable, so take 
the union with First(B) 
and continue

C is nullable, so take 
the union with First(C) 
and continue

D is not nullable, so 
take the union with 
First(D) and stop



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ ∅ ∅ ∅

B is nullable, so take 
the union with First(B) 
and continue

C is nullable, so take 
the union with First(C) 
and continue

D is not nullable, so 
take the union with 
First(D) and stop



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} ∅ ∅

Right hand side starts 
with a terminal "b", 
add "b" to First(B) and 
stop



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} ∅ ∅

Nothing happens



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} ∅ ∪ First(C) ∅

C is nullable, so take 
the union with First(C) 
and continue



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} ∅ ∪ {c} ∅

C is nullable, so take 
the union with First(C) 
(from previous step) 
and continue

Next is the terminal 
"c", add it to the set 
and stop



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} {c} ∅

C is nullable, so take 
the union with First(C) 
(from previous step) 
and continue

Next is the terminal 
"c", add it to the set 
and stop



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} {c} ∪ First(D) ∅

D is not nullable, so 
take the union with 
First(D) and stop



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} {c} ∅

D is not nullable, so 
take the union with 
First(D) and stop



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} {c} ∅

Nothing happens



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} {c} {d}

Right hand side starts 
with a terminal "d", 
add "d" to First(D) and 
stop



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} {c} {d}

Right hand side starts 
with a terminal "d", 
add "d" to First(D) and 
stop



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} {c} {d}

2 {b,c,d} {b} {c} {d}

B is nullable, so take 
the union with First(B) 
and continue

C is nullable, so take 
the union with First(C) 
and continue

D is not nullable, so 
take the union with 
First(D) and stop



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} {c} {d}

2 {b,c,d} {b} {c} {d}
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Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} {c} {d}

2 {b,c,d} {b} {c} {d}



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} {c} {d}

2 {b,c,d} {b} {c,d} {d}

D is not nullable, so 
take the union with 
First(D) and stop



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} {c} {d}

2 {b,c,d} {b} {c,d} {d}



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} {c} {d}

2 {b,c,d} {b} {c,d} {d}



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} {c} {d}

2 {b,c,d} {b} {c,d} {d}



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} {c} {d}

2 {b,c,d} {b} {c,d} {d}

3 {b,c,d} {b} {c,d} {d}

Nothing new happens 
on the third iteration 
through the rules



Computing First: Example

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d 

Iteration First(A) First(B) First(C) First(D)

Start ∅ ∅ ∅ ∅

1 ∅ {b} {c} {d}

2 {b,c,d} {b} {c,d} {d}

3 {b,c,d} {b} {c,d} {d}

End {b,c,d} {b} {c,d} {d}



Implementing First

• Computing First of a string is exactly the same process as the inner 
loop for First of a nonterminal.

1. Start with First(β) = ∅.

2. Loop over the symbols in β.
i. If the current symbol is a terminal, add it to First(β) and stop.
ii. If it's a nonterminal C, and the nonterminal is not nullable, add First(C) to 

First(β) and stop.
iii. If it's a nullable nonterminal C, add First(C) to First(β), then continue the 

loop to the next symbol in β.

A → BCD      B → b      B → ε      C → Ccb      C → De      C → ε      D → d

• First(BCD) = First(B) ∪ First(C) ∪ First(D), First(CcB) = First(C) ∪ {c}.



Implementing Follow

• This is the trickiest one.

• We use the same strategy: Compute Follow(B) for all nonterminals B 
at once using a single fixed point algorithm.

• The basic idea is to look at the right hand sides of rules, and find 
occurrences of nonterminals.

• If we find a nonterminal B on the right hand side of a rule, then we 
know everything in First(whatever string comes after B) can follow B.

• But there's also a special case: When B is at the far right of a rule and 
has nothing after it, OR when everything after B is nullable.



Follow Special Case

• If a nonterminal B appears at the far right end of a rule, can we 
conclude anything about what can follow B?

• Yes. In this case, anything that can follow the left hand side of the rule 
can follow B.

• Example: S → SABC,  S → ε,  A → a, A → ε, B → b,  C → c,  C → ε 

• Follow(C) contains Follow(S), because if the string β can follow S in a 
derivation, then it can also follow C since Sβ ⇒ SABCβ.

• Follow(B) also contains Follow(S), since C is nullable, so Sβ ⇒ SABCβ 
⇒ SABβ. So this case also applies when everything that appears after 
a nonterminal is nullable.



Implementing Follow

• For each nonterminal B and each B → β, loop over each symbol in β. 

• If the current symbol is a terminal, ignore it and continue.

• If the current symbol is a nonterminal C, let γ denote the rest of β 
that comes after C.
• Add everything in First(γ) to Follow(C).

• Additionally, if Nullable(γ) is true, add everything in Follow(B) to Follow(C) 
(where B is the left hand side of the current rule). Note that this applies in the 
case where γ = ε, meaning C was the last symbol in β.

• The above describes one iteration of a fixed-point algorithm. Repeat 
this process until no new information about Follow sets is obtained.



Computing Follow: Example

• S → SABC      S → ε      A → a     A → ε     B → b      C → c      C → ε

• In this grammar, S → SABC is the only rule where anything interesting 
happens in the algorithm.

Iteration Follow(S) Follow(A) Follow(B) Follow(C)

Start ∅ ∅ ∅ ∅



Computing Follow: Example

• S → SABC      S → ε      A → a     A → ε     B → b      C → c      C → ε

• In this grammar, S → SABC is the only rule where anything interesting 
happens in the algorithm.

Iteration Follow(S) Follow(A) Follow(B) Follow(C)

Start ∅ ∅ ∅ ∅

1 ∅ ∅ ∅ ∅

We consider First(ABC).

"a" is in First(ABC), but 
so is "b" since A is 
nullable and First(B) = 
{b}.

So First(ABC) = {a,b}.



Computing Follow: Example

• S → SABC      S → ε      A → a     A → ε     B → b      C → c      C → ε

• In this grammar, S → SABC is the only rule where anything interesting 
happens in the algorithm.

Iteration Follow(S) Follow(A) Follow(B) Follow(C)

Start ∅ ∅ ∅ ∅

1 {a,b} ∅ ∅ ∅

Add First(ABC) to 
Follow(S).

Nullable(ABC) is false, 
so we move on.



Computing Follow: Example

• S → SABC      S → ε      A → a     A → ε     B → b      C → c      C → ε

• In this grammar, S → SABC is the only rule where anything interesting 
happens in the algorithm.

Iteration Follow(S) Follow(A) Follow(B) Follow(C)

Start ∅ ∅ ∅ ∅

1 {a,b} ∅ ∅ ∅

Now consider First(BC).

Since B is not nullable, 
we have First(BC) = {b}.



Computing Follow: Example

• S → SABC      S → ε      A → a     A → ε     B → b      C → c      C → ε

• In this grammar, S → SABC is the only rule where anything interesting 
happens in the algorithm.

Iteration Follow(S) Follow(A) Follow(B) Follow(C)

Start ∅ ∅ ∅ ∅

1 {a,b} {b} ∅ ∅

We add First(BC) to 
Follow(A).

Nullable(BC) is false, so 
we move on.



Computing Follow: Example

• S → SABC      S → ε      A → a     A → ε     B → b      C → c      C → ε

• In this grammar, S → SABC is the only rule where anything interesting 
happens in the algorithm.

Iteration Follow(S) Follow(A) Follow(B) Follow(C)

Start ∅ ∅ ∅ ∅

1 {a,b} {b} ∅ ∅

Consider First(C). This 
is just {c}.



Computing Follow: Example

• S → SABC      S → ε      A → a     A → ε     B → b      C → c      C → ε

• In this grammar, S → SABC is the only rule where anything interesting 
happens in the algorithm.

Iteration Follow(S) Follow(A) Follow(B) Follow(C)

Start ∅ ∅ ∅ ∅

1 {a,b} {b} {c} ∅

We add First(C) to 
Follow(B).

But Nullable(C) is true, 
so we are not done.



Computing Follow: Example

• S → SABC      S → ε      A → a     A → ε     B → b      C → c      C → ε

• In this grammar, S → SABC is the only rule where anything interesting 
happens in the algorithm.

Iteration Follow(S) Follow(A) Follow(B) Follow(C)

Start ∅ ∅ ∅ ∅

1 {a,b} {b} {a,b,c} ∅

Since we are 
processing S → SABC, 
we add Follow(S) to 
Follow(B) since S is the 
left hand side of the 
rule.



Computing Follow: Example

• S → SABC      S → ε      A → a     A → ε     B → b      C → c      C → ε

• In this grammar, S → SABC is the only rule where anything interesting 
happens in the algorithm.

Iteration Follow(S) Follow(A) Follow(B) Follow(C)

Start ∅ ∅ ∅ ∅

1 {a,b} {b} {a,b,c} ∅

Now we are done with 
handling the 
nonterminal B.



Computing Follow: Example

• S → SABC      S → ε      A → a     A → ε     B → b      C → c      C → ε

• In this grammar, S → SABC is the only rule where anything interesting 
happens in the algorithm.

Iteration Follow(S) Follow(A) Follow(B) Follow(C)

Start ∅ ∅ ∅ ∅

1 {a,b} {b} {a,b,c} ∅

There is nothing after C 
in this rule, so we don't 
consider the First set of 
anything.



Computing Follow: Example

• S → SABC      S → ε      A → a     A → ε     B → b      C → c      C → ε

• In this grammar, S → SABC is the only rule where anything interesting 
happens in the algorithm.

Iteration Follow(S) Follow(A) Follow(B) Follow(C)

Start ∅ ∅ ∅ ∅

1 {a,b} {b} {a,b,c} {a,b}

But since C is at the far 
right end of the rule, 
we add Follow(S) to 
Follow(C).



Computing Follow: Example

• S → SABC      S → ε      A → a     A → ε     B → b      C → c      C → ε

• In this grammar, S → SABC is the only rule where anything interesting 
happens in the algorithm.

Iteration Follow(S) Follow(A) Follow(B) Follow(C)

Start ∅ ∅ ∅ ∅

1 {a,b} {b} {a,b,c} {a,b}

We are done 
processing the first 
rule.

None of the other rules 
have nonterminals on 
the right hand side, so 
they are irrelevant.



Computing Follow: Example

• S → SABC      S → ε      A → a     A → ε     B → b      C → c      C → ε

• In this grammar, S → SABC is the only rule where anything interesting 
happens in the algorithm.

Iteration Follow(S) Follow(A) Follow(B) Follow(C)

Start ∅ ∅ ∅ ∅

1 {a,b} {b} {a,b,c} {a,b}

2 {a,b} {b} {a,b,c} {a,b}

End {a,b} {b} {a,b,c} {a,b}

On the second 
iteration, nothing ends 
up changing, so we get 
this result.



Predict Tables

• It is common to implement Predict as a lookup table, where you look 
up a (nonterminal, terminal) pair and it tells you which rules are valid.

• To fill out this table, loop over all productions A → α in the grammar.
• For each symbol "a" in First(α), add A → α to Predict(A, a).

• If Nullable(α) is true, then for each symbol "a" in Follow(A), add A → α to 
Predict(A, a).

• Note that each cell of the table is a set of rules. The set may be empty 
(no rule is valid), it may contain one element (unique valid rule) or it 
may contain multiple elements (multiple choices of rule). 

• We'll discuss the "multiple choices of rule" case soon.



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

⊢ ⊣ a b c d e

S'

S

C



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

Look at First(⊢S⊣) = {⊢}

⊢ ⊣ a b c d e

S'

S

C



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

Look at First(⊢S⊣) = {⊢}, add rule 1 to Predict(S', ⊢).

⊢ ⊣ a b c d e

S' {1}

S

C



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

Nullable(⊢S⊣) is false so we continue.

⊢ ⊣ a b c d e

S' {1}

S

C



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

First(aSb) = {a}, so add rule 2 to Predict(S, a).

⊢ ⊣ a b c d e

S' {1}

S {2}

C



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

Nullable(aSb) is false, so continue.

⊢ ⊣ a b c d e

S' {1}

S {2}

C



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

First(dSe) = {d}, so add rule 3 to Predict(S, d).

⊢ ⊣ a b c d e

S' {1}

S {2} {3}

C



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

Nullable(dSe) is false, so continue.

⊢ ⊣ a b c d e

S' {1}

S {2} {3}

C



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

First(C) = {c}, so add rule 4 to Predict(S, c).

⊢ ⊣ a b c d e

S' {1}

S {2} {4} {3}

C



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

Nullable(C) is true, so consider Follow(S).

⊢ ⊣ a b c d e

S' {1}

S {2} {4} {3}

C



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

Follow(S) = {b,e,⊣}, so add rule {4} for each of those terminals.

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

First(cC) = {c}, so add rule 5 to Predict(C, c).

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {5}



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

Nullable(cC) is false, so continue.

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {5}



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

First(ε) is empty, so do nothing.

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {5}



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

Nullable(ε) is true, so consider Follow(C).

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {5}



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

Follow(C) = {b,e,⊣} so add rule 6 for each of those terminals.

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}



Predict Table Example

1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

Predict table complete.

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}



Multiple Choices of Rule

• Consider this very simple (though ambiguous) expression grammar:

(1) E → E + E         (2) E → 3

• Let's compute the predict table. Nothing is nullable, so just consider First 
sets.
• First(E+E) = {3}, so add rule 1 to Predict(E, 3).
• First(3) = {3}, so add rule 2 to Predict(E, 3)

• Notice that this table is totally useless. It says "if the next symbol is 3, it 
could be either of the two rules in the grammar". 
• In other words, the behaviour of Predict is "figure it out yourself".

• But the rules are not interchangeable. For example, if the string is 3 + 3 + 3, 
then starting with E → 3 will not work.

+ 3

E {1, 2}



LL(1) Parsing

• The technique we have developed is called LL(1) parsing:
• Left-to-right scan of the input
• Leftmost derivation is produced
• 1 symbol of "lookahead" used for prediction

• This works well if each cell in the Predict table contains at most one 
rule. But there are many grammars where this isn't the case.

• If the Predict table for a grammar has cells with multiple rules, we 
throw our hands up and say "this grammar is not LL(1), we can't parse 
it with this technique".
• Technically, we could use backtracking, but this sacrifices one of the main 

strong points of LL(1) which is that it is efficient (linear time).



1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

LL(1) Parsing: Example

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}

Unread Matched (T)  Stack  (B) Action

⊢dacbe⊣ S'

Input:  ⊢dacbe⊣
Top of Stack: S'
Lookahead: ⊢

 



1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

LL(1) Parsing: Example

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}

Unread Matched (T)  Stack  (B) Action

⊢dacbe⊣ S' Apply (1)

⊢dacbe⊣ ⊢S⊣

Input:  ⊢dacbe⊣
Top of Stack: ⊢
Lookahead: ⊢

 



1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

LL(1) Parsing: Example

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}

Unread Matched (T)  Stack  (B) Action

⊢dacbe⊣ S' Apply (1)

⊢dacbe⊣ ⊢S⊣ Match

dacbe⊣ ⊢ S⊣

Input:  ⊢dacbe⊣
Top of Stack: S
Lookahead: d

 



1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

LL(1) Parsing: Example

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}

Unread Matched (T)  Stack  (B) Action

⊢dacbe⊣ S' Apply (1)

⊢dacbe⊣ ⊢S⊣ Match

dacbe⊣ ⊢ S⊣ Apply (3)

dacbe⊣ ⊢ dSe⊣

Input:  ⊢dacbe⊣
Top of Stack: d
Lookahead: d

 



1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

LL(1) Parsing: Example

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}

Unread Matched (T)  Stack  (B) Action

⊢dacbe⊣ S' Apply (1)

⊢dacbe⊣ ⊢S⊣ Match

dacbe⊣ ⊢ S⊣ Apply (3)

dacbe⊣ ⊢ dSe⊣ Match

acbe⊣ ⊢d Se⊣

Input:  ⊢dacbe⊣
Top of Stack: S
Lookahead: a

 



1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

LL(1) Parsing: Example

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}

Unread Matched (T)  Stack  (B) Action

⊢dacbe⊣ S' Apply (1)

⊢dacbe⊣ ⊢S⊣ Match

dacbe⊣ ⊢ S⊣ Apply (3)

dacbe⊣ ⊢ dSe⊣ Match

acbe⊣ ⊢d Se⊣ Apply (2)

acbe⊣ ⊢d aSbe⊣

Input:  ⊢dacbe⊣
Top of Stack: a
Lookahead: a

 



1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

LL(1) Parsing: Example

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}

Unread Matched (T)  Stack  (B) Action

⊢dacbe⊣ S' Apply (1)

⊢dacbe⊣ ⊢S⊣ Match

dacbe⊣ ⊢ S⊣ Apply (3)

dacbe⊣ ⊢ dSe⊣ Match

acbe⊣ ⊢d Se⊣ Apply (2)

acbe⊣ ⊢d aSbe⊣ Match

cbe⊣ ⊢da Sbe⊣

Input:  ⊢dacbe⊣
Top of Stack: S
Lookahead: c

 



1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

LL(1) Parsing: Example

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}

Unread Matched (T)  Stack  (B) Action

⊢dacbe⊣ S' Apply (1)

⊢dacbe⊣ ⊢S⊣ Match

dacbe⊣ ⊢ S⊣ Apply (3)

dacbe⊣ ⊢ dSe⊣ Match

acbe⊣ ⊢d Se⊣ Apply (2)

acbe⊣ ⊢d aSbe⊣ Match

cbe⊣ ⊢da Sbe⊣ Apply (4)

cbe⊣ ⊢da Cbe⊣Input:  ⊢dacbe⊣
Top of Stack: C
Lookahead: c

 



1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

LL(1) Parsing: Example

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}

Unread Matched (T)  Stack  (B) Action

⊢dacbe⊣ S' Apply (1)

⊢dacbe⊣ ⊢S⊣ Match

dacbe⊣ ⊢ S⊣ Apply (3)

dacbe⊣ ⊢ dSe⊣ Match

acbe⊣ ⊢d Se⊣ Apply (2)

acbe⊣ ⊢d aSbe⊣ Match

cbe⊣ ⊢da Sbe⊣ Apply (4)

cbe⊣ ⊢da Cbe⊣ Apply (5)

cbe⊣ ⊢da cCbe⊣
Input:  ⊢dacbe⊣
Top of Stack: c
Lookahead: c

 



1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

LL(1) Parsing: Example

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}

Unread Matched (T)  Stack  (B) Action

⊢dacbe⊣ S' Apply (1)

⊢dacbe⊣ ⊢S⊣ Match

dacbe⊣ ⊢ S⊣ Apply (3)

dacbe⊣ ⊢ dSe⊣ Match

acbe⊣ ⊢d Se⊣ Apply (2)

acbe⊣ ⊢d aSbe⊣ Match

cbe⊣ ⊢da Sbe⊣ Apply (4)

cbe⊣ ⊢da Cbe⊣ Apply (5)

cbe⊣ ⊢da cCbe⊣ Match

be⊣ ⊢dac Cbe⊣

Input:  ⊢dacbe⊣
Top of Stack: C
Lookahead: b

 



1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

LL(1) Parsing: Example

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}

Unread Matched (T)  Stack  (B) Action

⊢dacbe⊣ S' Apply (1)

⊢dacbe⊣ ⊢S⊣ Match

dacbe⊣ ⊢ S⊣ Apply (3)

dacbe⊣ ⊢ dSe⊣ Match

acbe⊣ ⊢d Se⊣ Apply (2)

acbe⊣ ⊢d aSbe⊣ Match

cbe⊣ ⊢da Sbe⊣ Apply (4)

cbe⊣ ⊢da Cbe⊣ Apply (5)

cbe⊣ ⊢da cCbe⊣ Match

be⊣ ⊢dac Cbe⊣ Apply (6)

be⊣ ⊢dac be⊣

Input:  ⊢dacbe⊣
Top of Stack: b
Lookahead: b

 



1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

LL(1) Parsing: Example

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}

Unread Matched (T)  Stack  (B) Action

⊢dacbe⊣ S' Apply (1)

…

be⊣ ⊢dac be⊣ Match

e⊣ ⊢dacb e⊣

Input:  ⊢dacbe⊣
Top of Stack: e
Lookahead: e

 



1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

LL(1) Parsing: Example

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}

Unread Matched (T)  Stack  (B) Action

⊢dacbe⊣ S' Apply (1)

…

be⊣ ⊢dac be⊣ Match

e⊣ ⊢dacb e⊣ Match

⊣ ⊢dacbe ⊣

Input:  ⊢dacbe⊣
Top of Stack: ⊣
Lookahead: ⊣

 



1. S' → ⊢S⊣

2. S → aSb

3. S → dSe

4. S → C

5. C → cC

6. C → ε

LL(1) Parsing: Example

⊢ ⊣ a b c d e

S' {1}

S {4} {2} {4} {4} {3} {4}

C {6} {6} {5} {6}

Unread Matched (T)  Stack  (B) Action

⊢dacbe⊣ S' Apply (1)

…

be⊣ ⊢dac be⊣ Match

e⊣ ⊢dacb e⊣ Match

⊣ ⊢dacbe ⊣ Match

⊢dacbe⊣ Accept

Input:  ⊢dacbe⊣
Top of Stack: (empty)
Lookahead: (none)

 

Rules applied (in order): 1, 3, 2, 4, 5, 6
Leftmost derivation:
S' ⇒ ⊢S⊣ ⇒ ⊢dSe⊣ ⇒ ⊢daSbe⊣ 
                   ⇒ ⊢daCbe⊣ ⇒ ⊢dacCbe⊣ 
                              ⇒ ⊢dacbe⊣
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