Limitations of LL(1) Parsing

Limitations of LL(1)

- A grammar is $\operatorname{LL}(\mathbf{1})$ if every cell of the Predict table contains at most one rule.
- We saw that this ambiguous expression grammar is not $\operatorname{LL}(1)$:

$$
E \rightarrow E+E \quad E \rightarrow 3
$$

- Ambiguous grammars are never $\operatorname{LL}(1)$ because the Predict table attempts to include all rules that "could work" in some context.
- If a grammar is ambiguous, there must be a context where two distinct rules would both be valid to use in a leftmost derivation.
- Are there unambiguous grammars that are not $\mathrm{LL}(1)$?

Limitations of LL(1)

- In the previous module, we developed this unambiguous grammar for arithmetic expressions with addition, subtraction, multiplication, division, brackets, and variables.

$$
\begin{aligned}
& L_{2} \rightarrow L_{2}+L_{1}\left|L_{2}-L_{1}\right| L_{1} \\
& L_{1} \rightarrow L_{1} * L_{0}\left|L_{1} / L_{0}\right| L_{0} \\
& L_{0} \rightarrow a|b| c \mid\left(L_{2}\right)
\end{aligned}
$$

- This is not $\mathbf{L L}(\mathbf{1})$. It has the same problem as the ambiguous grammar.
- If L_{2} is on the stack and "a" is the next symbol of input, we don't know whether to apply $L_{2} \rightarrow L_{2}+L_{1}$ or $L_{2} \rightarrow L_{1}$.

Limitations of LL(1)

- In the previous module, we developed this unambiguous grammar for arithmetic expressions with addition, subtraction, multiplication, division, brackets, and variables.

$$
\begin{aligned}
& L_{2} \rightarrow L_{2}+L_{1}\left|L_{2}-L_{1}\right| L_{1} \\
& L_{1} \rightarrow L_{1} * L_{0}\left|L_{1} / L_{0}\right| L_{0} \\
& L_{0} \rightarrow a|b| c \mid\left(L_{2}\right)
\end{aligned}
$$

- Suppose the input string is $\mathbf{a + a}$ and we haven't read any input. We need to apply $L_{2} \rightarrow L_{2}+L_{1}$ then $L_{2} \rightarrow L_{1}$ then $L_{1} \rightarrow L_{0}$ then $L_{0} \rightarrow a$ before we can finally read the first \mathbf{a}.

Limitations of LL(1)

- In the previous module, we developed this unambiguous grammar for arithmetic expressions with addition, subtraction, multiplication, division, brackets, and variables.

$$
\begin{aligned}
& \mathrm{L}_{2} \rightarrow \mathrm{~L}_{2}+\mathrm{L}_{1}\left|\mathrm{~L}_{2}-\mathrm{L}_{1}\right| \mathrm{L}_{1} \\
& \mathrm{~L}_{1} \rightarrow \mathrm{~L}_{1} * \mathrm{~L}_{0}\left|\mathrm{~L}_{1} / \mathrm{L}_{0}\right| \mathrm{L}_{0} \\
& \left.\mathrm{~L}_{0} \rightarrow \text { a } \mid \text { b|c|(} \mathrm{L}_{2}\right)
\end{aligned}
$$

- Suppose the input string is $\mathbf{a + a + a}$ and we haven't read any input. We need to apply $L_{2} \rightarrow L_{2}+L_{1}$ twice before $L_{2} \rightarrow L_{1}$. But the context is the same as before (L_{2} on the stack and "a" at the front of input).

Left Recursion

- This is actually an inherent problem with left recursion in grammars.

$$
A \rightarrow A \alpha \mid \beta
$$

- This grammar can derive any string of the form $\beta \alpha \alpha \ldots \alpha\left(\beta \alpha^{*}\right)$
- The predictor has to figure out how many times to apply $A \rightarrow A \alpha$, but the only information it has is the symbols at the start of β.
- In fact, this cannot be handled by $\operatorname{LL}(k)$ parsing (up to k symbols of lookahead) for any k, because to determine how many α 's there are, we potentially need to look at the entire string!
- This is a problem because left recursion is used for left associativity!

Removing Left Recursion

- Removing left recursion from a grammar might mess up our parse tree (e.g., arithmetic operations would no longer be left associative).
- Nonetheless, we can consider the idea of changing the grammar so $\mathrm{LL}(1)$ will work, and then somehow fixing the parse tree later.
- If we use right recursion instead, is the grammar $\mathrm{LL}(1)$?

$$
\begin{aligned}
& L_{2} \rightarrow L_{1}+L_{2}\left|L_{1}-L_{2}\right| L_{1} \\
& L_{1} \rightarrow L_{0} * L_{1}\left|L_{0} / L_{1}\right| L_{0} \\
& L_{0} \rightarrow a|b| c \mid\left(L_{2}\right)
\end{aligned}
$$

- No. For example, consider a vs a+a. The first rule to apply can't be predicted just by looking at "a".

Removing Left Recursion

- Removing left recursion from a grammar might mess up our parse tree (e.g., arithmetic operations would no longer be left associative).
- Nonetheless, we can consider the idea of changing the grammar so $\mathrm{LL}(1)$ will work, and then somehow fixing the parse tree later.
- If we use right recursion instead, is the grammar $\mathrm{LL}(1)$?

$$
\begin{aligned}
& L_{2} \rightarrow L_{1}+L_{2}\left|L_{1}-L_{2}\right| L_{1} \\
& L_{1} \rightarrow L_{0} * L_{1}\left|L_{0} / L_{1}\right| L_{0} \\
& L_{0} \rightarrow a|b| c \mid\left(L_{2}\right)
\end{aligned}
$$

- No. For example, consider a vs a+a. The first rule to apply can't be predicted just by looking at "a". However, this is LL(2).

Left Factoring

- Given a grammar with "direct" left recursion:

$$
A \rightarrow A \alpha \mid \beta
$$

- We can remove left recursion as follows:
- Introduce a new nonterminal A'.
- Replace these rules with $A \rightarrow \beta A^{\prime}$ and $A^{\prime} \rightarrow \alpha A^{\prime} \mid \varepsilon$.
- But this might not produce an LL(1) grammar.
- Consider A \rightarrow Aab | Aac \| d.
- We could transform this into $A \rightarrow \mathrm{dA}^{\prime}, \mathrm{A}^{\prime} \rightarrow \mathrm{abA}^{\prime}\left|a c A^{\prime}\right| \varepsilon$.
- How do we tell whether to apply $\mathrm{A}^{\prime} \rightarrow$ abA' or $\mathrm{A}^{\prime} \rightarrow$ acA' if the next symbol is a? (Would need 2 lookaheads)

Left Factoring

- If multiple rules with the same left hand side have a common (nonempty) prefix on the right hand side, the grammar is not $\mathrm{LL}(1)$.

$$
A^{\prime} \rightarrow \underline{a} b A^{\prime} \quad A^{\prime} \rightarrow \underline{a} c A^{\prime}
$$

- Left factoring can be used to resolve this.
- If a grammar has a collection of rules with a common left hand since A, and a common right hand side prefix α, as follows:

$$
A \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \ldots \mid \alpha \beta_{n}
$$

- Introduce a new nonterminal A^{\prime} and replace these rules with:

$$
\mathrm{A} \rightarrow \alpha \mathrm{~A}^{\prime} \quad \mathrm{A}^{\prime} \rightarrow \beta_{1}\left|\beta_{2}\right| \ldots \mid \beta_{n}
$$

Left Factoring: Example

- Take our right-recursive expression grammar:

$$
\begin{aligned}
& L_{2} \rightarrow L_{1}+L_{2}\left|L_{1}-L_{2}\right| L_{1} \\
& L_{1} \rightarrow L_{0}^{*} L_{1}\left|L_{0} / L_{1}\right| L_{0} \\
& L_{0} \rightarrow a|b| c \mid\left(L_{2}\right)
\end{aligned}
$$

- Left-factored version, which is $\operatorname{LL}(1)$:

$$
\begin{array}{ll}
\mathrm{L}_{2} \rightarrow \mathrm{~L}_{1} \mathrm{~L}_{2}^{\prime} & \mathrm{L}_{2}^{\prime} \rightarrow+\mathrm{L}_{2}\left|-\mathrm{L}_{2}\right| \varepsilon \\
\mathrm{L}_{1} \rightarrow \mathrm{~L}_{0} \mathrm{~L}_{1}^{\prime} & \mathrm{L}_{1}^{\prime} \rightarrow{ }^{*} \mathrm{~L}_{1}\left|/ \mathrm{L}_{1}\right| \varepsilon \\
\mathrm{L}_{0} \rightarrow \mathrm{a}|\mathrm{~b}| \mathrm{c} \mid\left(\mathrm{L}_{2}\right) &
\end{array}
$$

The State of Things

- Left-recursive grammars, which we use for left-associative operations, are incompatible with $\operatorname{LL}(1)$ parsing.
- Even increasing the lookahead and using a more complicated "LL(k)" predict table would not solve this.
- We can convert the left recursion to right recursion, but this messes up our parse trees, and the resulting grammar isn't even always $\mathrm{LL}(1)$.
- We can sometimes use left factoring to get an LL(1) grammar, but this messes up our parse trees even more.
- Some languages do not permit an $\operatorname{LL}(1)$ grammar at all.

Our Solution

- We do not necessarily need to give up on top-down parsing.
- There are top-down parsers that overcome the issues we have encountered by using more ad-hoc techniques, as opposed to the formalism of $\operatorname{LL}(1)$ or $\operatorname{LL}(\mathrm{k})$.
- There are also other formal techniques that expand on LL parsing.
- However, we will instead explore the idea of bottom-up parsing.
- We will see that bottom-up parsers, while they are less intuitive, are able to handle left recursion in practical grammars without issues.
- We will ultimately use a bottom-up parser in our compiler.

Bottom-Up Parsing: First Steps

The Idea

- In top-down parsing, we begin the derivation from the start symbol.
- At each step, we either match a terminal (read input) or apply a rule (progress our derivation) until we derive the target string.
- In bottom-up parsing, we find a reverse derivation, starting from the target string and working backwards to the start symbol.
- At each step, we either shift a terminal (read input) or reduce by a rule (progress our reverse derivation) until we reach the start symbol.
- "Reduce" means to apply the rule "backwards": we take part of our current derivation that matches the right-hand side of the rule, and replace that part with the left-hand side.

Bottom-Up Parsing, Informally

$\vdash \operatorname{num} *$ num $*$ num -1
Here is a simple grammar for expressions with multiplication:
$\mathrm{S} \rightarrow \vdash \mathrm{T} \dashv$
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~N}$
$\mathrm{T} \rightarrow \mathrm{N}$
$\mathrm{N} \rightarrow$ num

Let's parse this string:
\vdash num * num * num \dashv

Bottom-Up Parsing, Informally

Here is a simple grammar for expressions with multiplication:
$\mathrm{S} \rightarrow \vdash \mathrm{T} \dashv$
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~N}$
$\mathrm{T} \rightarrow \mathrm{N}$
$N \rightarrow$ num

Let's parse this string:
\vdash num * num * num \dashv
\vdash num * num * num $\dashv \quad$ shift \vdash
$\boldsymbol{\llcorner}$ num * num * num \dashv

Bottom-Up Parsing, Informally

Let's parse this string:
\vdash num * num * num \dashv

Bottom-Up Parsing, Informally

	\vdash num $*$ num $*$	num \dashv	shift \vdash
Here is a simple grammar for	\llcorner num $*$ num $*$	num \dashv	shift num
expressions with multiplication:	num$*$ num $*$	num \dashv	reduce $N \rightarrow$ num

$\mathrm{S} \rightarrow \vdash \mathrm{T} \dashv$
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~N}$
$\mathrm{T} \rightarrow \mathrm{N}$
$\mathrm{N} \rightarrow$ num

Let's parse this string:
\vdash num * num * num \dashv

Bottom-Up Parsing, Informally

	\vdash num * num * num -	shift $\stackrel{-}{ }$
Here is a simple grammar for expressions with multiplication:	\boldsymbol{E} num * num * num -	shift num
	$\stackrel{\text { num }}{ }$ * num * num \dashv	reduce $\mathrm{N} \rightarrow$ num
	$\underline{\mathbf{r}}$ * num * num -	reduce $\mathrm{T} \rightarrow \mathrm{N}$
$\mathrm{S} \rightarrow$ トT- \quad ト T^{*} num * num \dagger		
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~N}$		
$\mathrm{T} \rightarrow \mathrm{N}$		
$\mathrm{N} \rightarrow$ num		

Let's parse this string:
\vdash num * num * num \dashv

Bottom-Up Parsing, Informally

	\vdash num * num * num -	shift \vdash
Here is a simple grammar for expressions with multiplication:	上 num * num * num -	shift num reduce $\mathrm{N} \rightarrow$ num reduce $\mathrm{T} \rightarrow \mathrm{N}$ shift *
	\vdash num * num * num \dashv	
	F \mathbf{N}^{*} num * num -	
	$\underline{\mathbf{I}}$ * num * num \dashv	
$\mathrm{S} \rightarrow$ - T -	$\underline{\mathbf{r}}$ (${ }^{\text {* }}$ num * num \dashv	
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~N}$		
$\mathrm{T} \rightarrow \mathrm{N}$		
$N \rightarrow$ num		

Let's parse this string:
\vdash num * num * num \dashv

Bottom-Up Parsing, Informally

	\vdash num * num * num	shift \vdash
Here is a simple grammar for	上 num * num * num	shift num
expressions with multiplication:	F num * num * num	educe $\mathrm{N} \rightarrow$ num
	F N * num * num	reduce $\mathrm{T} \rightarrow \mathrm{N}$
	- ${ }^{\text {a }}$ * num * num	shift *
$\mathrm{S} \rightarrow \vdash \mathrm{T}-$	$\underline{\mathbf{r}}$ T * ${ }^{\text {num }}$ * num \dashv	shift num
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~N}$	$\underline{\mathbf{T}}{ }^{*}$ num * num \downarrow	

$\mathrm{T} \rightarrow \mathrm{N}$
$\mathrm{N} \rightarrow$ num

Let's parse this string:
\vdash num * num * num \dashv

Bottom-Up Parsing, Informally

	\vdash num * num * num -	shift $\stackrel{-}{ }$
Here is a simple grammar for expressions with multiplication:	上 num * num * num -	shift num
	$\underline{\text { r num }}$ * num * num -	reduce $\mathrm{N} \rightarrow$ num
	$\underline{\boldsymbol{F}}$ * num * num -	reduce $\mathrm{T} \rightarrow \mathrm{N}$
	\checkmark I $*$ num * num -	shift *
$\mathrm{S} \rightarrow \vdash \mathrm{T} \dashv$	$\underline{\mathbf{t}}$ T ${ }^{\text {a }}$ num $*$ num -	shift num
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~N}$	F T^{*} num $*$ num -	reduce $\mathrm{N} \rightarrow$ num
$\mathrm{T} \rightarrow \mathrm{N}$	$\underline{\mathbf{t}} \mathbf{T}$ * \mathbf{N} * num -	
$N \rightarrow$ num		

Let's parse this string:
\vdash num * num * num \dashv

Bottom-Up Parsing, Informally

Let's parse this string:
\vdash num * num * num \dashv

Bottom-Up Parsing, Informally

Let's parse this string:
\vdash num * num * num \dashv

Bottom-Up Parsing, Informally

	\vdash num * num * num -	shift $\stackrel{-}{ }$
Here is a simple grammar for expressions with multiplication:	上 num * num * num -	shift num
	t num * num * num	reduce $\mathrm{N} \rightarrow$ num
	$\underline{\mathbf{F}}$ * num * num -	reduce $\mathrm{T} \rightarrow \mathrm{N}$
$\mathrm{S} \rightarrow$ - $\mathrm{T}^{\text {- }}$	$\underline{\mathbf{r}}$ I $*$ num * num -	shift *
$S \rightarrow \vdash \top \uparrow$	F T * num * num	shift num
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~N}$	F T^{*} num * num	reduce $\mathrm{N} \rightarrow$ num
$\mathrm{T} \rightarrow \mathrm{N}$	F T * \mathbf{N} * num	reduce $\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~N}$
$\mathrm{N} \rightarrow$ num	$\underline{\mathrm{F}}$ - T^{*} num	shift *
	\underline{F} T * num -	shift num
	$\stackrel{T}{ }+$ num -	
$\vdash \text { num * num * num } \dashv$		

Bottom-Up Parsing, Informally

Bottom-Up Parsing, Informally

Bottom-Up Parsing, Informally

Bottom-Up Parsing, Informally

Implementing Bottom-Up Parsing

- The idea is to shift symbols until the tail of our current sequence matches the right-hand side of a rule.
- Once we have the right-hand side of a rule, things get difficult.
- Do we reduce right away, or do we keep shifting more symbols?
- What if there are multiple rules with the same RHS to reduce by?
- With $\mathrm{LL}(1)$ top-down parsing, we dealt with the tough decisions by just saying "if we have to make decisions, it's not an LL(1) grammar".
- We'll start out by looking at LR(0) parsing which takes a similar approach: We only worry about how to handle grammars that don't require us to make decisions during parsing.

LR(0) Parsing

- Left-to-right scan of the input, Rightmost derivation produced... and zero symbols of lookahead!
- In LR(0) parsing, we don't use the next unread input symbol to make decisions, unlike in LL(1).
- The algorithm, at a high level:
- Keep shifting until we see the right-hand side of a rule.
- Keep reducing as long as the tail of our shifted sequence matches the righthand side of a rule. Then go back to shifting.
- If this algorithm ever has to make decisions about which rule to reduce by, we give up and say "the grammar is not $L R(0)$ ".

Recognizing Right-Hand Sides

- Conceptually, the algorithm is simple, but how do we tell whether our sequence ends with the right-hand side of a rule?
- One approach is to use an NFA!
- It's easy to create NFAs for "strings that end with (something)".
- We could use ε-transitions to create a big NFA that tells us whether our NFA ends with the right-hand side of any rule in the grammar.

Simple NFA for Right-Hand Sides

$\mathrm{S} \rightarrow \vdash \mathrm{T} \dashv$
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~N}$
$\mathrm{T} \rightarrow \mathrm{N}$
$\mathrm{N} \rightarrow$ num

Problems With This NFA

- The purpose of this NFA is just to tell us whether the current step of our "reverse derivation" ends with the right-hand side of a rule.
- If it does, we reduce by that rule.
- If not, we continue shifting.
- It accomplishes this goal, but it is a bit too lenient in what it accepts.
- For example, it will accept a nonsense string like $\vdash \dashv T \vdash \vdash^{*} N^{*}$ num because it ends with "num" which is the RHS of $\mathrm{N} \rightarrow$ num.
- This string will clearly not parse correctly, but it will take several reduce steps before we run into an issue.

Better NFA for Right-Hand Sides

Better NFA for Right-Hand Sides

Better NFA for Right-Hand Sides

Outwards transition

$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~N}$

$\mathrm{T} \rightarrow \mathrm{N}$
$N \rightarrow$ num

1. Create DFAs for the RHS of each rule and mark the initial states with the LHS.
2. For each state with a transition leading outwards on a nonterminal, connect the state (using ε-transitions) to all the states marked with that nonterminal.

Better NFA for Right-Hand Sides

$\mathrm{S} \rightarrow \vdash \mathrm{T} \dashv$
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~N}$
$\mathrm{T} \rightarrow \mathrm{N}$
$N \rightarrow$ num

Outwards transition on nonterminal T

1. Create DFAs for the RHS of each rule and mark the initial states with the LHS.
2. For each state with a transition leading outwards on a nonterminal, connect the state (using ε-transitions) to all the states marked with that nonterminal.

Better NFA for Right-Hand Sides

Better NFA for Right-Hand Sides

$$
\mathrm{S} \rightarrow \vdash \mathrm{~T} \dashv
$$

$$
\mathrm{T} \rightarrow \mathrm{~T}^{*} \mathrm{~N}
$$

$\mathrm{T} \rightarrow \mathrm{N}$
$N \rightarrow$ num

1. Create DFAs for the RHS of each rule and mark the initial states with the LHS.
2. For each state with a transition leading outwards on a nonterminal, connect the state (using ε-transitions) to all the states marked with that nonterminal.

Better NFA for Right-Hand Sides

Better NFA for Right-Hand Sides

Converting to a DFA

$S \rightarrow \vdash \mathrm{~T} \dashv$
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~N}$
$\mathrm{T} \rightarrow \mathrm{N}$
$N \rightarrow$ num

Converting to a DFA

Converting to a DFA

$S \rightarrow \vdash \mathrm{~T} \dashv$
$T \rightarrow T^{*} N$
$\mathrm{T} \rightarrow \mathrm{N}$
$N \rightarrow$ num

Converting to a DFA

Converting to a DFA

Converting to a DFA

$S \rightarrow-T-1$	State	\vdash	\dagger	T	N	＊	num	ε
	$\mathrm{S} \rightarrow$－トT－1	$\mathrm{S} \rightarrow \stackrel{\vdash}{ }$－T－						
$\mathrm{T} \rightarrow \mathrm{~T}^{*} \mathrm{~N}$	$\mathrm{S} \rightarrow$ トロT－			$S \rightarrow \vdash T \cdot-1$				$\begin{aligned} & \mathrm{T} \rightarrow \bullet \mathrm{~T}^{*} \mathrm{~N} \\ & \mathrm{~T} \rightarrow \bullet \mathrm{~N} \end{aligned}$
$\mathrm{T} \rightarrow \mathrm{~N}$	S \rightarrow トT0－1		$\mathrm{S} \rightarrow+\mathrm{T}-{ }^{\text {• }}$					
	S \rightarrow トT－•							
$\mathrm{N} \rightarrow$ num	T \rightarrow－${ }^{*}$＊			$T \rightarrow T \bullet * N$				$\begin{aligned} & \mathrm{T} \rightarrow \bullet \mathrm{~T}^{*} \mathrm{~N} \\ & \mathrm{~T} \rightarrow \bullet \mathrm{~N} \end{aligned}$
	T \rightarrow T○＊N					$T \rightarrow T^{*} \bullet N$		
Use the subset construction with this table．	$T \rightarrow \mathrm{~T}^{*} \bullet \mathrm{~N}$				$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~N} \bullet$			$N \rightarrow$ •num
	$T \rightarrow \mathrm{~T}^{*} \mathrm{~N}$－							
	T \rightarrow－ N				$\mathrm{T} \rightarrow \mathrm{N}$ •			$N \rightarrow$ •num
	$\mathrm{T} \rightarrow \mathrm{N}$－							
	$\mathrm{N} \rightarrow$－ num						$N \rightarrow$ num	
	$\mathrm{N} \rightarrow$ num ${ }^{\text {－}}$							

Aside: Augmented Grammars

- Our grammar has an unusual rule $S \rightarrow \vdash \mathrm{~T} \dashv$ which forces every string in the language to be surrounded with \vdash and \dashv symbols.
- We can add these symbols to any CFG:
- If S is the old start symbol, add a new start symbol S^{\prime} and rule: $\mathrm{S}^{\prime} \rightarrow \vdash \mathrm{S} \dashv$
- This is called augmenting the grammar. The augmented CFG is essentially the same but all strings are "wrapped" with \vdash and \dashv.
$\cdot \vdash$ is often called "beginning of file" and \dashv is often called "end of file".
- This can make algorithms easier to describe. For example, in the LR(0) DFA construction, it forces the DFA to have a simple starting state that only contains one item.

Constructing LR(0) DFAs

- LR(0) DFAs can also be constructed directly without creating the NFA and using the subset construction. We describe an algorithm for this (intended for augmented grammars) on the next slide.
- Some terminology and notation:
- A fresh item is an item with the bookmark on the very left of the RHS.
- All states are initially incomplete and will be marked as complete over the course of the algorithm. The algorithm is done when every state is complete.
- We will write a generic non-reducible item as $A \rightarrow \alpha \bullet \sigma \beta$. Here α and β are strings (possibly empty) of terminals and nonterminals, and σ is a single symbol, which can be a terminal or a nonterminal.

Constructing LR(0) DFAs

1. Create an initial state which contains the fresh item $\mathrm{S}^{\prime} \rightarrow \bullet \vdash \mathrm{S} \dashv$, corresponding to the starting rule of the augmented grammar.
2. For each incomplete state X, fill out the transitions as follows.

- For each non-reducible item $A \rightarrow \alpha \bullet \sigma \beta$ in X, create a set of items Y that initially contains the item $A \rightarrow \alpha \sigma \bullet \beta$.
- Expand the set of items Y as follows:
- For each non-reducible item $A \rightarrow \alpha \bullet \sigma \beta$ in Y such that σ is a nonterminal, add fresh items to Y for every rule with σ on the left-hand side.
- Repeat the process in the above bullet point with the newly added fresh items. Keep repeating until there are no more new items to add.
- If Y already matches an existing state, add a transition from X to the existing state on σ.
- Otherwise, create a new state for Y, and add a transition from X to the new state on σ.
- Mark the state X as complete.

Repeat Step 2 until all states are complete.

Coming Up Next

- We'll learn how to use an LR(0) DFA to parse strings efficiently.
- We'll learn about parsing conflicts and get a sense of the limitations of the $\operatorname{LR}(0)$ technique.
- We'll learn about SLR(1) (short for Simple LR(1)), a way of resolving some (but not all) conflicts using lookahead and Follow sets.
- We'll learn how to build a parse tree as we parse (as opposed to just finding a "reverse derivation").

