Limitations of LL(1) Parsing

- A grammar is **LL(1)** if every cell of the Predict table contains at most one rule.
- We saw that this ambiguous expression grammar is not LL(1):

 $E \rightarrow E + E \qquad E \rightarrow 3$

- Ambiguous grammars are *never* LL(1) because the Predict table attempts to include all rules that "could work" in some context.
- If a grammar is ambiguous, there must be a context where two distinct rules would both be valid to use in a leftmost derivation.
- Are there unambiguous grammars that are not LL(1)?

• In the previous module, we developed this unambiguous grammar for arithmetic expressions with addition, subtraction, multiplication, division, brackets, and variables.

 $L_{2} \rightarrow L_{2} + L_{1} \mid L_{2} - L_{1} \mid L_{1}$ $L_{1} \rightarrow L_{1} * L_{0} \mid L_{1} / L_{0} \mid L_{0}$ $L_{0} \rightarrow a \mid b \mid c \mid (L_{2})$

- This is **not LL(1)**. It has the same problem as the ambiguous grammar.
 - If L_2 is on the stack and "a" is the next symbol of input, we don't know whether to apply $L_2 \rightarrow L_2 + L_1$ or $L_2 \rightarrow L_1$.

• In the previous module, we developed this unambiguous grammar for arithmetic expressions with addition, subtraction, multiplication, division, brackets, and variables.

 $\begin{array}{c} L_{2} \rightarrow L_{2} + L_{1} \mid L_{2} - L_{1} \mid L_{1} \\ L_{1} \rightarrow L_{1} \ast L_{0} \mid L_{1} / L_{0} \mid L_{0} \\ L_{0} \rightarrow a \mid b \mid c \mid (L_{2}) \end{array}$

• Suppose the input string is $\mathbf{a} + \mathbf{a}$ and we haven't read any input. We need to apply $L_2 \rightarrow L_2 + L_1$ then $L_2 \rightarrow L_1$ then $L_1 \rightarrow L_0$ then $L_0 \rightarrow \mathbf{a}$ before we can finally read the first \mathbf{a} .

• In the previous module, we developed this unambiguous grammar for arithmetic expressions with addition, subtraction, multiplication, division, brackets, and variables.

 $\begin{array}{c} L_{2} \rightarrow L_{2} + L_{1} \mid L_{2} - L_{1} \mid L_{1} \\ L_{1} \rightarrow L_{1} * L_{0} \mid L_{1} / L_{0} \mid L_{0} \\ L_{0} \rightarrow a \mid b \mid c \mid (L_{2}) \end{array}$

• Suppose the input string is $\mathbf{a} + \mathbf{a} + \mathbf{a}$ and we haven't read any input. We need to apply $L_2 \rightarrow L_2 + L_1$ **twice** before $L_2 \rightarrow L_1$. But the context is the same as before (L_2 on the stack and "a" at the front of input).

Left Recursion

• This is actually an inherent problem with **left recursion** in grammars.

 $A \not \to A\alpha \mid \beta$

- This grammar can derive any string of the form $\beta \alpha \alpha ... \alpha$ ($\beta \alpha^*$)
- The predictor has to figure out how many times to apply A \rightarrow A α , but the only information it has is the symbols at the start of β .
- In fact, this cannot be handled by LL(k) parsing (up to k symbols of lookahead) for any k, because to determine how many α's there are, we potentially need to look at the entire string!
- This is a problem because left recursion is used for left associativity!

Removing Left Recursion

- Removing left recursion from a grammar might mess up our parse tree (e.g., arithmetic operations would no longer be left associative).
- Nonetheless, we can consider the idea of changing the grammar so LL(1) will work, and then somehow fixing the parse tree later.
- If we use right recursion instead, is the grammar LL(1)?

$$\begin{split} L_2 &\rightarrow L_1 + L_2 \mid L_1 - L_2 \mid L_1 \\ L_1 &\rightarrow L_0 * L_1 \mid L_0 / L_1 \mid L_0 \\ L_0 &\rightarrow a \mid b \mid c \mid (L_2) \end{split}$$

 No. For example, consider a vs a + a. The first rule to apply can't be predicted just by looking at "a".

Removing Left Recursion

- Removing left recursion from a grammar might mess up our parse tree (e.g., arithmetic operations would no longer be left associative).
- Nonetheless, we can consider the idea of changing the grammar so LL(1) will work, and then somehow fixing the parse tree later.
- If we use right recursion instead, is the grammar LL(1)?

$$\begin{split} L_2 &\rightarrow L_1 + L_2 \mid L_1 - L_2 \mid L_1 \\ L_1 &\rightarrow L_0 * L_1 \mid L_0 / L_1 \mid L_0 \\ L_0 &\rightarrow a \mid b \mid c \mid (L_2) \end{split}$$

• No. For example, consider **a** vs **a** + **a**. The first rule to apply can't be predicted just by looking at "a". However, this is LL(2).

Left Factoring

• Given a grammar with "direct" left recursion:

 $A \xrightarrow{} A\alpha \mid \beta$

- We can remove left recursion as follows:
 - Introduce a new nonterminal A'.
 - Replace these rules with $A \rightarrow \beta A'$ and $A' \rightarrow \alpha A' \mid \epsilon$.
- But this might not produce an LL(1) grammar.
- Consider A \rightarrow Aab | Aac | d.
- We could transform this into $A \rightarrow dA'$, $A' \rightarrow abA' | acA' | \epsilon$.
- How do we tell whether to apply A' → abA' or A' → acA' if the next symbol is a? (Would need 2 lookaheads)

Left Factoring

• If multiple rules with the same left hand side have a *common (non-empty) prefix* on the right hand side, the grammar is not LL(1).

 $A' \rightarrow \underline{a}bA' \qquad A' \rightarrow \underline{a}cA'$

- Left factoring can be used to resolve this.
- If a grammar has a collection of rules with a common left hand since A, and a common right hand side prefix α , as follows:

$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid ... \mid \alpha \beta_r$$

• Introduce a new nonterminal A' and replace these rules with:

$$A \rightarrow \alpha A' \quad A' \rightarrow \beta_1 \mid \beta_2 \mid ... \mid \beta_n$$

Left Factoring: Example

• Take our right-recursive expression grammar:

$$L_2 \rightarrow L_1 + L_2 \mid L_1 - L_2 \mid L_1$$
$$L_1 \rightarrow L_0 * L_1 \mid L_0 / L_1 \mid L_0$$
$$L_0 \rightarrow a \mid b \mid c \mid (L_2)$$

• Left-factored version, which is LL(1):

$$\begin{array}{ll} \mathsf{L}_{2} \rightarrow \mathsf{L}_{1}\mathsf{L}_{2}' & \mathsf{L}_{2}' \rightarrow \mathsf{+} \mathsf{L}_{2} \mid -\mathsf{L}_{2} \mid \varepsilon \\ \mathsf{L}_{1} \rightarrow \mathsf{L}_{0} \mathsf{L}_{1}' & \mathsf{L}_{1}' \rightarrow \mathsf{*} \mathsf{L}_{1} \mid / \mathsf{L}_{1} \mid \varepsilon \\ \mathsf{L}_{0} \rightarrow \mathsf{a} \mid \mathsf{b} \mid \mathsf{c} \mid (\mathsf{L}_{2}) \end{array}$$

The State of Things

- Left-recursive grammars, which we use for left-associative operations, are incompatible with LL(1) parsing.
- Even increasing the lookahead and using a more complicated "LL(k)" predict table would not solve this.
- We can convert the left recursion to right recursion, but this messes up our parse trees, and the resulting grammar isn't even always LL(1).
- We can sometimes use left factoring to get an LL(1) grammar, but this messes up our parse trees even more.
- Some languages do not permit an LL(1) grammar at all.

Our Solution

- We do not necessarily *need* to give up on top-down parsing.
- There are top-down parsers that overcome the issues we have encountered by using more ad-hoc techniques, as opposed to the formalism of LL(1) or LL(k).
- There are also other formal techniques that expand on LL parsing.
- However, we will instead explore the idea of **bottom-up parsing**.
- We will see that bottom-up parsers, while they are less intuitive, are able to handle left recursion in practical grammars without issues.
- We will ultimately use a bottom-up parser in our compiler.

Bottom-Up Parsing: First Steps

The Idea

- In top-down parsing, we begin the derivation from the **start symbol**.
- At each step, we either **match a terminal** (read input) or **apply a rule** (progress our derivation) until we derive the target string.
- In bottom-up parsing, we find a **reverse derivation**, starting from the **target string** and working backwards to the start symbol.
- At each step, we either **shift a terminal** (read input) or **reduce by a rule** (progress our reverse derivation) until we reach the start symbol.
 - "Reduce" means to apply the rule "backwards": we take part of our current derivation that matches the right-hand side of the rule, and replace that part with the left-hand side.

⊢ num * num * num ⊣

Here is a simple grammar for expressions with multiplication:

 $S \rightarrow \vdash T \dashv$ $T \rightarrow T * N$ $T \rightarrow N$ $N \rightarrow num$

Here is a simple grammar for expressions with multiplication:

⊢ num * num * num ⊣ sh

⊢ num * num * num ⊣

shift ⊢

 $S \rightarrow \vdash T \dashv$ $T \rightarrow T * N$ $T \rightarrow N$ $N \rightarrow num$

Here is a simple grammar for expressions with multiplication:

⊢ num * num * num ⊣
<u>⊢</u> num * num * num ⊣
<u>⊢ num</u> * num * num ⊣

shift ⊢ shift num

 $S \rightarrow \vdash T \dashv$ $T \rightarrow T * N$ $T \rightarrow N$ $N \rightarrow num$

Here is a simple grammar for expressions with multiplication:

⊢	N	*	num	*	num	\dashv
-	num	*	num	*	num	\dashv
	num	*	num	*	num	\dashv
\vdash	num	*	num	*	num	\neg

shift ⊢ shift num reduce N → num

 $S \rightarrow \vdash T \dashv$ $T \rightarrow T * N$ $T \rightarrow N$ $N \rightarrow num$

Here is a simple grammar for expressions with multiplication:

 $S \rightarrow \vdash T \dashv$ $T \rightarrow T * N$ $T \rightarrow N$ $N \rightarrow num$

Let's parse this string: ⊢ num * num * num ⊣

\vdash	num	*	num	*	num	\neg
F	num	*	num	*	num	\dashv
<u>⊢</u>	num	*	num	*	num	\neg
<u>⊢</u>	N	*	num	*	num	\dashv
<u>⊢</u>	<u> </u>	*	num	*	num	\neg

shift ⊢ shift num reduce N → num reduce T → N

Here is a simple grammar for expressions with multiplication:

 $S \rightarrow \vdash T \dashv$ $T \rightarrow T * N$ $T \rightarrow N$ $N \rightarrow num$

Let's parse this string: ⊢ num * num * num ⊣

\vdash	num	*	num	*	num	\neg
F	num	*	num	*	num	\dashv
⊢	num	*	num	*	num	\dashv
⊢	Ν	*	num	*	num	\dashv
⊢	<u> </u>	*	num	*	num	\dashv

shift ⊢ shift num reduce N → num reduce T → N shift *

Here is a simple grammar for expressions with multiplication:

 $S \rightarrow \vdash T \dashv$ $T \rightarrow T * N$ $T \rightarrow N$ $N \rightarrow num$

Let's parse this string: ⊢ num * num * num ⊣

\vdash	num	*	num	*	num	\neg
F	num	*	num	*	num	\dashv
⊢	num	*	num	*	num	\dashv
⊢	N	*	num	*	num	\neg
⊢	Т	*	num	*	num	\neg
⊢	Т	*	num	*	num	\neg
⊢	Т	*	num	*	num	\neg

shift ⊢
shift num
reduce N → num
reduce T → N
shift *
shift num

Here is a simple grammar for expressions with multiplication:

 $S \rightarrow \vdash T \dashv$ $T \rightarrow T * N$ $T \rightarrow N$ $N \rightarrow num$

Let's parse this string: ⊢ num * num * num ⊣

⊢	Т	*	N	*	num	\dashv
⊢	Т	*	num	*	num	\neg
⊢	Т	*	num	*	num	\dashv
⊢	<u> </u>	*	num	*	num	\neg
<u>⊢</u>	Ν	*	num	*	num	\neg
<u> </u>	num	*	num	*	num	\neg
F	num	*	num	*	num	\dashv
\vdash	num	*	num	*	num	\neg

shift ⊢
shift num
reduce N → num
reduce T → N
shift *
shift num
reduce N → num

Here is a simple grammar for expressions with multiplication:

 $S \rightarrow \vdash T \dashv$ $T \rightarrow T * N$ $T \rightarrow N$ $N \rightarrow num$

 $\vdash num * num * num + num +$ $\underline{\vdash} num * num * num +$ $\underline{\vdash} num * num * num +$ $\underline{\vdash} num * num * num +$ $\underline{\vdash} N * num * num +$ $\underline{\vdash} T * num * num +$ $\underline{\vdash} T * num * num +$ $\underline{\vdash} T * N * num + num +$ $\underline{\vdash} T * N * num + num +$ $\underline{\vdash} T * N * num + num +$ $\underline{\vdash} T * N * num + num +$ shift ⊢
shift num
reduce N → num
reduce T → N
shift *
shift num
reduce N → num
reduce N → num

Here is a simple grammar for expressions with multiplication:

 $S \rightarrow \vdash T \dashv$ $T \rightarrow T * N$ $T \rightarrow N$ $N \rightarrow num$

shift ⊢
shift num
reduce N → num
reduce T → N
shift *
shift num
reduce N → num
reduce T → T * N
shift *

Here is a simple grammar for expressions with multiplication:

 $S \rightarrow \vdash T \dashv$ $T \rightarrow T * N$ $T \rightarrow N$ $N \rightarrow num$

Let's parse this string: ⊢ num * num * num ⊣

\vdash	num	*	num	*	num	\neg
F	num	*	num	*	num	\neg
⊢	num	*	num	*	num	\neg
⊢	Ν	*	num	*	num	\neg
⊢	Т	*	num	*	num	\neg
⊢	Т	*	num	*	num	\neg
<u>⊢</u>	Т	*	num	*	num	\dashv
<u>⊢</u>	Т	*	N	*	num	\dashv
<u>⊢</u>			<u> </u>	*	num	\neg
<u>⊢</u>			Т	*	num	\neg
⊢			Т	*	num	\neg

shift ⊢
shift num
reduce N → num
reduce T → N
shift *
shift num
reduce N → num
reduce T → T * N
shift *
shift num

Here is a simple grammar for expressions with multiplication:

 $S \rightarrow \vdash T \dashv$ $T \rightarrow T * N$ $T \rightarrow N$ $N \rightarrow num$

Let's parse this string: ⊢ num * num * num ⊣

\vdash	num	*	num	*	num	\neg
F	num	*	num	*	num	\neg
<u> </u>	num	*	num	*	num	\dashv
<u> </u>	Ν	*	num	*	num	\neg
<u>⊢</u>	<u> </u>	*	num	*	num	\dashv
<u>⊢</u>	Т	*	num	*	num	\dashv
<u>⊢</u>	Т	*	num	*	num	\dashv
⊢	Т	*	N	*	num	\dashv
⊢			<u> </u>	*	num	\dashv
⊢			Т	*	num	\dashv
⊢			Т	*	num	\dashv
⊢			Т	*	N	-

shift ⊢ shift num reduce N → num reduce T → N shift * shift num reduce N → num reduce T → T * N shift * shift num reduce N → num

Here is a simple grammar for expressions with multiplication:

 $S \rightarrow \vdash T \dashv$ $T \rightarrow T * N$ $T \rightarrow N$ $N \rightarrow num$

Let's parse this string: ⊢ num * num * num ⊣

\vdash	num	*	num	*	num	\neg
F	num	*	num	*	num	\neg
⊢	num	*	num	*	num	\neg
<u>⊢</u>	Ν	*	num	*	num	\neg
<u>⊢</u>	Т	*	num	*	num	\neg
<u>⊢</u>	Т	*	num	*	num	\dashv
<u>⊢</u>	Т	*	num	*	num	\dashv
<u>⊢</u>	Т	*	N	*	num	\dashv
<u>⊢</u>			<u> </u>	*	num	\dashv
<u>⊢</u>			Т	*	num	\neg
<u>⊢</u>			Т	*	num	\neg
<u>⊢</u>			Т	*	<u>N</u>	\neg
⊢					Т	\neg

shift ⊢ shift num reduce N \rightarrow num reduce T \rightarrow N shift * shift num reduce N \rightarrow num reduce T \rightarrow T * N shift * shift num reduce N \rightarrow num reduce T \rightarrow T * N

Here is a simple grammar for expressions with multiplication:

 $S \rightarrow \vdash T \dashv$ $T \rightarrow T * N$ $T \rightarrow N$ $N \rightarrow num$

Let's parse this string: ⊢ num * num * num ⊣

\vdash	num	*	num	*	num	\neg
<u>⊢</u>	num	*	num	*	num	\neg
⊢	num	*	num	*	num	\neg
⊢	Ν	*	num	*	num	\neg
⊢	Т	*	num	*	num	\neg
⊢	Т	*	num	*	num	\neg
⊢	Т	*	num	*	num	\neg
⊢	Т	*	Ν	*	num	\neg
⊢			<u> </u>	*	num	\neg
<u> </u>			Т	*	num	\neg
<u>⊢</u>			Т	*	num	\neg
<u>⊢</u>			Т	*	N	\neg
<u>⊢</u>					<u> </u>	\neg
⊢					Т	-

shift ⊢ shift num reduce N \rightarrow num reduce T \rightarrow N shift * shift num reduce N \rightarrow num reduce T \rightarrow T * N shift * shift num reduce N \rightarrow num reduce T \rightarrow T * N shift ⊣

Here is a simple grammar for expressions with multiplication:

 $S \rightarrow \vdash T \dashv$ $T \rightarrow T * N$ $T \rightarrow N$ $N \rightarrow num$

Let's parse this string: ⊢ num * num * num ⊣

						<u>S</u>
<u>⊢</u>					Т	<u> </u>
<u>⊢</u>					<u> </u>	\dashv
<u>⊢</u>			Т	*	N	\dashv
<u>⊢</u>			Т	*	num	\dashv
<u>⊢</u>			Т	*	num	\dashv
<u>⊢</u>			<u> </u>	*	num	\dashv
<u>⊢</u>	Т	*	N	*	num	\dashv
<u>⊢</u>	Т	*	num	*	num	\dashv
<u> </u>	Т	*	num	*	num	\neg
H	Т	*	num	*	num	\dashv
H	Ν	*	num	*	num	\neg
\vdash	num	*	num	*	num	\dashv
F	num	*	num	*	num	\dashv
\vdash	num	*	num	*	num	\neg

shift ⊢ shift num reduce N \rightarrow num reduce T \rightarrow N shift * shift num reduce N \rightarrow num reduce T \rightarrow T * N shift * shift num reduce N \rightarrow num reduce T \rightarrow T * N shift ⊣ reduce S \rightarrow \vdash T \dashv

Implementing Bottom-Up Parsing

- The idea is to shift symbols until the tail of our current sequence matches the right-hand side of a rule.
- Once we have the right-hand side of a rule, things get difficult.
 - Do we reduce right away, or do we keep shifting more symbols?
 - What if there are multiple rules with the same RHS to reduce by?
- With LL(1) top-down parsing, we dealt with the tough decisions by just saying "if we have to make decisions, it's not an LL(1) grammar".
- We'll start out by looking at LR(0) parsing which takes a similar approach: We only worry about how to handle grammars that don't require us to make decisions during parsing.

LR(0) Parsing

- Left-to-right scan of the input, Rightmost derivation produced... and zero symbols of lookahead!
- In LR(0) parsing, we don't use the next unread input symbol to make decisions, unlike in LL(1).
- The algorithm, at a high level:
 - Keep shifting until we see the right-hand side of a rule.
 - Keep reducing as long as the tail of our shifted sequence matches the righthand side of a rule. Then go back to shifting.
- If this algorithm ever has to make decisions about which rule to reduce by, we give up and say "the grammar is not LR(0)".

Recognizing Right-Hand Sides

- Conceptually, the algorithm is simple, but how do we tell whether our sequence ends with the right-hand side of a rule?
- One approach is to use an NFA!
- It's easy to create NFAs for "strings that end with (something)".
- We could use ε-transitions to create a big NFA that tells us whether our NFA ends with the right-hand side of any rule in the grammar.

Simple NFA for Right-Hand Sides

Problems With This NFA

- The purpose of this NFA is just to tell us whether the current step of our "reverse derivation" ends with the right-hand side of a rule.
 - If it does, we reduce by that rule.
 - If not, we continue shifting.
- It accomplishes this goal, but it is a bit too lenient in what it accepts.
- For example, it will accept a nonsense string like ⊢⊣T⊢*N*num because it ends with "num" which is the RHS of N → num.
- This string will clearly not parse correctly, but it will take several reduce steps before we run into an issue.

 $T \rightarrow N$

1. Create DFAs for the RHS of each rule and mark the initial states with the LHS.

 $T \rightarrow N$

 $N \rightarrow num$

- 1. Create DFAs for the RHS of each rule and mark the initial states with the LHS.
- For each state with a transition leading outwards on a nonterminal, connect the state (using ε-transitions) to all the states marked with that nonterminal.

Outwards transition on nonterminal T

 $N \rightarrow num$

 $T \rightarrow T * N$

- 1. Create DFAs for the RHS of each rule and mark the initial states with the LHS.
- For each state with a transition leading outwards on a nonterminal, connect the state (using ε-transitions) to all the states marked with that nonterminal.

 \vdash - $S \rightarrow \vdash T \dashv$ S 3 3 Ν * $T \rightarrow T * N$ 3 Ν $T \rightarrow N$ Create DFAs for the RHS of each rule 1. and mark the initial states with the LHS. 2. For each state with a transition leading 3 outwards on a nonterminal, connect num $N \rightarrow num$ the state (using ε -transitions) to all the Ν states marked with that nonterminal. 3

S

3

 $T \rightarrow T * N$

 $S \rightarrow \vdash T \dashv$

 $T \rightarrow N$

 $N \rightarrow num$

We only accept a string if it ends with an RHS **and** is a prefix of something that can be derived from the start symbol.

Ν

The ε -transitions represent places in the string where we can replace a nonterminal with its expansion by a rule.

S

 $T \rightarrow T * N$

 $S \rightarrow \vdash T \dashv$

 $T \rightarrow N$

 $N \rightarrow num$

Why is this NFA better? For one, it describes the language we want more precisely, leading to better error reporting.

Ν

We also want to convert the NFA into a DFA for more efficient processing. This NFA will be simpler to convert.

 \vdash \neg $S \rightarrow \vdash T \dashv$ 3 3 Ν * $T \rightarrow T * N$ 3 Ν $T \rightarrow N$ To convert to a DFA, we will give each state a unique name so we can keep track of which states are in our subsets. 3 num $N \rightarrow num$ The names will track which rule is being processed, and how much of the RHS of 3 the rule we have seen.

 $\mathsf{S} \xrightarrow{} \mathsf{F} \mathsf{T} \dashv$

 $T \rightarrow T * N$

 $T \rightarrow N$

 $N \rightarrow num$

Use the subset construction with this table.

State	F	Н	т	N	*	num	3
S→∙⊢т⊣	S→⊢∙T⊣						
S→⊢∙T⊣			S→⊢T∙⊣				T→•T*N T→•N
S→⊢T∙⊣		S→⊢T⊣∙					
s→⊢т⊣∙							
T→•T*N			T→T•*N				T→•T*N T→•N
T→T∙*N					T→T*•N		
T→T*•N				T→T*N•			N→•num
T→T*N•							
T→•N				T→N∙			N→•num
T→N∙							
N→•num						N→num•	
N→num•							

Aside: Augmented Grammars

- Our grammar has an unusual rule S → ⊢ T ⊢ which forces every string in the language to be surrounded with ⊢ and ⊢ symbols.
- We can add these symbols to any CFG:
 - If S is the old start symbol, add a new start symbol S' and rule: S' \rightarrow \vdash S \dashv
- This is called **augmenting** the grammar. The augmented CFG is essentially the same but all strings are "wrapped" with ⊢ and ⊣.
 - ⊢ is often called "beginning of file" and ⊣ is often called "end of file".
- This can make algorithms easier to describe. For example, in the LR(0) DFA construction, it forces the DFA to have a simple starting state that only contains one item.

Constructing LR(0) DFAs

- LR(0) DFAs can also be constructed directly without creating the NFA and using the subset construction. We describe an algorithm for this (intended for augmented grammars) on the next slide.
- Some terminology and notation:
 - A **fresh item** is an item with the bookmark on the very left of the RHS.
 - All states are initially **incomplete** and will be marked as **complete** over the course of the algorithm. The algorithm is done when every state is complete.
 - We will write a generic non-reducible item as $A \rightarrow \alpha \circ \sigma \beta$. Here α and β are strings (possibly empty) of terminals and nonterminals, and σ is a single symbol, which can be a terminal or a nonterminal.

Constructing LR(0) DFAs

- 1. Create an initial state which contains the fresh item $S' \rightarrow \bullet \vdash S \dashv$, corresponding to the starting rule of the augmented grammar.
- 2. For each incomplete state X, fill out the transitions as follows.
 - For each non-reducible item $A \rightarrow \alpha \circ \sigma \beta$ in X, create a set of items Y that initially contains the item $A \rightarrow \alpha \sigma \circ \beta$.
 - Expand the set of items Y as follows:
 - For each non-reducible item A $\rightarrow \alpha \circ \sigma\beta$ in Y such that σ is a **nonterminal**, add fresh items to Y for every rule with σ on the left-hand side.
 - Repeat the process in the above bullet point with the newly added fresh items. Keep repeating until there are no more new items to add.
 - If Y already matches an existing state, add a transition from X to the existing state on σ.
 - Otherwise, create a new state for Y, and add a transition from X to the new state on σ .
 - Mark the state X as complete.

Repeat Step 2 until all states are complete.

Coming Up Next

- We'll learn how to use an LR(0) DFA to parse strings efficiently.
- We'll learn about **parsing conflicts** and get a sense of the limitations of the LR(0) technique.
- We'll learn about **SLR(1)** (short for Simple LR(1)), a way of resolving some (but not all) conflicts using lookahead and Follow sets.
- We'll learn how to build a **parse tree** as we parse (as opposed to just finding a "reverse derivation").