Top-Down Parsing:
 Implementation \& Limitations

Predicting with Lookahead

- The example we did last time suggests how to implement Predict.
- We were able to determine the correct rule to use just by looking at two pieces of information: the current nonterminal to expand, and the next symbol of input.
- This might not work for more complicated grammars, but we'll develop this idea and see how well it works.
- In our pseudocode, we allowed the Predict function to depend on the whole "derivedString" but we will work with a simpler idea.
- We will develop Predict(current nonterminal, next symbol).

Implementing Predict

- Given a nonterminal "A" (on top of the stack) and a terminal "a" (at the front of unread input), we need to predict the next rule to apply.
- The terminal "a" is the next unmatched symbol of input, so we want to expand "A" into something that starts with "a".
- Suppose A can derive a string that starts with "a". Then any rule that appears as the first step of such a derivation could be valid to apply.
- We introduce some notation: First(A) is the set of all terminal symbols such that A can derive a string that starts with the terminal symbol.
- If "a" is in First(A), then Predict should try to find an appropriate rule.

Implementing Predict

- Given a nonterminal "A" (on top of the stack) and a terminal "a" (at the front of unread input), we need to predict the next rule to apply.
- If "a" is in First(A), there should be at least one valid rule to try.
- What if "a" is not in First(A)? Do we give up the parse?
- No. Consider the possibility that $\mathrm{A} \Rightarrow^{*} \varepsilon$.
- That is, A can be "deleted" (replaced by the empty string).
- If the next thing on the stack after A is "a", and we can "delete" A , then the parse might still be possible to complete.
- We will say \mathbf{A} is nullable if $\mathrm{A} \Rightarrow^{*} \varepsilon$ and say that $\operatorname{Nullable(A)}$ is true.

Implementing Predict

- Given a nonterminal "A" (on top of the stack) and a terminal "a" (at the front of unread input), we need to predict the next rule to apply.
- If "a" is in First(A), there should be at least one valid rule to try.
- If " a " is not in First(A), consider whether Nullable(A) is true.
- If A is nullable, it might be the case that "a" can follow (appear after) A in a derivation. In this case, we should apply rules that "delete" A.
- We define Follow(A) to be the set of terminal symbols that can possibly follow A in a derivation starting from the start symbol.
- If Nullable (A) is true and " a " is in Follow(A), then Predict should try to find a rule that either "deletes" A , or works towards this goal.

Implementing Predict

- If " A " is the nonterminal on top of the stack, there are exactly three possibilities:

1. The next input terminal is in First(A).
2. Nullable(A) is true, and the next input terminal is in Follow(A).
3. The parse is impossible to complete.

- Why? If 1 is false, there is no sequence of rules that can expand A into something that starts with the next input terminal. We need to get rid of A.
- If 2 is also false, either $\operatorname{Nullable}(A)$ is false (so we can't get rid of A) or the next input terminal cannot possibly follow A in a derivation (so getting rid of A would leave us with a mismatch between terminals).

Implementing Predict

- If "A" is the nonterminal on top of the stack, and "a" is the next input terminal, there are two valid possibilities (and one error case).

1. The next input terminal " a " is in $\operatorname{First}(\mathrm{A})$.
2. Nullable(A) is true, and the next input terminal "a" is in Follow(A).

- In these two cases, how should Predict find a rule to use?
- Let's not worry about the problem of choosing between multiple valid rules. We'll just try to find at least one rule that works.
- In Case 1, look for rules that expand A, and have "a" at the start of the right hand side...?

Implementing Predict

- If "A" is the nonterminal on top of the stack, and "a" is the next input terminal, there are two valid possibilities (and one error case).

1. The next input terminal " a " is in $\operatorname{First}(\mathrm{A})$.
2. Nullable(A) is true, and the next input terminal "a" is in Follow(A).

- In Case 1, look for rules that expand A, and have "a" at the start of the right hand side...?
- This doesn't cover all possibilities. Consider a scenario like this:

$$
\mathrm{A} \rightarrow \mathrm{CBC} \quad \mathrm{~B} \rightarrow \mathrm{CCa} \quad \mathrm{C} \rightarrow \varepsilon
$$

- This set of rules still implies " a " is in First(A)!

First of a String

- It is not enough to just define First for nonterminals.
- We want to be able to look at the right hand side of a rule and determine whether a particular terminal symbol can appear "first" in anything derived from that right hand side.

$$
\mathrm{A} \rightarrow \mathrm{CBC} \quad \mathrm{~B} \rightarrow \mathrm{CCa} \quad \mathrm{C} \rightarrow \varepsilon
$$

- For example, we want to be able to say that "a" is in First(CBC) because $\mathrm{CBC} \Rightarrow \mathrm{BC} \Rightarrow \mathrm{CCaC} \Rightarrow \mathrm{CaC} \Rightarrow \mathrm{aC}$.
- Define First(α), where α can be any sequence of terminals and nonterminals, to be the set of terminal symbols that can appear first in anything derived from α.

Implementing Predict

- If " A " is the nonterminal on top of the stack, and "a" is the next input terminal, there are two valid possibilities (and one error case).

1. The next input terminal "a" is in First(A).
2. Nullable(A) is true, and the next input terminal "a" is in Follow(A).

- In Case 1, look for rules of the form A $\rightarrow \alpha$ where "a" is in First(α).
- In Case 2, look for rules of the form A $\rightarrow \varepsilon$...?
- We have a similar problem: it might be complicated to "nullify" A .

$$
\mathrm{A} \rightarrow \mathrm{BCD} \quad \mathrm{~B} \rightarrow \varepsilon \quad \mathrm{C} \rightarrow \mathrm{DE} \quad \mathrm{D} \rightarrow \varepsilon \quad \mathrm{E} \rightarrow \varepsilon
$$

- Similarly to First, we can define Nullable(α) for a string α.

Implementing Predict

- If "A" is the nonterminal on top of the stack, and "a" is the next input terminal, there are two valid possibilities (and one error case).

1. The next input terminal " a " is in $\operatorname{First}(\mathrm{A})$.
2. Nullable(A) is true, and the next input terminal "a" is in Follow(A).

- In Case 1, look for rules of the form A $\rightarrow \alpha$ where " a " is in First(α).
- In Case 2, look for rules of the form A $\rightarrow \alpha$ where Nullable(α) is true.
- If we are in neither case, or no rule is found, the parse is impossible to complete and we return "null" (no rule).

Implementing Nullable, First, and Follow

- If we have algorithms for computing Nullable, First, and Follow, then Predict is straightforward: loop over the rules in the grammar and check the conditions on the previous slide.
- However, computing these is a little tricky.

$$
\mathrm{A} \rightarrow \mathrm{~B} \quad \mathrm{~B} \rightarrow \mathrm{~A} \quad \mathrm{~B} \rightarrow \varepsilon
$$

- Consider Nullable(A). If you tried to compute this recursively, you might get stuck in an infinite loop of " A is nullable if B is nullable if A is nullable if B is nullable..." depending on the order in which you process the rules.

Implementing Nullable

- We will use a fixed point algorithm to avoid this infinite recursion.
- We compute Nullable(B) for every nonterminal B at the same time.
- Iterate through all the rules and figure out which nonterminals are "directly" nullable, i.e., there is a rule $B \rightarrow \varepsilon$.
- On the next iteration, figure out which nonterminals can derive a string of nonterminals that are all known to be nullable. That is, there is a rule $B \rightarrow \beta$ and every symbol in the right hand side β was previously found to be nullable.
- Repeat until we reach a "fixed point": We do an iteration but we gain no new information about which nonterminals are nullable.
- Nullable(β) is true if and only if every symbol in β is nullable. This can be computed easily using Nullable for nonterminals.

Computing Nullable: Example

$$
\mathrm{A} \rightarrow \mathrm{BD} \quad \mathrm{~A} \rightarrow \mathrm{CC} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{C} \rightarrow \mathrm{DE} \quad \mathrm{D} \rightarrow \varepsilon \quad \mathrm{E} \rightarrow \varepsilon
$$

Iteration	Nullable(A)	Nullable(B)	Nullable(C)	Nullable(D)	Nullable(E)	
Start	$?$	$?$	$?$	$?$	$?$	

Computing Nullable: Example

$$
\mathrm{A} \rightarrow \mathrm{BD} \quad \mathrm{~A} \rightarrow \mathrm{CC} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{C} \rightarrow \mathrm{DE} \quad \mathrm{D} \rightarrow \varepsilon \quad \mathrm{E} \rightarrow \varepsilon
$$

Iteration	Nullable(A)	Nullable(B)	Nullable(C)	Nullable(D)	Nullable(E)
Start	$?$	$?$	$?$	$?$	$?$
1	$?$	$?$	$?$	True	True

Computing Nullable: Example

$$
\mathrm{A} \rightarrow \mathrm{BD} \quad \mathrm{~A} \rightarrow \mathrm{CC} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{C} \rightarrow \mathrm{DE} \quad \mathrm{D} \rightarrow \varepsilon \quad \mathrm{E} \rightarrow \varepsilon
$$

Iteration	Nullable(A)	Nullable(B)	Nullable(C)	Nullable(D)	Nullable(E)
Start	$?$	$?$	$?$	$?$	$?$
1	$?$	$?$	$?$	True	True
2	$?$	$?$	True	True	True

Computing Nullable: Example

$$
\mathrm{A} \rightarrow \mathrm{BD} \quad \mathrm{~A} \rightarrow \mathrm{CC} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{C} \rightarrow \mathrm{DE} \quad \mathrm{D} \rightarrow \varepsilon \quad \mathrm{E} \rightarrow \varepsilon
$$

Iteration	Nullable(A)	Nullable(B)	Nullable(C)	Nullable(D)	Nullable(E)
Start	$?$	$?$	$?$	$?$	$?$
1	$?$	$?$	$?$	True	True
2	$?$	$?$	True	True	True
3	True	$?$	True	True	True

Computing Nullable: Example

$$
\mathrm{A} \rightarrow \mathrm{BD} \quad \mathrm{~A} \rightarrow \mathrm{CC} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{C} \rightarrow \mathrm{DE} \quad \mathrm{D} \rightarrow \varepsilon \quad \mathrm{E} \rightarrow \varepsilon
$$

Iteration	Nullable(A)	Nullable(B)	Nullable(C)	Nullable(D)	Nullable(E)
Start	$?$	$?$	$?$	$?$	$?$
1	$?$	$?$	$?$	True	True
2	$?$	$?$	True	True	True
3	True	$?$	True	True	True
4	True	$?$	True	True	True

Computing Nullable: Example

$$
\mathrm{A} \rightarrow \mathrm{BD} \quad \mathrm{~A} \rightarrow \mathrm{CC} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{C} \rightarrow \mathrm{DE} \quad \mathrm{D} \rightarrow \varepsilon \quad \mathrm{E} \rightarrow \varepsilon
$$

Iteration	Nullable(A)	Nullable(B)	Nullable(C)	Nullable(D)	Nullable(E)
Start	$?$	$?$	$?$	$?$	$?$
1	$?$	$?$	$?$	True	True
2	$?$	$?$	True	True	True
3	True	$?$	True	True	True
4	True	$?$	True	True	True
End	True	False	True	True	True

Implementing First

- We start with First for nonterminals.
- Like Nullable, we compute First(B) for every nonterminal B at the same time, using a fixed point algorithm.
- For each nonterminal B, and each rule $B \rightarrow \beta$, loop over the symbols in β.

1. If the current symbol in the loop is a terminal " b ", add " b " to First(B) and stop the loop.
2. If it is a nonterminal C , add everything in First(C) to First(B). Then, if Nullable(C) is false, stop the loop. Otherwise, continue the loop and examine the next symbol in β.

- Idea: β could start with a bunch of nullable nonterminals. We process all of these until we find either a terminal, or a nonterminal that is not nullable. At that point, any further symbols in β are irrelevant.

Computing First: Example

$$
\mathrm{A} \rightarrow \mathrm{BCD} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{~B} \rightarrow \varepsilon \quad \mathrm{C} \rightarrow \mathrm{Ccb} \quad \mathrm{C} \rightarrow \mathrm{De} \quad \mathrm{C} \rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{~d}
$$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	\emptyset	\emptyset	\emptyset	\emptyset

Computing First: Example

$A \rightarrow B$	$B \rightarrow b$	$B \rightarrow \varepsilon$	$\rightarrow \mathrm{Ccb}$	$\rightarrow \mathrm{De}$	$\rightarrow \varepsilon \quad D \rightarrow d$
Iteration	First(A)	First(B)	First(C)	First(D)	B is nullable, so take the union with First(B) and continue
Start	\varnothing	\emptyset	\emptyset	\emptyset	
1	$\emptyset \cup$ First(B)	\emptyset	\varnothing	\emptyset	

Computing First: Example

$A \rightarrow B C D$	$B \rightarrow b$	$B \rightarrow \varepsilon$	$\rightarrow \mathrm{Ccb}$	$\rightarrow \mathrm{De}$	$C \rightarrow \varepsilon \quad D \rightarrow d$
Iteration	First(A)	First(B)	First(C)	First(D)	B is nullable, so take the union with First(B) and continue
Start	\emptyset	\emptyset	\emptyset	\emptyset	
1	$\emptyset \cup$ First(C)	\emptyset	\emptyset	\emptyset	
					C is nullable, so take
					the union with First(C) and continue

Computing First: Example

$A \rightarrow B$	$B \rightarrow b$	$B \rightarrow \varepsilon$	\rightarrow Ccb	$\rightarrow \mathrm{De}$	$\rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{d}$
Iteration	First(A)	First(B)	First(C)	First(D)	B is nullable, so take the union with First(B) and continue
Start	\emptyset	\emptyset	\emptyset	\emptyset	
1	$\emptyset \cup$ First(D)	\emptyset	\emptyset	\emptyset	
					C is nullable, so take the union with First(C) and continue
					D is not nullable, so take the union with First(D) and stop

Computing First: Example

$A \rightarrow B$	$B \rightarrow$	$B \rightarrow \varepsilon$	$\rightarrow \mathrm{Ccb}$	$\rightarrow \mathrm{De}$	$\rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{d}$
Iteration	First(A)	First(B)	First(C)	First(D)	B is nullable, so take the union with First(B) and continue
Start	\emptyset	\emptyset	\emptyset	\emptyset	
1	\emptyset	\emptyset	\emptyset	\emptyset	
					C is nullable, so take the union with First(C) and continue
					D is not nullable, so take the union with First(D) and stop

Computing First: Example

$\mathrm{A} \rightarrow \mathrm{B}$	$B \rightarrow$	$B \rightarrow \varepsilon$	$\rightarrow \mathrm{Ccb}$	\rightarrow De	$\rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{d}$
Iteration	First(A)	First(B)	First(C)	First(D)	Right hand side starts with a terminal " b ", add "b" to First(B) and stop
Start	\emptyset	\emptyset	\emptyset	\emptyset	
1	\emptyset	\{b\}	\emptyset	\emptyset	

Computing First: Example

$$
\mathrm{A} \rightarrow \mathrm{BCD} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{~B} \rightarrow \varepsilon \quad \mathrm{C} \rightarrow \mathrm{Ccb} \quad \mathrm{C} \rightarrow \mathrm{De} \quad \mathrm{C} \rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{~d}
$$

Iteration	First(A)	First(B)	First(C)	First(D)	Nothing happens
Start	\varnothing	\emptyset	\emptyset	\emptyset	
1	\emptyset	$\{b\}$	\emptyset	\emptyset	

Computing First: Example

$A \rightarrow B C D$	$B \rightarrow b$	$B \rightarrow \varepsilon$	$\rightarrow \mathrm{Ccb}$	\rightarrow De	$\mathrm{C} \rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{d}$
Iteration	First(A)	First(B)	First(C)	First(D)	C is nullable, so take the union with First(C) and continue
Start	\emptyset	\emptyset	\emptyset	\emptyset	
1	\emptyset	\{b\}	\varnothing U First(C)	\emptyset	

Computing First: Example

$A \rightarrow B C D$	$B \rightarrow b$	$\mathrm{B} \rightarrow \varepsilon \quad \mathrm{C} \rightarrow \mathrm{Ccb}$		\rightarrow De	$C \rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{d}$
Iteration	First(A)	First(B)	First(C)	First(D)	C is nullable, so take
Start	\varnothing	\varnothing	\varnothing	\emptyset	the union with First(C)
1	\varnothing	\{b\}	$\varnothing \cup\{c\}$	\emptyset	and continue
					" c ", add it to the set
					and stop

Computing First: Example

$A \rightarrow B C D$	$B \rightarrow b$	$B \rightarrow \varepsilon$	$\rightarrow \mathrm{Ccb}$	\rightarrow De	$C \rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{d}$
Iteration	First(A)	First(B)	First(C)	First(D)	C is nullable, so take
Start	\varnothing	\varnothing	\emptyset	\emptyset	the union with First(C)
1	\varnothing	\{b\}	\{c\}	\emptyset	and continue
					Next is the terminal "c", add it to the set
					and stop

Computing First: Example

$\mathrm{A} \rightarrow \mathrm{B}$	$B \rightarrow$	$B \rightarrow \varepsilon$	\rightarrow Ccb	\rightarrow De	$\rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{d}$
Iteration	First(A)	First(B)	First(C)	First(D)	D is not nullable, so take the union with First(D) and stop
Start	\varnothing	\varnothing	\emptyset	\emptyset	
1	\varnothing	\{b\}	\{c\} \cup First(D)	\emptyset	

Computing First: Example

$\mathrm{A} \rightarrow \mathrm{B}$	$B \rightarrow$	$B \rightarrow \varepsilon$	$\rightarrow \mathrm{Ccb}$	\rightarrow De	$\rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{d}$
Iteration	First(A)	First(B)	First(C)	First(D)	D is not nullable, so take the union with First(D) and stop
Start	\emptyset	\emptyset	\emptyset	\emptyset	
1	\emptyset	\{b\}	\{c\}	\emptyset	

Computing First: Example

$$
\mathrm{A} \rightarrow \mathrm{BCD} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{~B} \rightarrow \varepsilon \quad \mathrm{C} \rightarrow \mathrm{Ccb} \quad \mathrm{C} \rightarrow \mathrm{De} \quad \mathrm{C} \rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{~d}
$$

Iteration	First(A)	First(B)	First(C)	First(D)	Nothing happens
Start	\emptyset	\emptyset	\emptyset	\varnothing	
1	\emptyset	$\{b\}$	$\{c\}$	\varnothing	

Computing First: Example

$A \rightarrow B C D$	$B \rightarrow$	$B \rightarrow \varepsilon$	$\rightarrow \mathrm{Ccb}$	\rightarrow De	$C \rightarrow \varepsilon \quad D \rightarrow d$
Iteration	First(A)	First(B)	First(C)	First(D)	Right hand side starts with a terminal "d", add "d" to First(D) and stop
Start	\emptyset	\emptyset	\emptyset	\emptyset	
1	\emptyset	\{b\}	\{c\}	\{d\}	

Computing First: Example

$\mathrm{A} \rightarrow \mathrm{B}$	$B \rightarrow$	$B \rightarrow \varepsilon$	$\rightarrow \mathrm{Ccb}$	\rightarrow De	$\rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{d}$
Iteration	First(A)	First(B)	First(C)	First(D)	Right hand side starts with a terminal "d", add "d" to First(D) and stop
Start	\emptyset	\emptyset	\varnothing	\emptyset	
1	\varnothing	\{b\}	\{c\}	\{d\}	

Computing First: Example

$A \rightarrow B$	$B \rightarrow$	$B \rightarrow \varepsilon$	$\rightarrow \mathrm{Ccb}$	$\rightarrow \mathrm{De}$	$\rightarrow \varepsilon \quad D \rightarrow d$
Iteration	First(A)	First(B)	First(C)	First(D)	B is nullable, so take the union with First(B) and continue
Start	\emptyset	\emptyset	\emptyset	\emptyset	
1	\emptyset	\{b\}	\{c\}	\{d\}	
2	$\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$	\{b\}	\{c\}	\{d\}	C is nullable, so take the union with First(C) and continue
					D is not nullable, so take the union with First(D) and stop

Computing First: Example

$$
\mathrm{A} \rightarrow \mathrm{BCD} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{~B} \rightarrow \varepsilon \quad \mathrm{C} \rightarrow \mathrm{Ccb} \quad \mathrm{C} \rightarrow \mathrm{De} \quad \mathrm{C} \rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{~d}
$$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	\emptyset	\emptyset	\emptyset	\emptyset
1	\emptyset	$\{b\}$	$\{b\}$	$\{c\}$
2	$\{b, c, d\}$		$\{c\}$	$\{d\}$
				$\{d\}$

Computing First: Example

$$
\mathrm{A} \rightarrow \mathrm{BCD} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{~B} \rightarrow \varepsilon \quad \mathrm{C} \rightarrow \mathrm{Ccb} \quad \mathrm{C} \rightarrow \mathrm{De} \quad \mathrm{C} \rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{~d}
$$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	\emptyset	\emptyset	\emptyset	\emptyset
1	\emptyset	$\{b\}$	$\{b\}$	$\{c\}$
2	$\{b, c, d\}$		$\{c\}$	$\{d\}$
				$\{d\}$

Computing First: Example

$$
\mathrm{A} \rightarrow \mathrm{BCD} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{~B} \rightarrow \varepsilon \quad \mathrm{C} \rightarrow \mathrm{Ccb} \quad \mathrm{C} \rightarrow \mathrm{De} \quad \mathrm{C} \rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{~d}
$$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	\emptyset	\emptyset	\emptyset	\emptyset
1	\emptyset	$\{b\}$	$\{b\}$	$\{c\}$
2	$\{b, c, d\}$		$\{c\}$	$\{d\}$
				$\{d\}$

Computing First: Example

$A \rightarrow B C D$	$B \rightarrow b$	$B \rightarrow \varepsilon$	$\mathrm{C} \rightarrow \mathrm{Ccb}$	$\mathrm{C} \rightarrow$ De	$\rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{d}$
Iteration	First(A)	First(B)	First(C)	First(D)	D is not nullable, so
Start	\varnothing	\emptyset	\emptyset	\emptyset	take the union with
1	\varnothing	\{b\}	\{c\}	\{d\}	First(D) and stop
2	$\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$	\{b\}	\{c,d\}	\{d\}	

Computing First: Example

$$
\mathrm{A} \rightarrow \mathrm{BCD} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{~B} \rightarrow \varepsilon \quad \mathrm{C} \rightarrow \mathrm{Ccb} \quad \mathrm{C} \rightarrow \mathrm{De} \quad \mathrm{C} \rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{~d}
$$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	\emptyset	\emptyset	\emptyset	\emptyset
1	\emptyset	$\{b\}$	$\{c\}$	$\{d\}$
2	$\{b, c, d\}$	$\{b\}$	$\{c, d\}$	$\{d\}$

Computing First: Example

$$
\mathrm{A} \rightarrow \mathrm{BCD} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{~B} \rightarrow \varepsilon \quad \mathrm{C} \rightarrow \mathrm{Ccb} \quad \mathrm{C} \rightarrow \mathrm{De} \quad \mathrm{C} \rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{~d}
$$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	\emptyset	\emptyset	\emptyset	\emptyset
1	\emptyset	$\{b\}$	$\{b\}$	$\{c\}$
2	$\{b, c, d\}$		$\{c, d\}$	$\{d\}$
				$\{d\}$

Computing First: Example

$$
\mathrm{A} \rightarrow \mathrm{BCD} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{~B} \rightarrow \varepsilon \quad \mathrm{C} \rightarrow \mathrm{Ccb} \quad \mathrm{C} \rightarrow \mathrm{De} \quad \mathrm{C} \rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{~d}
$$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	\emptyset	\emptyset	\emptyset	\emptyset
1	\emptyset	$\{b\}$	$\{b\}$	$\{c\}$
2	$\{b, c, d\}$		$\{c, d\}$	$\{d\}$
				$\{d\}$

Computing First: Example

$$
\mathrm{A} \rightarrow \mathrm{BCD} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{~B} \rightarrow \varepsilon \quad \mathrm{C} \rightarrow \mathrm{Ccb} \quad \mathrm{C} \rightarrow \mathrm{De} \quad \mathrm{C} \rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{~d}
$$

Iteration	First(A)	First(B)	First(C)	First(D)	Nothing new happens on the third iteration through the rules
Start	\emptyset	\emptyset	\emptyset	\emptyset	
1	\emptyset	\{b\}	\{c\}	\{d\}	
2	\{b,c,d $\}$	\{b\}	$\{\mathrm{c}, \mathrm{d}\}$	\{d\}	
3	$\{b, c, d\}$	\{b\}	$\{\mathrm{c}, \mathrm{d}\}$	\{d\}	

Computing First: Example

$$
\mathrm{A} \rightarrow \mathrm{BCD} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{~B} \rightarrow \varepsilon \quad \mathrm{C} \rightarrow \mathrm{Ccb} \quad \mathrm{C} \rightarrow \mathrm{De} \quad \mathrm{C} \rightarrow \varepsilon \quad \mathrm{D} \rightarrow \mathrm{~d}
$$

Iteration	First(A)	First(B)	First(C)	First(D)
Start	\emptyset	\emptyset	\emptyset	\emptyset
1	\emptyset	$\{b\}$	$\{c\}$	$\{d\}$
2	$\{b, c, d\}$	$\{b\}$	$\{c, d\}$	$\{d\}$
3	$\{b, c, d\}$	$\{b\}$	$\{c, d\}$	$\{d\}$
End	$\{b, c, d\}$	$\{b\}$	$\{c, d\}$	$\{d\}$

Implementing First

- Computing First of a string is exactly the same process as the inner loop for First of a nonterminal.

1. Start with First $(\beta)=\varnothing$.
2. Loop over the symbols in β.
i. If the current symbol is a terminal, add it to $\operatorname{First}(\beta)$ and stop.
ii. If it's a nonterminal C, and the nonterminal is not nullable, add First(C) to First (β) and stop.
iii. If it's a nullable nonterminal C, add First(C) to First(β), then continue the loop to the next symbol in β.
$\mathrm{A} \rightarrow \mathrm{BCD}$
$B \rightarrow b$
$B \rightarrow \varepsilon$
$C \rightarrow C c b$
$C \rightarrow D e \quad C \rightarrow \varepsilon$
$D \rightarrow d$

- First(BCD) $=$ First(B) \cup First(C) \cup First(D), First(CcB) $=$ First(C) $\cup\{c\}$.

Implementing Follow

- This is the trickiest one.
- We use the same strategy: Compute Follow(B) for all nonterminals B at once using a single fixed point algorithm.
- The basic idea is to look at the right hand sides of rules, and find occurrences of nonterminals.
- If we find a nonterminal B on the right hand side of a rule, then we know everything in First(whatever string comes after B) can follow B.
- But there's also a special case: When B is at the far right of a rule and has nothing after it, OR when everything after B is nullable.

Follow Special Case

- If a nonterminal B appears at the far right end of a rule, can we conclude anything about what can follow B ?
- Yes. In this case, anything that can follow the left hand side of the rule can follow B.
- Example: $\mathrm{S} \rightarrow \mathrm{SABC}, \mathrm{S} \rightarrow \varepsilon, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{A} \rightarrow \varepsilon, \mathrm{B} \rightarrow \mathrm{b}, \mathrm{C} \rightarrow \mathrm{c}, \mathrm{C} \rightarrow \varepsilon$
- Follow(C) contains Follow(S), because if the string β can follow S in a derivation, then it can also follow C since $S \beta \Rightarrow S A B C \beta$.
- Follow(B) also contains Follow(S), since C is nullable, so $S \beta \Rightarrow S A B C \beta$ $\Rightarrow \operatorname{SAB} \beta$. So this case also applies when everything that appears after a nonterminal is nullable.

Implementing Follow

- For each nonterminal B and each $B \rightarrow \beta$, loop over each symbol in β.
- If the current symbol is a terminal, ignore it and continue.
- If the current symbol is a nonterminal C, let γ denote the rest of β that comes after C.
- Add everything in First(γ) to Follow(C).
- Additionally, if Nullable(γ) is true, add everything in Follow(B) to Follow(C) (where B is the left hand side of the current rule). Note that this applies in the case where $\gamma=\varepsilon$, meaning C was the last symbol in β.
- The above describes one iteration of a fixed-point algorithm. Repeat this process until no new information about Follow sets is obtained.

Computing Follow: Example

$\cdot \mathrm{S} \rightarrow \mathrm{SABC} \quad \mathrm{S} \rightarrow \varepsilon \quad \mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{A} \rightarrow \varepsilon \quad \mathrm{B} \rightarrow \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{c} \quad \mathrm{C} \rightarrow \varepsilon$

- In this grammar, $\mathrm{S} \rightarrow \mathrm{SABC}$ is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)
Start	\emptyset	\emptyset	\emptyset	\emptyset

Computing Follow: Example

$\cdot \mathrm{S} \rightarrow \mathrm{SABC} \quad \mathrm{S} \rightarrow \varepsilon \quad \mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{A} \rightarrow \varepsilon \quad \mathrm{B} \rightarrow \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{c} \quad \mathrm{C} \rightarrow \varepsilon$

- In this grammar, $\mathrm{S} \rightarrow \mathrm{SABC}$ is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)	We consider First(ABC).
Start	\emptyset	\emptyset	\varnothing	\varnothing	"a" is in First(ABC), but
1	\emptyset	\emptyset	\emptyset	\varnothing	so is "b" since A is nullable and First(B) $=$ \{b\}.
				So First $(A B C)=\{a, b\}$.	

Computing Follow: Example

$\cdot \mathrm{S} \rightarrow \mathrm{SABC} \quad \mathrm{S} \rightarrow \varepsilon \quad \mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{A} \rightarrow \varepsilon \quad \mathrm{B} \rightarrow \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{c} \quad \mathrm{C} \rightarrow \varepsilon$

- In this grammar, $\mathrm{S} \rightarrow \mathrm{SABC}$ is the only rule where anything interesting happens in the algorithm.

| Iteration | Follow(S) | Follow(A) | Follow(B) | Follow(C) | Add First(ABC) to |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Start | \emptyset | \emptyset | \emptyset | \varnothing | Follow(S). |
| 1 | $\{\mathrm{a}, \mathrm{b}\}$ | \emptyset | \emptyset | \emptyset | Nullable(ABC) is false, |
| | | | | | so we move on. |
| | | | | | |
| | | | | | |

Computing Follow: Example

$\cdot \mathrm{S} \rightarrow \mathrm{SABC} \quad \mathrm{S} \rightarrow \varepsilon \quad \mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{A} \rightarrow \varepsilon \quad \mathrm{B} \rightarrow \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{c} \quad \mathrm{C} \rightarrow \varepsilon$

- In this grammar, $\mathrm{S} \rightarrow \mathrm{SABC}$ is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow (C)	Now consider First(BC).
Start	\emptyset	\emptyset	\emptyset	\emptyset	Since B is not nullable,
1	$\{\mathrm{a}, \mathrm{b}\}$	\emptyset	\emptyset	\emptyset	we have First $(B C)=\{b\}$.

Computing Follow: Example

$\cdot \mathrm{S} \rightarrow \mathrm{SABC} \quad \mathrm{S} \rightarrow \varepsilon \quad \mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{A} \rightarrow \varepsilon \quad \mathrm{B} \rightarrow \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{c} \quad \mathrm{C} \rightarrow \varepsilon$

- In this grammar, $\mathrm{S} \rightarrow \mathrm{SABC}$ is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)	We add First(BC) to	
Start	\emptyset	\emptyset	\emptyset	\emptyset	Follow(A).	
1	$\{\mathrm{a}, \mathrm{b}\}$	$\{b\}$		\emptyset	\emptyset	Nullable(BC) is false, so we move on.

Computing Follow: Example

$\cdot \mathrm{S} \rightarrow \mathrm{SABC} \quad \mathrm{S} \rightarrow \varepsilon \quad \mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{A} \rightarrow \varepsilon \quad \mathrm{B} \rightarrow \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{c} \quad \mathrm{C} \rightarrow \varepsilon$

- In this grammar, $\mathrm{S} \rightarrow \mathrm{SABC}$ is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)	Consider First(C). This is just $\{c\}$.
Start	\emptyset	\emptyset	\emptyset	\emptyset	
1	\{a,b $\}$	\{b\}	\varnothing	\emptyset	

Computing Follow: Example

$\cdot \mathrm{S} \rightarrow \mathrm{SABC} \quad \mathrm{S} \rightarrow \varepsilon \quad \mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{A} \rightarrow \varepsilon \quad \mathrm{B} \rightarrow \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{c} \quad \mathrm{C} \rightarrow \varepsilon$

- In this grammar, $\mathrm{S} \rightarrow \mathrm{SABC}$ is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)	We add First(C) to Follow(B).
Start	\emptyset	\emptyset	\emptyset	\emptyset	
1	\{a,b\}	\{b\}	\{c\}	\emptyset	But Nullable(C) is true, so we are not done.

Computing Follow: Example

$\cdot \mathrm{S} \rightarrow \mathrm{SABC} \quad \mathrm{S} \rightarrow \varepsilon \quad \mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{A} \rightarrow \varepsilon \quad \mathrm{B} \rightarrow \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{c} \quad \mathrm{C} \rightarrow \varepsilon$

- In this grammar, $\mathrm{S} \rightarrow \mathrm{SABC}$ is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)	Since we are processing $S \rightarrow$ SABC,
Start	\emptyset	\varnothing	\varnothing	\varnothing	we add Follow(S) to
1	$\{a, b\}$	$\{b\}$	$\{a, b, c\}$		Follow(B) since S is the left hand side of the
rule.					

Computing Follow: Example

$\cdot \mathrm{S} \rightarrow \mathrm{SABC} \quad \mathrm{S} \rightarrow \varepsilon \quad \mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{A} \rightarrow \varepsilon \quad \mathrm{B} \rightarrow \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{c} \quad \mathrm{C} \rightarrow \varepsilon$

- In this grammar, $\mathrm{S} \rightarrow \mathrm{SABC}$ is the only rule where anything interesting happens in the algorithm.

Iteration	Follow (S)	Follow (A)	Follow (B)	Follow (C)	Now we are done with
Start	\emptyset	\emptyset	\varnothing	\emptyset	handling the nonterminal B.
1	$\{a, b\}$	$\{b\}$	$\{a, b, c\}$		

Computing Follow: Example

$\cdot \mathrm{S} \rightarrow \mathrm{SABC} \quad \mathrm{S} \rightarrow \varepsilon \quad \mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{A} \rightarrow \varepsilon \quad \mathrm{B} \rightarrow \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{c} \quad \mathrm{C} \rightarrow \varepsilon$

- In this grammar, $\mathrm{S} \rightarrow \mathrm{SABC}$ is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)	There is nothing after C
Start	\emptyset	\emptyset	\emptyset	\emptyset	in this rule, so we don't
1	\{a,b\}	\{b\}	\{a, b, c $\}$	\emptyset	anything.

Computing Follow: Example

$\cdot \mathrm{S} \rightarrow \mathrm{SABC} \quad \mathrm{S} \rightarrow \varepsilon \quad \mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{A} \rightarrow \varepsilon \quad \mathrm{B} \rightarrow \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{c} \quad \mathrm{C} \rightarrow \varepsilon$

- In this grammar, $\mathrm{S} \rightarrow \mathrm{SABC}$ is the only rule where anything interesting happens in the algorithm.

Iteration	Follow (S)	Follow (A)	Follow (B)	Follow (C)	But since C is at the far
Start	\emptyset	\emptyset	\varnothing	\emptyset	right end of the rule, we add Follow(S) to
1	$\{a, b\}$	$\{b\}$	$\{a, b, c\}$	Follow(C).	

Computing Follow: Example

$\cdot \mathrm{S} \rightarrow \mathrm{SABC} \quad \mathrm{S} \rightarrow \varepsilon \quad \mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{A} \rightarrow \varepsilon \quad \mathrm{B} \rightarrow \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{c} \quad \mathrm{C} \rightarrow \varepsilon$

- In this grammar, $\mathrm{S} \rightarrow \mathrm{SABC}$ is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow(B)	Follow(C)	We are done processing the first
Start	\emptyset	\emptyset	\emptyset	\varnothing	rule.
1	$\{a, b\}$	$\{b\}$	$\{a, b, c\}$	$\{a, b\}$	None of the other rules have nonterminals on the right hand side, so
					they are irrelevant.

Computing Follow: Example

$\cdot \mathrm{S} \rightarrow \mathrm{SABC} \quad \mathrm{S} \rightarrow \varepsilon \quad \mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{A} \rightarrow \varepsilon \quad \mathrm{B} \rightarrow \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{c} \quad \mathrm{C} \rightarrow \varepsilon$

- In this grammar, $\mathrm{S} \rightarrow \mathrm{SABC}$ is the only rule where anything interesting happens in the algorithm.

Iteration	Follow(S)	Follow(A)	Follow (B)	Follow (C)	On the second
iteration, nothing ends					
Start	\emptyset	\emptyset	\emptyset	\emptyset	up changing, so we get this result.
1	$\{a, b\}$	$\{b\}$	$\{a, b, c\}$	$\{a, b\}$	
2	$\{a, b\}$	$\{b\}$	$\{a, b, c\}$	$\{a, b\}$	
End	$\{a, b\}$	$\{b\}$	$\{a, b, c\}$	$\{a, b\}$	

Predict Tables

- It is common to implement Predict as a lookup table, where you look up a (nonterminal, terminal) pair and it tells you which rules are valid.
- To fill out this table, loop over all productions $A \rightarrow \alpha$ in the grammar.
- For each symbol "a" in First(α), add $A \rightarrow \alpha$ to $\operatorname{Predict(A,~a).~}$
- If Nullable (α) is true, then for each symbol "a" in Follow(A), add $A \rightarrow \alpha$ to Predict(A, a).
- Note that each cell of the table is a set of rules. The set may be empty (no rule is valid), it may contain one element (unique valid rule) or it may contain multiple elements (multiple choices of rule).
- We'll discuss the "multiple choices of rule" case soon.

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S}-1$
2. $S \rightarrow a S b$
3. $s \rightarrow d S e$
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	ト	-	a	b	c	d	e
\mathbf{S}^{\prime}							
S							
C							

6. $C \rightarrow \varepsilon$

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S} \dashv$
2. $S \rightarrow a S b$
3. $s \rightarrow \mathrm{dSe}$
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	ト	-	a	b	c	d	e
S'							
\mathbf{S}							
\mathbf{C}							

6. $C \rightarrow \varepsilon$

Look at First($(-\mathrm{S}-1)=\{\vdash\}$

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S} \dashv$
2. $\mathrm{S} \rightarrow \mathrm{aSb}$
3. $s \rightarrow$ dSe
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	ト	-	a	b	c	d	e
S'	$\{1\}$						
S							
C							

6. $C \rightarrow \varepsilon$

Look at First($(-\mathrm{S} \dashv)=\{\vdash\}$, add rule 1 to $\operatorname{Predict(S',~} \vdash)$.

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S} \dashv$
2. $S \rightarrow a S b$
3. $s \rightarrow \mathrm{dSe}$
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	r	-1	a	b	c	d	e
\mathbf{S}^{\prime}	$\{1\}$						
S							
C							

6. $C \rightarrow \varepsilon$

Nullable $(\vdash \mathrm{S} \dashv)$ is false so we continue.

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S} \dashv$
2. $S \rightarrow a S b$
3. $s \rightarrow$ dSe
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	ト	-	a	b	c	d	e
S' $^{\prime}$	$\{1\}$						
S			$\{2\}$				
C							

6. $C \rightarrow \varepsilon$

First(aSb) $=\{\mathrm{a}\}$, so add rule 2 to $\operatorname{Predict(S,~a).~}$

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S}-1$
2. $S \rightarrow a S b$
3. $s \rightarrow$ dSe
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	\vdash	\dashv	a	b	c	d	e
\mathbf{S}^{\prime}	$\{1\}$						
S			$\{2\}$				
C							

6. $C \rightarrow \varepsilon$

Nullable(aSb) is false, so continue.

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S} \dashv$
2. $S \rightarrow a S b$
3. $s \rightarrow$ dSe
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	ト	-	a	b	c	d	e
S' $^{\prime}$	$\{1\}$						
S			$\{2\}$			$\{3\}$	
C							

6. $C \rightarrow \varepsilon$

First(dSe) $=\{d\}$, so add rule 3 to $\operatorname{Predict(S,~d).~}$

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S}-1$
2. $S \rightarrow a S b$
3. $s \rightarrow$ dSe
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	\vdash	\dashv	a	b	c	d	e
S'	$\{1\}$						
S			$\{2\}$			$\{3\}$	
C							

6. $C \rightarrow \varepsilon$

Nullable(dSe) is false, so continue.

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S}-1$
2. $\mathrm{S} \rightarrow \mathrm{aSb}$
3. $S \rightarrow$ dSe
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	ト	-	a	b	c	d	e
\mathbf{S}^{\prime}	$\{1\}$						
S			$\{2\}$		$\{4\}$	$\{3\}$	
C							

6. $C \rightarrow \varepsilon$

First(C) $=\{c\}$, so add rule 4 to $\operatorname{Predict}(\mathrm{S}, \mathrm{c})$.

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S}-1$
2. $S \rightarrow a S b$
3. $s \rightarrow \mathrm{dSe}$
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	ト	-	a	b	c	d	e
\mathbf{S}^{\prime}	$\{1\}$						
S			$\{2\}$		$\{4\}$	$\{3\}$	
C							

6. $C \rightarrow \varepsilon$

Nullable(C) is true, so consider Follow(S).

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S}-1$
2. $\mathrm{S} \rightarrow \mathrm{aSb}$
3. $S \rightarrow$ dSe
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	ト	\dashv	a	b	c	d	e
S' $^{\prime}$	$\{1\}$						
S		$\{4\}$	$\{2\}$	$\{4\}$	$\{4\}$	$\{3\}$	$\{4\}$
C							

6. $C \rightarrow \varepsilon$

Follow $(S)=\{b, e,-\dashv\}$, so add rule $\{4\}$ for each of those terminals.

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S} \dashv$
2. $S \rightarrow a S b$
3. $s \rightarrow d S e$
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	\vdash	\dashv	a	b	c	d	e
S^{\prime}	$\{1\}$						
S		$\{4\}$	$\{2\}$	$\{4\}$	$\{4\}$	$\{3\}$	$\{4\}$
C					$\{5\}$		

6. $C \rightarrow \varepsilon$

First $(\mathrm{cC})=\{\mathrm{c}\}$, so add rule 5 to $\operatorname{Predict}(\mathrm{C}, \mathrm{c})$.

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S}-1$
2. $S \rightarrow a S b$
3. $s \rightarrow d S e$
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	ト	\dashv	a	b	c	d	e
S'	$\{1\}$						
S		$\{4\}$	$\{2\}$	$\{4\}$	$\{4\}$	$\{3\}$	$\{4\}$
C					$\{5\}$		

6. $C \rightarrow \varepsilon$

Nullable(cC) is false, so continue.

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S}-1$
2. $S \rightarrow a S b$
3. $s \rightarrow$ dSe
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	ト	-	a	b	c	d	e
S'	$\{1\}$						
S		$\{4\}$	$\{2\}$	$\{4\}$	$\{4\}$	$\{3\}$	$\{4\}$
C					$\{5\}$		

6. $C \rightarrow \varepsilon$

First(ε) is empty, so do nothing.

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S} \dashv$
2. $S \rightarrow a S b$
3. $s \rightarrow d S e$
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	ト	\dashv	a	b	c	d	e
S'	$\{1\}$						
S		$\{4\}$	$\{2\}$	$\{4\}$	$\{4\}$	$\{3\}$	$\{4\}$
C					$\{5\}$		

6. $C \rightarrow \varepsilon$

Nullable(ε) is true, so consider Follow(C).

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S}-1$
2. $\mathrm{S} \rightarrow \mathrm{aSb}$
3. $s \rightarrow$ dSe
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	\vdash	\dashv	a	b	c	d	e
S'	$\{1\}$						
S		$\{4\}$	$\{2\}$	$\{4\}$	$\{4\}$	$\{3\}$	$\{4\}$
C		$\{6\}$		$\{6\}$	$\{5\}$		$\{6\}$

6. $C \rightarrow \varepsilon$

Follow $(C)=\{b, e,-\dashv\}$ so add rule 6 for each of those terminals.

Predict Table Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S}-1$
2. $S \rightarrow a S b$
3. $s \rightarrow d S e$
4. $\mathrm{S} \rightarrow \mathrm{C}$
5. $\mathrm{C} \rightarrow \mathrm{cC}$

	-	\dashv	a	b	c	d	e
S'	$\{1\}$						
S		$\{4\}$	$\{2\}$	$\{4\}$	$\{4\}$	$\{3\}$	$\{4\}$
C		$\{6\}$		$\{6\}$	$\{5\}$		$\{6\}$

6. $C \rightarrow \varepsilon$

Predict table complete.

Multiple Choices of Rule

- Consider this very simple (though ambiguous) expression grammar:

$$
\begin{array}{ll}
\text { (1) } E \rightarrow E+E & \text { (2) } E \rightarrow 3
\end{array}
$$

- Let's compute the predict table. Nothing is nullable, so just consider First sets.
- $\operatorname{First}(E+E)=\{3\}$, so add rule 1 to $\operatorname{Predict}(E, 3)$.
- $\operatorname{First}(3)=\{3\}$, so add rule 2 to $\operatorname{Predict}(E, 3)$

	+	3
E		$\{1,2\}$

- Notice that this table is totally useless. It says "if the next symbol is 3 , it could be either of the two rules in the grammar".
- In other words, the behaviour of Predict is "figure it out yourself".
- But the rules are not interchangeable. For example, if the string is $3+3+3$, then starting with $\mathrm{E} \rightarrow 3$ will not work.

LL(1) Parsing

- The technique we have developed is called $\operatorname{LL}(1)$ parsing:
- Left-to-right scan of the input
- Leftmost derivation is produced
- 1 symbol of "lookahead" used for prediction
- This works well if each cell in the Predict table contains at most one rule. But there are many grammars where this isn't the case.
- If the Predict table for a grammar has cells with multiple rules, we throw our hands up and say "this grammar is not LL(1), we can't parse it with this technique".
- Technically, we could use backtracking, but this sacrifices one of the main strong points of $\mathrm{LL}(1)$ which is that it is efficient (linear time).

LL(1) Parsing: Example

		1				\rightarrow		Unread	Matched	(T) Stack (B)	Action
$2 \mathrm{~S} \rightarrow \mathrm{a}$				5. $\mathrm{C} \rightarrow \mathrm{cC}$				\vdash-dacbe•		S'	
3. $\mathrm{S} \rightarrow \mathrm{dSe}$											
	\vdash	\dashv	a	b	c	d	e				
S'	\{1\}										
S		\{4\}	\{2\}	\{4\}	\{4\}	\{3\}	\{4\}				
C		\{6\}		\{6\}	\{5\}		\{6\}				
Input: $\quad \vdash$ dacbe -1											
Top of Stack:				S'							
Lookahead:				\vdash							

LL(1) Parsing: Example

		ト				\rightarrow		Unread	Matched	(T) Stack (B)	Action
2.	$\mathrm{S} \rightarrow \mathrm{aSb}$			5. $\mathrm{C} \rightarrow \mathrm{cC}$				\vdash dacbe-1		S'	Apply (1)
	$\mathrm{S} \rightarrow \mathrm{dSe}$			6. $C \rightarrow \varepsilon$				\vdash dacbe-1		$\vdash \mathrm{S}-1$	
	-	-	a	b	c	d	e				
S'	\{1\}										
S		\{4\}	\{2\}	\{4\}	\{4\}	\{3\}	\{4\}				
C		\{6\}		\{6\}	\{5\}		\{6\}				
Input: $\quad \vdash$ dacbe -1											
Top of Stack:				\vdash							
Lookahead:				\vdash							

LL(1) Parsing: Example

	$\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S}-1$			4. $\mathrm{S} \rightarrow \mathrm{C}$				Unread	Matched	(T) Stack (B)	Action				
2. $\mathrm{S} \rightarrow \mathrm{aSb}$				5. $\mathrm{C} \rightarrow \mathrm{cC}$				\vdash dacbe-1		S'	Apply (1)				
3. $\mathrm{S} \rightarrow \mathrm{dSe}$				6. $\mathrm{C} \rightarrow \varepsilon$				\vdash-dacbe-1		$\vdash \mathrm{S}-1$	Match				
				dacbe-1	\vdash	S-1									
	\vdash	-	a					b	c	d	e				
S'	\{1\}														
S		\{4\}	\{2\}	\{4\}	\{4\}	\{3\}	\{4\}								
C		\{6\}		\{6\}			\{6\}								
Input: $\quad \vdash$ dacbe -1															
Top of Stack:				S											
Lookahead:				d											

LL(1) Parsing: Example

	$\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S}-1$			4. $\mathrm{S} \rightarrow \mathrm{C}$				Unread	Matched	(T) Stack (B)	Action				
2. $\mathrm{S} \rightarrow \mathrm{aSb}$				5. $\mathrm{C} \rightarrow \mathrm{cC}$				\vdash dacbe-1		S'	Apply (1)				
3. $\mathrm{S} \rightarrow \mathrm{dSe}$				6. $C \rightarrow \varepsilon$				\vdash dacbe-1		$\vdash \mathrm{S}-1$	Match				
				dacbe-1	\vdash	S-1	Apply (3)								
	\vdash	-	a					b	c	d	e	dacbe-1	\vdash	dSe-1	
S'	\{1\}														
S		\{4\}	\{2\}	\{4\}	\{4\}	\{3\}	\{4\}								
C		\{6\}		\{6\}	\{5\}		\{6\}								
Input: $\quad \vdash$ dacbe \dashv															
Top of Stack:				d											
Lookahead:				d											

LL(1) Parsing: Example

	$S^{\prime} \rightarrow \vdash-\mathrm{S}-1$			4. $\mathrm{S} \rightarrow \mathrm{C}$				Unread	Matched	(T) Stack (B)	Action				
2. $S \rightarrow$ aSb				5. $\mathrm{C} \rightarrow \mathrm{cC}$				\vdash dacbe-1		S'	Apply (1)				
	$\mathrm{S} \rightarrow \mathrm{dSe}$			6. $\mathrm{C} \rightarrow \varepsilon$				\vdash dacbe-1		$\vdash \mathrm{S}-1$	Match				
				dacbe-1	\vdash	S-1	Apply (3)								
	\vdash	-	a					b	c	d	e	dacbe-1	\vdash	dSe-1	Match
S'	\{1\}							acbe-1	-d	Se-1					
S		\{4\}	\{2\}	\{4\}	\{4\}	\{3\}	\{4\}								
C		\{6\}		\{6\}	\{5\}		\{6\}								
Input: $\quad \vdash$ dacbe \dashv															
Top of Stack:				S											
Lookahead:				a											

LL(1) Parsing: Example

	$S^{\prime} \rightarrow \vdash \mathrm{S} \dashv$			4. $\mathrm{S} \rightarrow \mathrm{C}$				Unread	Matched	(T) Stack (B)	Action				
2. $S \rightarrow a S b$				5. $\mathrm{C} \rightarrow \mathrm{cC}$				\vdash dacbe-1		S'	Apply (1)				
3. $\mathrm{S} \rightarrow \mathrm{dSe}$				6. $C \rightarrow \varepsilon$				\vdash dacbe-1		$\vdash \mathrm{S}-1$	Match				
				dacbe-1	\vdash	S-1	Apply (3)								
	\vdash	-	a					b	c	d	e	dacbe-1	\vdash	dSe-1	Match
S'	\{1\}							acbe-1	-d	Se-1	Apply (2)				
S		\{4\}	\{2\}	\{4\}	\{4\}	\{3\}	\{4\}	acbe-1	$\vdash \mathrm{d}$	aSbe-1					
C		\{6\}		\{6\}	\{5\}		\{6\}								
Input: $\quad \vdash$ dacbe -1															
Top of Stack:				a											
Lookahead:				a											

LL(1) Parsing: Example

	$S^{\prime} \rightarrow \vdash \mathrm{S}-1$.	\rightarrow		Unread	Matched	(T) Stack (B)	Action				
	$\mathrm{S} \rightarrow \mathrm{aSb}$			5. $\mathrm{C} \rightarrow \mathrm{cC}$				\vdash dacbe-1		S'	Apply (1)				
	$\mathrm{S} \rightarrow \mathrm{dSe}$			6. $\mathrm{C} \rightarrow \varepsilon$				\vdash dacbe-1		$\vdash \mathrm{S}-1$	Match				
				dacbe-1	\vdash	S-1	Apply (3)								
	\vdash	-	a					b	c	d	e	dacbe-1	\vdash	dSe-1	Match
S'	\{1\}							acbe-1	-d	Se-1	Apply (2)				
S		\{4\}	\{2\}	\{4\}	\{4\}	\{3\}	\{4\}	acbe-1	\vdash-d	aSbe-1	Match				
C		\{6\}		\{6\}	\{5\}		\{6\}	cbe-1	\vdash-da	Sbe-1					
Input: $\quad \vdash$ dacbe \dashv															
Top of Stack:				S											
Lookahead:				C											

LL(1) Parsing: Example

	$S^{\prime} \rightarrow \vdash$ S-1			4. $S \rightarrow C$				Unread	Matched	(T) Stack (B)	Action				
2. $\mathrm{S} \rightarrow \mathrm{aSb}$				5. $\mathrm{C} \rightarrow \mathrm{cC}$				\vdash dacbe-1		S'	Apply (1)				
3. $\mathrm{S} \rightarrow \mathrm{dSe}$				6. $C \rightarrow \varepsilon$				\vdash dacbe-1		$\stackrel{-S}{ }$	Match				
				dacbe-1	\vdash	S-1	Apply (3)								
	-	-	a					b	c	d	e	dacbe-1	\vdash	dSe-1	Match
S'	\{1\}							acbe-1	-d	Se-1	Apply (2)				
S		\{4\}	\{2\}	\{4\}	\{4\}	\{3\}	\{4\}	acbe-1	\vdash-d	aSbe-1	Match				
C		\{6\}		\{6\}	\{5\}		\{6\}	cbe-1	\vdash-da	Sbe-1	Apply (4)				
Input:				\vdash dacbe-				cbe-1	\vdash-da	Cbe-1					
Top of Stack:				C											
Lookahead:				C											

LL(1) Parsing: Example

	$S^{\prime} \rightarrow \vdash$ S-1			4. $S \rightarrow C$				Unread	Matched	(T) Stack (B)	Action				
2. $\mathrm{S} \rightarrow \mathrm{aSb}$				5. $\mathrm{C} \rightarrow \mathrm{cC}$				-dacbe-1		S'	Apply (1)				
3. $\mathrm{S} \rightarrow \mathrm{dSe}$				6. $\mathrm{C} \rightarrow \varepsilon$				\vdash dacbe-		$\stackrel{-S-1}{ }$	Match				
				dacbe-1	\vdash	S-1	Apply (3)								
	-	-	a					b	c	d	e	dacbe-1	\vdash	dSe-1	Match
S'	\{1\}							acbe-1	$\vdash \mathrm{d}$	Se-1	Apply (2)				
S		\{4\}	\{2\}	\{4\}	\{4\}	\{3\}	\{4\}	acbe-1	\vdash-d	aSbe-1	Match				
C		\{6\}		\{6\}	\{5\}		\{6\}	cbe-1	\vdash-da	Sbe-1	Apply (4)				
Input:				\vdash dacbe-1				cbe-1	\vdash-da	Cbe-1	Apply (5)				
Top of Stack:				C				cbe-1	\vdash-da	cCbe-1					
Lookahead:				C											

LL(1) Parsing: Example

	$S^{\prime} \rightarrow \vdash-\mathrm{S}-1$			4. $\mathrm{S} \rightarrow \mathrm{C}$				Unread	Matched	(T) Stack (B)	Action				
2. $\mathrm{S} \rightarrow \mathrm{aSb}$				5. $\mathrm{C} \rightarrow \mathrm{cC}$				\vdash dacbe-1		S'	Apply (1)				
3. $\mathrm{S} \rightarrow \mathrm{dSe}$				6. $\mathrm{C} \rightarrow \varepsilon$				\vdash dacbe- -		$\stackrel{-S-1}{ }$	Match				
				dacbe-1	\vdash	S-1	Apply (3)								
	\vdash	-1	a					b	c	d	e	dacbe-1	\vdash	dSe-1	Match
S'	\{1\}							acbe-1	$\vdash \mathrm{d}$	Se-1	Apply (2)				
S		\{4\}	\{2\}	\{4\}	\{4\}	\{3\}	\{4\}	acbe-1	$\vdash \mathrm{d}$	aSbe-1	Match				
C		\{6\}		\{6\}	\{5\}		\{6\}	cbe-1	\vdash-da	Sbe-1	Apply (4)				
Input:				\vdash dacbe-1				cbe-1	\vdash da	Cbe-1	Apply (5)				
Top of Stack:				C				cbe-1	\vdash da	cCbe-1	Match				
Lookahead:				b				be-1	\vdash dac	Cbe-1					

LL(1) Parsing: Example

	$S^{\prime} \rightarrow \vdash$ S-1					\rightarrow		Unread	Matched	(T) Stack (B)	Action				
2. $\mathrm{S} \rightarrow \mathrm{aSb}$				5. $\mathrm{C} \rightarrow \mathrm{cC}$				\vdash dacbe-1		S'	Apply (1)				
3. $\mathrm{S} \rightarrow \mathrm{dSe}$				6. $\mathrm{C} \rightarrow \varepsilon$				\vdash dacbe-1		$\vdash \mathrm{S}-1$	Match				
				dacbe-1	\vdash	S-1	Apply (3)								
	-	-	a					b	c	d	e	dacbe-1	\vdash	dSe-1	Match
S'	\{1\}							acbe-1	1 d	Se-1	Apply (2)				
S		\{4\}	\{2\}	\{4\}	\{4\}	\{3\}	\{4\}	acbe-1	\vdash-d	aSbe-1	Match				
C		\{6\}		\{6\}	\{5\}		\{6\}	cbe-1	\vdash-da	Sbe-1	Apply (4)				
Input:				\vdash dacbe-1				cbe-1	\vdash-da	Cbe-1	Apply (5)				
Top of Stack:				b				cbe-1	\vdash-da	cCbe-1	Match				
Lookahead:				b				be-1	\vdash dac	Cbe-1	Apply (6)				
				be-1	\vdash dac	be-1									

LL(1) Parsing: Example

1. $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S}-1$						\rightarrow		Unread	Matched	(T) Stack (B)	Action				
2. $\mathrm{S} \rightarrow \mathrm{aSb}$				5. $\mathrm{C} \rightarrow \mathrm{cC}$				\vdash dacbe-1		S'	Apply (1)				
3. $S \rightarrow \mathrm{dSe}$				6. $C \rightarrow \varepsilon$											
				be-1	\vdash dac	be-1	Match								
	\vdash	†	a					b	c	d	e	e-1	\vdash dacb	e-1	
S'	\{1\}														
S		\{4\}	\{2\}	\{4\}	\{4\}	\{3\}	\{4\}								
c		\{6\}					\{6\}								
Input: Top of Stack: Lookahead:				\vdash dacbe-											
				e											
				e											

LL(1) Parsing: Example

LL(1) Parsing: Example

