
Limitations of LL(1) Parsing



Limitations of LL(1)

• A grammar is LL(1) if every cell of the Predict table contains at most 
one rule.

• We saw that this ambiguous expression grammar is not LL(1):

E → E + E         E → 3

• Ambiguous grammars are never LL(1) because the Predict table 
attempts to include all rules that "could work" in some context.

• If a grammar is ambiguous, there must be a context where two 
distinct rules would both be valid to use in a leftmost derivation.

• Are there unambiguous grammars that are not LL(1)?



Limitations of LL(1)

• In the previous module, we developed this unambiguous grammar for 
arithmetic expressions with addition, subtraction, multiplication, 
division, brackets, and variables.

 L2 → L2 + L1 | L2 – L1 | L1

 L1 → L1 * L0 | L1 / L0 | L0

 L0 → a | b | c | (L2)

• This is not LL(1). It has the same problem as the ambiguous grammar.
• If L2 is on the stack and "a" is the next symbol of input, we don't know 

whether to apply L2 → L2 + L1 or L2 → L1. 



Limitations of LL(1)

• In the previous module, we developed this unambiguous grammar for 
arithmetic expressions with addition, subtraction, multiplication, 
division, brackets, and variables.

 L2 → L2 + L1 | L2 – L1 | L1

 L1 → L1 * L0 | L1 / L0 | L0

 L0 → a | b | c | (L2)

• Suppose the input string is a + a and we haven't read any input. We 
need to apply L2 → L2 + L1 then L2 → L1 then L1 → L0 then L0 → a 
before we can finally read the first a.



Limitations of LL(1)

• In the previous module, we developed this unambiguous grammar for 
arithmetic expressions with addition, subtraction, multiplication, 
division, brackets, and variables.

 L2 → L2 + L1 | L2 – L1 | L1

 L1 → L1 * L0 | L1 / L0 | L0

 L0 → a | b | c | (L2)

• Suppose the input string is a + a + a and we haven't read any input. 
We need to apply L2 → L2 + L1 twice before L2 → L1. But the context is 
the same as before (L2 on the stack and "a" at the front of input).



Left Recursion

• This is actually an inherent problem with left recursion in grammars.

A → Aα | β

• This grammar can derive any string of the form βαα…α  (βα*)

• The predictor has to figure out how many times to apply A → Aα, but 
the only information it has is the symbols at the start of β.

• In fact, this cannot be handled by LL(k) parsing (up to k symbols of 
lookahead) for any k, because to determine how many α's there are, 
we potentially need to look at the entire string!

• This is a problem because left recursion is used for left associativity!



Removing Left Recursion

• Removing left recursion from a grammar might mess up our parse 
tree (e.g., arithmetic operations would no longer be left associative).

• Nonetheless, we can consider the idea of changing the grammar so 
LL(1) will work, and then somehow fixing the parse tree later.

• If we use right recursion instead, is the grammar LL(1)?

 L2 → L1 + L2 | L1 – L2 | L1

 L1 → L0 * L1 | L0 / L1 | L0

 L0 → a | b | c | (L2)

• No. For example, consider a vs a + a. The first rule to apply can't be 
predicted just by looking at "a".



Removing Left Recursion

• Removing left recursion from a grammar might mess up our parse 
tree (e.g., arithmetic operations would no longer be left associative).

• Nonetheless, we can consider the idea of changing the grammar so 
LL(1) will work, and then somehow fixing the parse tree later.

• If we use right recursion instead, is the grammar LL(1)?

 L2 → L1 + L2 | L1 – L2 | L1

 L1 → L0 * L1 | L0 / L1 | L0

 L0 → a | b | c | (L2)

• No. For example, consider a vs a + a. The first rule to apply can't be 
predicted just by looking at "a". However, this is LL(2).



Left Factoring

• Given a grammar with "direct" left recursion:

A → Aα | β

• We can remove left recursion as follows:
• Introduce a new nonterminal A'.
• Replace these rules with A → βA' and A' → αA' | ε.

• But this might not produce an LL(1) grammar.

• Consider A → Aab | Aac | d.

• We could transform this into A → dA',  A' → abA' | acA' | ε.

• How do we tell whether to apply A' → abA' or A' → acA' if the next 
symbol is a? (Would need 2 lookaheads)



Left Factoring

• If multiple rules with the same left hand side have a common (non-
empty) prefix on the right hand side, the grammar is not LL(1).

A' → abA'        A' → acA'

• Left factoring can be used to resolve this. 

• If a grammar has a collection of rules with a common left hand since 
A, and a common right hand side prefix α, as follows:

A → αβ1 | αβ2 | … | αβn

• Introduce a new nonterminal A' and replace these rules with:

A → αA'      A' → β1 | β2 | … | βn



Left Factoring: Example

• Take our right-recursive expression grammar:

 L2 → L1 + L2 | L1 – L2 | L1

 L1 → L0 * L1 | L0 / L1 | L0

 L0 → a | b | c | (L2)

• Left-factored version, which is LL(1):

 L2 → L1L2'   L2' → + L2 | – L2 | ε 

 L1 → L0 L1'   L1' → * L1 | / L1 | ε

 L0 → a | b | c | (L2)



The State of Things

• Left-recursive grammars, which we use for left-associative operations, 
are incompatible with LL(1) parsing.

• Even increasing the lookahead and using a more complicated "LL(k)" 
predict table would not solve this.

• We can convert the left recursion to right recursion, but this messes 
up our parse trees, and the resulting grammar isn't even always LL(1).

• We can sometimes use left factoring to get an LL(1) grammar, but this 
messes up our parse trees even more.

• Some languages do not permit an LL(1) grammar at all.



Our Solution

• We do not necessarily need to give up on top-down parsing. 

• There are top-down parsers that overcome the issues we have 
encountered by using more ad-hoc techniques, as opposed to the 
formalism of LL(1) or LL(k).

• There are also other formal techniques that expand on LL parsing.

• However, we will instead explore the idea of bottom-up parsing.

• We will see that bottom-up parsers, while they are less intuitive, are 
able to handle left recursion in practical grammars without issues.

• We will ultimately use a bottom-up parser in our compiler.



Bottom-Up Parsing: 
First Steps



The Idea

• In top-down parsing, we begin the derivation from the start symbol.

• At each step, we either match a terminal (read input) or apply a rule 
(progress our derivation) until we derive the target string.

• In bottom-up parsing, we find a reverse derivation, starting from the 
target string and working backwards to the start symbol.

• At each step, we either shift a terminal (read input) or reduce by a 
rule (progress our reverse derivation) until we reach the start symbol.
• "Reduce" means to apply the rule "backwards": we take part of our current 

derivation that matches the right-hand side of the rule, and replace that part 
with the left-hand side.



Bottom-Up Parsing, Informally

Here is a simple grammar for 
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣   
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Implementing Bottom-Up Parsing

• The idea is to shift symbols until the tail of our current sequence 
matches the right-hand side of a rule.

• Once we have the right-hand side of a rule, things get difficult.
• Do we reduce right away, or do we keep shifting more symbols?

• What if there are multiple rules with the same RHS to reduce by?

• With LL(1) top-down parsing, we dealt with the tough decisions by 
just saying "if we have to make decisions, it's not an LL(1) grammar".

• We'll start out by looking at LR(0) parsing which takes a similar 
approach: We only worry about how to handle grammars that don't 
require us to make decisions during parsing.



LR(0) Parsing

• Left-to-right scan of the input, Rightmost derivation produced… and 
zero symbols of lookahead!

• In LR(0) parsing, we don't use the next unread input symbol to make 
decisions, unlike in LL(1).

• The algorithm, at a high level:
• Keep shifting until we see the right-hand side of a rule.

• Keep reducing as long as the tail of our shifted sequence matches the right-
hand side of a rule. Then go back to shifting.

• If this algorithm ever has to make decisions about which rule to 
reduce by, we give up and say "the grammar is not LR(0)".



Recognizing Right-Hand Sides

• Conceptually, the algorithm is simple, but how do we tell whether our 
sequence ends with the right-hand side of a rule?

• One approach is to use an NFA!

• It's easy to create NFAs for "strings that end with (something)". 

• We could use ε-transitions to create a big NFA that tells us whether 
our NFA ends with the right-hand side of any rule in the grammar.



Simple NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

num

T

N

⊢ T

* N

⊣

ε

ε

ε

ε

⊢, ⊣, T, N, *, num



Problems With This NFA

• The purpose of this NFA is just to tell us whether the current step of 
our "reverse derivation" ends with the right-hand side of a rule.
• If it does, we reduce by that rule.

• If not, we continue shifting.

• It accomplishes this goal, but it is a bit too lenient in what it accepts.

• For example, it will accept a nonsense string like ⊢⊣T⊢*N*num 
because it ends with "num" which is the RHS of N → num.

• This string will clearly not parse correctly, but it will take several 
reduce steps before we run into an issue.



Better NFA for Right-Hand Sides
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T → N

N → num

S

T

T

N
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⊣

1. Create DFAs for the RHS of each rule 
and mark the initial states with the LHS.



Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule 
and mark the initial states with the LHS.

2. For each state with a transition leading 
outwards on a nonterminal, connect 
the state (using ε-transitions) to all the 
states marked with that nonterminal.



Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule 
and mark the initial states with the LHS.

2. For each state with a transition leading 
outwards on a nonterminal, connect 
the state (using ε-transitions) to all the 
states marked with that nonterminal.

Outwards transition 
on nonterminal T



Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule 
and mark the initial states with the LHS.

2. For each state with a transition leading 
outwards on a nonterminal, connect 
the state (using ε-transitions) to all the 
states marked with that nonterminal.

Outwards transition 
on nonterminal T

εε



Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule 
and mark the initial states with the LHS.

2. For each state with a transition leading 
outwards on a nonterminal, connect 
the state (using ε-transitions) to all the 
states marked with that nonterminal.

Outwards transition 
on nonterminal T

εε



Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule 
and mark the initial states with the LHS.

2. For each state with a transition leading 
outwards on a nonterminal, connect 
the state (using ε-transitions) to all the 
states marked with that nonterminal.

εε

εεOutwards transition 
on nonterminal T



Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule 
and mark the initial states with the LHS.

2. For each state with a transition leading 
outwards on a nonterminal, connect 
the state (using ε-transitions) to all the 
states marked with that nonterminal.

Outwards transition 
on nonterminal N

εε

εε



Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule 
and mark the initial states with the LHS.

2. For each state with a transition leading 
outwards on a nonterminal, connect 
the state (using ε-transitions) to all the 
states marked with that nonterminal.

Outwards transition 
on nonterminal N

εε

εε

ε



Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule 
and mark the initial states with the LHS.

2. For each state with a transition leading 
outwards on a nonterminal, connect 
the state (using ε-transitions) to all the 
states marked with that nonterminal.

Outwards transition 
on nonterminal N

εε

εε

ε



Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule 
and mark the initial states with the LHS.

2. For each state with a transition leading 
outwards on a nonterminal, connect 
the state (using ε-transitions) to all the 
states marked with that nonterminal.

Outwards transition 
on nonterminal N

εε

εε

ε

ε



Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule 
and mark the initial states with the LHS.

2. For each state with a transition leading 
outwards on a nonterminal, connect 
the state (using ε-transitions) to all the 
states marked with that nonterminal.

εε

εε

ε

ε



Better NFA for Right-Hand Sides
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T → T * N

T → N
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S
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N
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We only accept a string if it ends with an 
RHS and is a prefix of something that can 
be derived from the start symbol.

The ε-transitions represent places in the 
string where we can replace a nonterminal 
with its expansion by a rule.
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Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S
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N
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Why is this NFA better? For one, it 
describes the language we want more 
precisely, leading to better error reporting.

We also want to convert the NFA into a DFA 
for more efficient processing. This NFA will 
be simpler to convert.
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Converting to a DFA

S → ⊢ T ⊣

T → T * N

T → N

N → num num

T

N

⊢ T

* N

⊣

To convert to a DFA, we will give each state 
a unique name so we can keep track of 
which states are in our subsets.

The names will track which rule is being 
processed, and how much of the RHS of 
the rule we have seen.

εε

εε

ε
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Converting to a DFA

S → ⊢ T ⊣

T → T * N

T → N

N → num num

T

N

⊢ T

* N

⊣

This state will be named: S → • ⊢ T ⊣

The • is called a bookmark and indicates 
where we are in the right hand side.

Rules with bookmarks are called items.
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Converting to a DFA

S → ⊢ T ⊣

T → T * N

T → N

N → num num

T

N

⊢ T

* N

⊣

This state will be named: S → ⊢ • T ⊣

Notice the bookmark advanced one 
position.

εε
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ε

ε



Converting to a DFA

S → ⊢ T ⊣

T → T * N

T → N

N → num num

T

N

⊢ T

* N

⊣

This state will be named: T → T * • N

εε

εε

ε

ε



Converting to a DFA

S → ⊢ T ⊣

T → T * N

T → N

N → num num

T

N

⊢ T

* N

⊣

This state will be named: N → num •

When the bookmark is at the end of the 
RHS, this is called a reducible item since it 
indicates we have seen an entire RHS and 
should reduce by the associated rule.
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εε

ε

ε



Converting to a DFA

S → ⊢ T ⊣

T → T * N

T → N

N → num

Use the subset 
construction
with this table.

State ⊢ ⊣ T N * num ε

S→•⊢T⊣ S→⊢•T⊣

S→⊢•T⊣ S→⊢T•⊣ T→•T*N
T→•N

S→⊢T•⊣ S→⊢T⊣•

S→⊢T⊣•

T→•T*N T→T•*N T→•T*N
T→•N

T→T•*N T→T*•N

T→T*•N T→T*N• N→•num

T→T*N•

T→•N T→N• N→•num

T→N•

N→•num N→num•

N→num•



Aside: Augmented Grammars

• Our grammar has an unusual rule S → ⊢ T ⊣ which forces every string 
in the language to be surrounded with ⊢ and ⊣ symbols.

• We can add these symbols to any CFG:
• If S is the old start symbol, add a new start symbol S' and rule: S' → ⊢ S ⊣

• This is called augmenting the grammar. The augmented CFG is 
essentially the same but all strings are "wrapped" with ⊢ and ⊣.
• ⊢ is often called "beginning of file" and ⊣ is often called "end of file".

• This can make algorithms easier to describe. For example, in the LR(0) 
DFA construction, it forces the DFA to have a simple starting state that 
only contains one item.



Constructing LR(0) DFAs

• LR(0) DFAs can also be constructed directly without creating the NFA 
and using the subset construction. We describe an algorithm for this 
(intended for augmented grammars) on the next slide. 

• Some terminology and notation:
• A fresh item is an item with the bookmark on the very left of the RHS.

• All states are initially incomplete and will be marked as complete over the 
course of the algorithm. The algorithm is done when every state is complete.

• We will write a generic non-reducible item as A → α•σβ. Here α and β are 
strings (possibly empty) of terminals and nonterminals, and σ is a single 
symbol, which can be a terminal or a nonterminal.



Constructing LR(0) DFAs

1. Create an initial state which contains the fresh item S' → • ⊢ S ⊣, 
corresponding to the starting rule of the augmented grammar.

2. For each incomplete state X, fill out the transitions as follows.
• For each non-reducible item A → α•σβ in X, create a set of items Y that initially contains the 

item A → ασ•β.
• Expand the set of items Y as follows:

• For each non-reducible item A → α•σβ in Y such that σ is a nonterminal, add fresh items to Y for every 
rule with σ on the left-hand side.

• Repeat the process in the above bullet point with the newly added fresh items. Keep repeating until 
there are no more new items to add.

• If Y already matches an existing state, add a transition from X to the existing state on σ. 
• Otherwise, create a new state for Y, and add a transition from X to the new state on σ.
• Mark the state X as complete. 

Repeat Step 2 until all states are complete.



Coming Up Next

• We'll learn how to use an LR(0) DFA to parse strings efficiently.

• We'll learn about parsing conflicts and get a sense of the limitations 
of the LR(0) technique.

• We'll learn about SLR(1) (short for Simple LR(1)), a way of resolving 
some (but not all) conflicts using lookahead and Follow sets. 

• We'll learn how to build a parse tree as we parse (as opposed to just 
finding a "reverse derivation").
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