
Limitations of LL(1) Parsing

Limitations of LL(1)

• A grammar is LL(1) if every cell of the Predict table contains at most
one rule.

• We saw that this ambiguous expression grammar is not LL(1):

E → E + E E → 3

• Ambiguous grammars are never LL(1) because the Predict table
attempts to include all rules that "could work" in some context.

• If a grammar is ambiguous, there must be a context where two
distinct rules would both be valid to use in a leftmost derivation.

• Are there unambiguous grammars that are not LL(1)?

Limitations of LL(1)

• In the previous module, we developed this unambiguous grammar for
arithmetic expressions with addition, subtraction, multiplication,
division, brackets, and variables.

 L2 → L2 + L1 | L2 – L1 | L1

 L1 → L1 * L0 | L1 / L0 | L0

 L0 → a | b | c | (L2)

• This is not LL(1). It has the same problem as the ambiguous grammar.
• If L2 is on the stack and "a" is the next symbol of input, we don't know

whether to apply L2 → L2 + L1 or L2 → L1.

Limitations of LL(1)

• In the previous module, we developed this unambiguous grammar for
arithmetic expressions with addition, subtraction, multiplication,
division, brackets, and variables.

 L2 → L2 + L1 | L2 – L1 | L1

 L1 → L1 * L0 | L1 / L0 | L0

 L0 → a | b | c | (L2)

• Suppose the input string is a + a and we haven't read any input. We
need to apply L2 → L2 + L1 then L2 → L1 then L1 → L0 then L0 → a
before we can finally read the first a.

Limitations of LL(1)

• In the previous module, we developed this unambiguous grammar for
arithmetic expressions with addition, subtraction, multiplication,
division, brackets, and variables.

 L2 → L2 + L1 | L2 – L1 | L1

 L1 → L1 * L0 | L1 / L0 | L0

 L0 → a | b | c | (L2)

• Suppose the input string is a + a + a and we haven't read any input.
We need to apply L2 → L2 + L1 twice before L2 → L1. But the context is
the same as before (L2 on the stack and "a" at the front of input).

Left Recursion

• This is actually an inherent problem with left recursion in grammars.

A → Aα | β

• This grammar can derive any string of the form βαα…α (βα*)

• The predictor has to figure out how many times to apply A → Aα, but
the only information it has is the symbols at the start of β.

• In fact, this cannot be handled by LL(k) parsing (up to k symbols of
lookahead) for any k, because to determine how many α's there are,
we potentially need to look at the entire string!

• This is a problem because left recursion is used for left associativity!

Removing Left Recursion

• Removing left recursion from a grammar might mess up our parse
tree (e.g., arithmetic operations would no longer be left associative).

• Nonetheless, we can consider the idea of changing the grammar so
LL(1) will work, and then somehow fixing the parse tree later.

• If we use right recursion instead, is the grammar LL(1)?

 L2 → L1 + L2 | L1 – L2 | L1

 L1 → L0 * L1 | L0 / L1 | L0

 L0 → a | b | c | (L2)

• No. For example, consider a vs a + a. The first rule to apply can't be
predicted just by looking at "a".

Removing Left Recursion

• Removing left recursion from a grammar might mess up our parse
tree (e.g., arithmetic operations would no longer be left associative).

• Nonetheless, we can consider the idea of changing the grammar so
LL(1) will work, and then somehow fixing the parse tree later.

• If we use right recursion instead, is the grammar LL(1)?

 L2 → L1 + L2 | L1 – L2 | L1

 L1 → L0 * L1 | L0 / L1 | L0

 L0 → a | b | c | (L2)

• No. For example, consider a vs a + a. The first rule to apply can't be
predicted just by looking at "a". However, this is LL(2).

Left Factoring

• Given a grammar with "direct" left recursion:

A → Aα | β

• We can remove left recursion as follows:
• Introduce a new nonterminal A'.
• Replace these rules with A → βA' and A' → αA' | ε.

• But this might not produce an LL(1) grammar.

• Consider A → Aab | Aac | d.

• We could transform this into A → dA', A' → abA' | acA' | ε.

• How do we tell whether to apply A' → abA' or A' → acA' if the next
symbol is a? (Would need 2 lookaheads)

Left Factoring

• If multiple rules with the same left hand side have a common (non-
empty) prefix on the right hand side, the grammar is not LL(1).

A' → abA' A' → acA'

• Left factoring can be used to resolve this.

• If a grammar has a collection of rules with a common left hand since
A, and a common right hand side prefix α, as follows:

A → αβ1 | αβ2 | … | αβn

• Introduce a new nonterminal A' and replace these rules with:

A → αA' A' → β1 | β2 | … | βn

Left Factoring: Example

• Take our right-recursive expression grammar:

 L2 → L1 + L2 | L1 – L2 | L1

 L1 → L0 * L1 | L0 / L1 | L0

 L0 → a | b | c | (L2)

• Left-factored version, which is LL(1):

 L2 → L1L2' L2' → + L2 | – L2 | ε

 L1 → L0 L1' L1' → * L1 | / L1 | ε

 L0 → a | b | c | (L2)

The State of Things

• Left-recursive grammars, which we use for left-associative operations,
are incompatible with LL(1) parsing.

• Even increasing the lookahead and using a more complicated "LL(k)"
predict table would not solve this.

• We can convert the left recursion to right recursion, but this messes
up our parse trees, and the resulting grammar isn't even always LL(1).

• We can sometimes use left factoring to get an LL(1) grammar, but this
messes up our parse trees even more.

• Some languages do not permit an LL(1) grammar at all.

Our Solution

• We do not necessarily need to give up on top-down parsing.

• There are top-down parsers that overcome the issues we have
encountered by using more ad-hoc techniques, as opposed to the
formalism of LL(1) or LL(k).

• There are also other formal techniques that expand on LL parsing.

• However, we will instead explore the idea of bottom-up parsing.

• We will see that bottom-up parsers, while they are less intuitive, are
able to handle left recursion in practical grammars without issues.

• We will ultimately use a bottom-up parser in our compiler.

Bottom-Up Parsing:
First Steps

The Idea

• In top-down parsing, we begin the derivation from the start symbol.

• At each step, we either match a terminal (read input) or apply a rule
(progress our derivation) until we derive the target string.

• In bottom-up parsing, we find a reverse derivation, starting from the
target string and working backwards to the start symbol.

• At each step, we either shift a terminal (read input) or reduce by a
rule (progress our reverse derivation) until we reach the start symbol.
• "Reduce" means to apply the rule "backwards": we take part of our current

derivation that matches the right-hand side of the rule, and replace that part
with the left-hand side.

Bottom-Up Parsing, Informally

Here is a simple grammar for
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣

Bottom-Up Parsing, Informally

Here is a simple grammar for
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣ shift ⊢
⊢ num * num * num ⊣

Bottom-Up Parsing, Informally

Here is a simple grammar for
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣ shift ⊢
⊢ num * num * num ⊣ shift num
⊢ num * num * num ⊣

Bottom-Up Parsing, Informally

Here is a simple grammar for
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣ shift ⊢
⊢ num * num * num ⊣ shift num
⊢ num * num * num ⊣ reduce N → num
⊢ N * num * num ⊣

Bottom-Up Parsing, Informally

Here is a simple grammar for
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣ shift ⊢
⊢ num * num * num ⊣ shift num
⊢ num * num * num ⊣ reduce N → num
⊢ N * num * num ⊣ reduce T → N
⊢ T * num * num ⊣

Bottom-Up Parsing, Informally

Here is a simple grammar for
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣ shift ⊢
⊢ num * num * num ⊣ shift num
⊢ num * num * num ⊣ reduce N → num
⊢ N * num * num ⊣ reduce T → N
⊢ T * num * num ⊣ shift *
⊢ T * num * num ⊣

Bottom-Up Parsing, Informally

Here is a simple grammar for
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣ shift ⊢
⊢ num * num * num ⊣ shift num
⊢ num * num * num ⊣ reduce N → num
⊢ N * num * num ⊣ reduce T → N
⊢ T * num * num ⊣ shift *
⊢ T * num * num ⊣ shift num
⊢ T * num * num ⊣

Bottom-Up Parsing, Informally

Here is a simple grammar for
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣ shift ⊢
⊢ num * num * num ⊣ shift num
⊢ num * num * num ⊣ reduce N → num
⊢ N * num * num ⊣ reduce T → N
⊢ T * num * num ⊣ shift *
⊢ T * num * num ⊣ shift num
⊢ T * num * num ⊣ reduce N → num
⊢ T * N * num ⊣

Bottom-Up Parsing, Informally

Here is a simple grammar for
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣ shift ⊢
⊢ num * num * num ⊣ shift num
⊢ num * num * num ⊣ reduce N → num
⊢ N * num * num ⊣ reduce T → N
⊢ T * num * num ⊣ shift *
⊢ T * num * num ⊣ shift num
⊢ T * num * num ⊣ reduce N → num
⊢ T * N * num ⊣ reduce T → T * N
⊢ T * num ⊣

Bottom-Up Parsing, Informally

Here is a simple grammar for
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣ shift ⊢
⊢ num * num * num ⊣ shift num
⊢ num * num * num ⊣ reduce N → num
⊢ N * num * num ⊣ reduce T → N
⊢ T * num * num ⊣ shift *
⊢ T * num * num ⊣ shift num
⊢ T * num * num ⊣ reduce N → num
⊢ T * N * num ⊣ reduce T → T * N
⊢ T * num ⊣ shift *
⊢ T * num ⊣

Bottom-Up Parsing, Informally

Here is a simple grammar for
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣ shift ⊢
⊢ num * num * num ⊣ shift num
⊢ num * num * num ⊣ reduce N → num
⊢ N * num * num ⊣ reduce T → N
⊢ T * num * num ⊣ shift *
⊢ T * num * num ⊣ shift num
⊢ T * num * num ⊣ reduce N → num
⊢ T * N * num ⊣ reduce T → T * N
⊢ T * num ⊣ shift *
⊢ T * num ⊣ shift num
⊢ T * num ⊣

Bottom-Up Parsing, Informally

Here is a simple grammar for
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣ shift ⊢
⊢ num * num * num ⊣ shift num
⊢ num * num * num ⊣ reduce N → num
⊢ N * num * num ⊣ reduce T → N
⊢ T * num * num ⊣ shift *
⊢ T * num * num ⊣ shift num
⊢ T * num * num ⊣ reduce N → num
⊢ T * N * num ⊣ reduce T → T * N
⊢ T * num ⊣ shift *
⊢ T * num ⊣ shift num
⊢ T * num ⊣ reduce N → num
⊢ T * N ⊣

Bottom-Up Parsing, Informally

Here is a simple grammar for
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣ shift ⊢
⊢ num * num * num ⊣ shift num
⊢ num * num * num ⊣ reduce N → num
⊢ N * num * num ⊣ reduce T → N
⊢ T * num * num ⊣ shift *
⊢ T * num * num ⊣ shift num
⊢ T * num * num ⊣ reduce N → num
⊢ T * N * num ⊣ reduce T → T * N
⊢ T * num ⊣ shift *
⊢ T * num ⊣ shift num
⊢ T * num ⊣ reduce N → num
⊢ T * N ⊣ reduce T → T * N
⊢ T ⊣

Bottom-Up Parsing, Informally

Here is a simple grammar for
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣ shift ⊢
⊢ num * num * num ⊣ shift num
⊢ num * num * num ⊣ reduce N → num
⊢ N * num * num ⊣ reduce T → N
⊢ T * num * num ⊣ shift *
⊢ T * num * num ⊣ shift num
⊢ T * num * num ⊣ reduce N → num
⊢ T * N * num ⊣ reduce T → T * N
⊢ T * num ⊣ shift *
⊢ T * num ⊣ shift num
⊢ T * num ⊣ reduce N → num
⊢ T * N ⊣ reduce T → T * N
⊢ T ⊣ shift ⊣
⊢ T ⊣

Bottom-Up Parsing, Informally

Here is a simple grammar for
expressions with multiplication:

S → ⊢ T ⊣
T → T * N
T → N
N → num

Let's parse this string:
⊢ num * num * num ⊣

⊢ num * num * num ⊣ shift ⊢
⊢ num * num * num ⊣ shift num
⊢ num * num * num ⊣ reduce N → num
⊢ N * num * num ⊣ reduce T → N
⊢ T * num * num ⊣ shift *
⊢ T * num * num ⊣ shift num
⊢ T * num * num ⊣ reduce N → num
⊢ T * N * num ⊣ reduce T → T * N
⊢ T * num ⊣ shift *
⊢ T * num ⊣ shift num
⊢ T * num ⊣ reduce N → num
⊢ T * N ⊣ reduce T → T * N
⊢ T ⊣ shift ⊣
⊢ T ⊣ reduce S → ⊢ T ⊣

S

Implementing Bottom-Up Parsing

• The idea is to shift symbols until the tail of our current sequence
matches the right-hand side of a rule.

• Once we have the right-hand side of a rule, things get difficult.
• Do we reduce right away, or do we keep shifting more symbols?

• What if there are multiple rules with the same RHS to reduce by?

• With LL(1) top-down parsing, we dealt with the tough decisions by
just saying "if we have to make decisions, it's not an LL(1) grammar".

• We'll start out by looking at LR(0) parsing which takes a similar
approach: We only worry about how to handle grammars that don't
require us to make decisions during parsing.

LR(0) Parsing

• Left-to-right scan of the input, Rightmost derivation produced… and
zero symbols of lookahead!

• In LR(0) parsing, we don't use the next unread input symbol to make
decisions, unlike in LL(1).

• The algorithm, at a high level:
• Keep shifting until we see the right-hand side of a rule.

• Keep reducing as long as the tail of our shifted sequence matches the right-
hand side of a rule. Then go back to shifting.

• If this algorithm ever has to make decisions about which rule to
reduce by, we give up and say "the grammar is not LR(0)".

Recognizing Right-Hand Sides

• Conceptually, the algorithm is simple, but how do we tell whether our
sequence ends with the right-hand side of a rule?

• One approach is to use an NFA!

• It's easy to create NFAs for "strings that end with (something)".

• We could use ε-transitions to create a big NFA that tells us whether
our NFA ends with the right-hand side of any rule in the grammar.

Simple NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

num

T

N

⊢ T

* N

⊣

ε

ε

ε

ε

⊢, ⊣, T, N, *, num

Problems With This NFA

• The purpose of this NFA is just to tell us whether the current step of
our "reverse derivation" ends with the right-hand side of a rule.
• If it does, we reduce by that rule.

• If not, we continue shifting.

• It accomplishes this goal, but it is a bit too lenient in what it accepts.

• For example, it will accept a nonsense string like ⊢⊣T⊢*N*num
because it ends with "num" which is the RHS of N → num.

• This string will clearly not parse correctly, but it will take several
reduce steps before we run into an issue.

Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule
and mark the initial states with the LHS.

Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule
and mark the initial states with the LHS.

2. For each state with a transition leading
outwards on a nonterminal, connect
the state (using ε-transitions) to all the
states marked with that nonterminal.

Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule
and mark the initial states with the LHS.

2. For each state with a transition leading
outwards on a nonterminal, connect
the state (using ε-transitions) to all the
states marked with that nonterminal.

Outwards transition
on nonterminal T

Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule
and mark the initial states with the LHS.

2. For each state with a transition leading
outwards on a nonterminal, connect
the state (using ε-transitions) to all the
states marked with that nonterminal.

Outwards transition
on nonterminal T

εε

Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule
and mark the initial states with the LHS.

2. For each state with a transition leading
outwards on a nonterminal, connect
the state (using ε-transitions) to all the
states marked with that nonterminal.

Outwards transition
on nonterminal T

εε

Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule
and mark the initial states with the LHS.

2. For each state with a transition leading
outwards on a nonterminal, connect
the state (using ε-transitions) to all the
states marked with that nonterminal.

εε

εεOutwards transition
on nonterminal T

Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule
and mark the initial states with the LHS.

2. For each state with a transition leading
outwards on a nonterminal, connect
the state (using ε-transitions) to all the
states marked with that nonterminal.

Outwards transition
on nonterminal N

εε

εε

Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule
and mark the initial states with the LHS.

2. For each state with a transition leading
outwards on a nonterminal, connect
the state (using ε-transitions) to all the
states marked with that nonterminal.

Outwards transition
on nonterminal N

εε

εε

ε

Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule
and mark the initial states with the LHS.

2. For each state with a transition leading
outwards on a nonterminal, connect
the state (using ε-transitions) to all the
states marked with that nonterminal.

Outwards transition
on nonterminal N

εε

εε

ε

Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule
and mark the initial states with the LHS.

2. For each state with a transition leading
outwards on a nonterminal, connect
the state (using ε-transitions) to all the
states marked with that nonterminal.

Outwards transition
on nonterminal N

εε

εε

ε

ε

Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

1. Create DFAs for the RHS of each rule
and mark the initial states with the LHS.

2. For each state with a transition leading
outwards on a nonterminal, connect
the state (using ε-transitions) to all the
states marked with that nonterminal.

εε

εε

ε

ε

Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

We only accept a string if it ends with an
RHS and is a prefix of something that can
be derived from the start symbol.

The ε-transitions represent places in the
string where we can replace a nonterminal
with its expansion by a rule.

εε

εε

ε

ε

Better NFA for Right-Hand Sides

S → ⊢ T ⊣

T → T * N

T → N

N → num

S

T

T

N
num

T

N

⊢ T

* N

⊣

Why is this NFA better? For one, it
describes the language we want more
precisely, leading to better error reporting.

We also want to convert the NFA into a DFA
for more efficient processing. This NFA will
be simpler to convert.

εε

εε

ε

ε

Converting to a DFA

S → ⊢ T ⊣

T → T * N

T → N

N → num num

T

N

⊢ T

* N

⊣

To convert to a DFA, we will give each state
a unique name so we can keep track of
which states are in our subsets.

The names will track which rule is being
processed, and how much of the RHS of
the rule we have seen.

εε

εε

ε

ε

Converting to a DFA

S → ⊢ T ⊣

T → T * N

T → N

N → num num

T

N

⊢ T

* N

⊣

This state will be named: S → • ⊢ T ⊣

The • is called a bookmark and indicates
where we are in the right hand side.

Rules with bookmarks are called items.

εε

εε

ε

ε

Converting to a DFA

S → ⊢ T ⊣

T → T * N

T → N

N → num num

T

N

⊢ T

* N

⊣

This state will be named: S → ⊢ • T ⊣

Notice the bookmark advanced one
position.

εε

εε

ε

ε

Converting to a DFA

S → ⊢ T ⊣

T → T * N

T → N

N → num num

T

N

⊢ T

* N

⊣

This state will be named: T → T * • N

εε

εε

ε

ε

Converting to a DFA

S → ⊢ T ⊣

T → T * N

T → N

N → num num

T

N

⊢ T

* N

⊣

This state will be named: N → num •

When the bookmark is at the end of the
RHS, this is called a reducible item since it
indicates we have seen an entire RHS and
should reduce by the associated rule.

εε

εε

ε

ε

Converting to a DFA

S → ⊢ T ⊣

T → T * N

T → N

N → num

Use the subset
construction
with this table.

State ⊢ ⊣ T N * num ε

S→•⊢T⊣ S→⊢•T⊣

S→⊢•T⊣ S→⊢T•⊣ T→•T*N
T→•N

S→⊢T•⊣ S→⊢T⊣•

S→⊢T⊣•

T→•T*N T→T•*N T→•T*N
T→•N

T→T•*N T→T*•N

T→T*•N T→T*N• N→•num

T→T*N•

T→•N T→N• N→•num

T→N•

N→•num N→num•

N→num•

Aside: Augmented Grammars

• Our grammar has an unusual rule S → ⊢ T ⊣ which forces every string
in the language to be surrounded with ⊢ and ⊣ symbols.

• We can add these symbols to any CFG:
• If S is the old start symbol, add a new start symbol S' and rule: S' → ⊢ S ⊣

• This is called augmenting the grammar. The augmented CFG is
essentially the same but all strings are "wrapped" with ⊢ and ⊣.
• ⊢ is often called "beginning of file" and ⊣ is often called "end of file".

• This can make algorithms easier to describe. For example, in the LR(0)
DFA construction, it forces the DFA to have a simple starting state that
only contains one item.

Constructing LR(0) DFAs

• LR(0) DFAs can also be constructed directly without creating the NFA
and using the subset construction. We describe an algorithm for this
(intended for augmented grammars) on the next slide.

• Some terminology and notation:
• A fresh item is an item with the bookmark on the very left of the RHS.

• All states are initially incomplete and will be marked as complete over the
course of the algorithm. The algorithm is done when every state is complete.

• We will write a generic non-reducible item as A → α•σβ. Here α and β are
strings (possibly empty) of terminals and nonterminals, and σ is a single
symbol, which can be a terminal or a nonterminal.

Constructing LR(0) DFAs

1. Create an initial state which contains the fresh item S' → • ⊢ S ⊣,
corresponding to the starting rule of the augmented grammar.

2. For each incomplete state X, fill out the transitions as follows.
• For each non-reducible item A → α•σβ in X, create a set of items Y that initially contains the

item A → ασ•β.
• Expand the set of items Y as follows:

• For each non-reducible item A → α•σβ in Y such that σ is a nonterminal, add fresh items to Y for every
rule with σ on the left-hand side.

• Repeat the process in the above bullet point with the newly added fresh items. Keep repeating until
there are no more new items to add.

• If Y already matches an existing state, add a transition from X to the existing state on σ.
• Otherwise, create a new state for Y, and add a transition from X to the new state on σ.
• Mark the state X as complete.

Repeat Step 2 until all states are complete.

Coming Up Next

• We'll learn how to use an LR(0) DFA to parse strings efficiently.

• We'll learn about parsing conflicts and get a sense of the limitations
of the LR(0) technique.

• We'll learn about SLR(1) (short for Simple LR(1)), a way of resolving
some (but not all) conflicts using lookahead and Follow sets.

• We'll learn how to build a parse tree as we parse (as opposed to just
finding a "reverse derivation").

	Slide 1: Limitations of LL(1) Parsing
	Slide 2: Limitations of LL(1)
	Slide 3: Limitations of LL(1)
	Slide 4: Limitations of LL(1)
	Slide 5: Limitations of LL(1)
	Slide 6: Left Recursion
	Slide 7: Removing Left Recursion
	Slide 8: Removing Left Recursion
	Slide 9: Left Factoring
	Slide 10: Left Factoring
	Slide 11: Left Factoring: Example
	Slide 12: The State of Things
	Slide 13: Our Solution
	Slide 14: Bottom-Up Parsing: First Steps
	Slide 15: The Idea
	Slide 16: Bottom-Up Parsing, Informally
	Slide 17: Bottom-Up Parsing, Informally
	Slide 18: Bottom-Up Parsing, Informally
	Slide 19: Bottom-Up Parsing, Informally
	Slide 20: Bottom-Up Parsing, Informally
	Slide 21: Bottom-Up Parsing, Informally
	Slide 22: Bottom-Up Parsing, Informally
	Slide 23: Bottom-Up Parsing, Informally
	Slide 24: Bottom-Up Parsing, Informally
	Slide 25: Bottom-Up Parsing, Informally
	Slide 26: Bottom-Up Parsing, Informally
	Slide 27: Bottom-Up Parsing, Informally
	Slide 28: Bottom-Up Parsing, Informally
	Slide 29: Bottom-Up Parsing, Informally
	Slide 30: Bottom-Up Parsing, Informally
	Slide 31: Implementing Bottom-Up Parsing
	Slide 32: LR(0) Parsing
	Slide 33: Recognizing Right-Hand Sides
	Slide 34: Simple NFA for Right-Hand Sides
	Slide 35: Problems With This NFA
	Slide 36: Better NFA for Right-Hand Sides
	Slide 37: Better NFA for Right-Hand Sides
	Slide 38: Better NFA for Right-Hand Sides
	Slide 39: Better NFA for Right-Hand Sides
	Slide 40: Better NFA for Right-Hand Sides
	Slide 41: Better NFA for Right-Hand Sides
	Slide 42: Better NFA for Right-Hand Sides
	Slide 43: Better NFA for Right-Hand Sides
	Slide 44: Better NFA for Right-Hand Sides
	Slide 45: Better NFA for Right-Hand Sides
	Slide 46: Better NFA for Right-Hand Sides
	Slide 47: Better NFA for Right-Hand Sides
	Slide 48: Better NFA for Right-Hand Sides
	Slide 49: Converting to a DFA
	Slide 50: Converting to a DFA
	Slide 51: Converting to a DFA
	Slide 52: Converting to a DFA
	Slide 53: Converting to a DFA
	Slide 54: Converting to a DFA
	Slide 55: Aside: Augmented Grammars
	Slide 56: Constructing LR(0) DFAs
	Slide 57: Constructing LR(0) DFAs
	Slide 58: Coming Up Next

