
Bottom-Up Parsing:
SLR(1) and LR(1)

SLR(1): Using Follow Sets to Resolve Conflicts

• The idea of SLR(1) is to
use the same DFA
construction as LR(0),
but every reducible
item is "tagged" with
the Follow set of the LHS.

• If you are in a reduce
state, and the lookahead
(first symbol of unread
input) is in the "tag" of a
reducible item, reduce
using that rule.

• Otherwise, shift.

SLR(1): Using Follow Sets to Resolve Conflicts

• The idea of SLR(1) is to
use the same DFA
construction as LR(0),
but every reducible
item is "tagged" with
the Follow set of the LHS.

• Shift-Reduce conflicts
are resolved if the symbol
to be shifted is not in
the Follow set for the
reducible item.

• Reduce-Reduce conflicts
are resolved if the Follow
sets don't overlap.

SLR(1): Using Follow Sets to Resolve Conflicts

• For example, if the
reduction sequence is:
⊢ T

• If the next symbol of
unread input is + or ⊣
we reduce by E → T.

• Otherwise, we shift.

• If the rest of input is
⊣
or
+ T ⊣
reducing is correct.

• If it's * N ⊣ then shifting
is correct.

The LR(0) Parsing Algorithm: Pseudocode

initialize symbolStack to an empty stack
initialize stateStack with the initial state of the parsing DFA
while input is not empty:
 a = first symbol of input
 (Reduce until we are no longer in a reduce state)
 while stateStack.top contains a reducible item [A→α•]:
 len = length of α (number of symbols on right-hand side)
 pop len symbols from symbolStack (pop the right-hand side)
 push A to symbolStack (push the left-hand side)
 pop len states from stateStack (backtrack in the DFA)
 let newState be obtained by taking the transition from stateStack.top on A
 push newState to stateStack (state stack is again synchronized with symbol stack)
 (Once we can no longer reduce, shift a symbol from input)
 if there is a transition from stateStack.top on a to newState:
 push a to symbolStack (push the symbol-to-shift)
 push newState to stateStack (keep the state stack synchronized)
 consume a from input (read and remove first symbol from input)
 else
 ERROR (no transition on input symbol, parse failed)

The LR(1) Parsing Algorithm: Pseudocode

initialize symbolStack to an empty stack
initialize stateStack with the initial state of the parsing DFA
while input is not empty:
 a = first symbol of input
 (Reduce until we are no longer in a reduce state)
 while stateStack.top contains a reducible item [A→α•] with a in the lookahead tag:
 len = length of α (number of symbols on right-hand side)
 pop len symbols from symbolStack (pop the right-hand side)
 push A to symbolStack (push the left-hand side)
 pop len states from stateStack (backtrack in the DFA)
 let newState be obtained by taking the transition from stateStack.top on A
 push newState to stateStack (state stack is again synchronized with symbol stack)
 (Once we can no longer reduce, shift a symbol from input)
 if there is a transition from stateStack.top on a to newState:
 push a to symbolStack (push the symbol-to-shift)
 push newState to stateStack (keep the state stack synchronized)
 consume a from input (read and remove first symbol from input)
 else
 ERROR (no transition on input symbol, parse failed)

The only difference!

SLR(1) vs. LR(1)

• The LR(1) parsing algorithm can be used with any kind of parsing DFA
that has "lookahead tags".

• The SLR(1) DFA uses Follow sets as lookahead tags.

• The term LR(1) DFA refers to a more complex construction (not
covered in this course) where only a subset of the Follow set is used.
• The LR(1) DFA resolves more LR(0) conflicts than the SLR(1) DFA, but the

number of states can be exponentially larger than the SLR(1) DFA.

• There is also something called LALR(1) ("Lookahead LR(1)") which is a
compromise and is popular in practice. It resolves more conflicts than
SLR(1), and uses less states than LR(1) but resolves fewer conflicts.

Building a Parse Tree

• The pseudocode on the previous slides doesn't actually produce any
result. It either runs to completion, or produces an error.

• To make it produce a derivation, we could modify it to output the
reduce rule every time we do a reduce step.
• The derivation would be in reverse order.

• A better option is to make it produce a parse tree.

• The idea is to replace the symbol stack with a tree stack.
• When shifting, we add leaf nodes corresponding to the shifted terminal.

• When reducing, we pop tree nodes corresponding to the rule RHS, make
them children of a new node with the LHS, and push this new tree.

⊢ num * num ⊣ State Stack: 0

Tree Stack Top

Tree Stack Bottom

⊢ num * num ⊣ State Stack: 0 1

Tree Stack Top

Tree Stack Bottom

⊢

⊢ num * num ⊣ State Stack: 0 1 4

Tree Stack Top

Tree Stack Bottom

⊢

num

⊢ num * num ⊣ State Stack: 0 1

Tree Stack Top

Tree Stack Bottom

⊢

num
Reducing by N → num:
Pop num / 4

⊢ num * num ⊣ State Stack: 0 1

Tree Stack Top

Tree Stack Bottom

⊢

num
Reducing by N → num:
Create node for N

N

⊢ num * num ⊣ State Stack: 0 1

Tree Stack Top

Tree Stack Bottom

⊢

num
Reducing by N → num:
Add num node as child

N

⊢ num * num ⊣ State Stack: 0 1 3

Tree Stack Top

Tree Stack Bottom

⊢

num

N

Reducing by N → num:
Push N / 3

⊢ num * num ⊣ State Stack: 0 1 3

Tree Stack Top

Tree Stack Bottom

⊢

num

N

⊢ num * num ⊣ State Stack: 0 1

Tree Stack Top

Tree Stack Bottom

⊢

num

N

Reducing by T → N:
Pop N / 3

⊢ num * num ⊣ State Stack: 0 1

Tree Stack Top

Tree Stack Bottom

⊢

num

N

Reducing by T → N:
Create node for T

T

⊢ num * num ⊣ State Stack: 0 1

Tree Stack Top

Tree Stack Bottom

⊢

num

N

Reducing by T → N:
Add N node as child

T

⊢ num * num ⊣ State Stack: 0 1 5

Tree Stack Top

Tree Stack Bottom

⊢

Reducing by T → N:
Push T / 5

num

N

T

⊢ num * num ⊣ State Stack: 0 1 5

Tree Stack Top

Tree Stack Bottom

⊢

num

N

T

⊢ num * num ⊣ State Stack: 0 1 5 9

Tree Stack Top

Tree Stack Bottom

⊢

num

N

T

*

⊢ num * num ⊣ State Stack: 0 1 5 9

Tree Stack Top

Tree Stack Bottom

⊢

num

N

T

*

(No change to stack contents,
just squishing it to fit more
trees on the slide)

⊢ num * num ⊣ State Stack: 0 1 5 9 4

Tree Stack Top

Tree Stack Bottom

⊢

num

N

T

*

num

⊢ num * num ⊣ State Stack: 0 1 5 9 10

Tree Stack Top

Tree Stack Bottom

⊢

num

N

T

*

num

N

⊢ num * num ⊣ State Stack: 0 1 5 9

Tree Stack Top

Tree Stack Bottom

⊢

num

N

T

*

num

NReducing by T → T * N:
Pop N / 10

⊢ num * num ⊣ State Stack: 0 1 5

Tree Stack Top

Tree Stack Bottom

⊢

num

N

T

*

num

NReducing by T → T * N:
Pop * / 9

⊢ num * num ⊣ State Stack: 0 1

Tree Stack Top

Tree Stack Bottom

⊢

num

N

T

*

num

NReducing by T → T * N:
Pop T / 5

⊢ num * num ⊣ State Stack: 0 1

Tree Stack Top

Tree Stack Bottom

⊢

num

N

T

*

num

NReducing by T → T * N:
Create node for T

T

⊢ num * num ⊣ State Stack: 0 1

Tree Stack Top

Tree Stack Bottom

⊢

num

N

T *

num

N

Reducing by T → T * N:
Add T * N as children

T

⊢ num * num ⊣ State Stack: 0 1 5

Tree Stack Top

Tree Stack Bottom

⊢

num

N

T *

num

N

Reducing by T → T * N:
Push T / 5

T

⊢ num * num ⊣ State Stack: 0 1 5

Tree Stack Top

Tree Stack Bottom

⊢

num

N

T *

num

N

T

⊢ num * num ⊣ State Stack: 0 1 2

Tree Stack Top

Tree Stack Bottom

⊢

num

N

T *

num

N

T

E

⊢ num * num ⊣ State Stack: 0 1 2 6

Tree Stack Top

Tree Stack Bottom

⊢

num

N

T *

num

N

T

E

⊣

⊢ num * num ⊣

⊢

num

N

T *

num

N

T

E ⊣

S

Semantic Analysis
Also known as Context-Sensitive Analysis

The Stages of Compilation

• The compilation process can be broadly divided into four stages.
• Scanning: Group the individual characters in the source into meaningful

chunks called tokens, and detect errors related to syntax of tokens.

• Parsing: Group the tokens into meaningful high-level structures like
statements and expressions, and detect errors related to syntax of structures.

• Semantic Analysis: Gather further information about the semantics
(meaning) of the program, e.g. scope of identifiers and types of expressions,
and detect errors related to semantics.
• The program should be free of compile-time errors after this stage.

• Code Generation: Translate each structural component of the program into
the target language using the information obtained in the previous stages.

The Stages of Compilation

• The compilation process can be broadly divided into four stages.
• Scanning: Group the individual characters in the source into meaningful

chunks called tokens, and detect errors related to syntax of tokens.

• Parsing: Group the tokens into meaningful high-level structures like
statements and expressions, and detect errors related to syntax of structures.

• Semantic Analysis: Gather further information about the semantics
(meaning) of the program, e.g. scope of identifiers and types of expressions,
and detect errors related to semantics.
• The program should be free of compile-time errors after this stage.

• Code Generation: Translate each structural component of the program into
the target language using the information obtained in the previous stages.

The WLP4 Programming Language

• WLP4 (Waterloo Language Plus Pointers Plus Procedures) is the
programming language we are writing a compiler for in this course.

• It is a (very small) subset of C++ that includes the following:
• Variables of int (32-bit signed integer) or int* (pointer to int) type
• Arithmetic expressions with brackets and the operations: + - * / %
• Printing the value of an int variable
• If/else statements and while loops, with conditions using the comparison

operators: == != < > <= >=
• Null pointers, pointer operations (dereference/address-of), pointer arithmetic
• Dynamic memory allocation for int arrays (new/delete)
• Procedures that take any amount/type of arguments and return an int value

(and a special "wain" procedure which works like the C/C++ "main" function)

Semantic Errors in WLP4

• The semantic errors one needs to check for depend on the language.

• Many errors broadly fall into one of two categories.

• Name errors are errors related to identifiers and their meanings.
• A name is used but a definition of the name cannot be found.

• A name is defined multiple times and there is no way to disambiguate.

• Type errors are errors related to the types of expressions.
• Adding two integers is valid, but adding two pointers is invalid.

• Calling "delete" on an expression that is not a pointer is invalid.

• If a procedure expects an integer parameter, passing a pointer is invalid.

Detecting Semantic Errors

• To parse programming languages, we had to move from regular
languages to the wider class of context-free languages.

• Technically, there is a class called context-sensitive languages that we
could use to describe semantically correct programs.

• Semantic analysis is sometimes called context-sensitive analysis.

• However, writing context-sensitive grammars and context-sensitive
parsers is difficult and nobody does it.

• It is much easier to just analyze the parse tree obtained from the
parsing phase than to approach this in a language-theoretic way.

Working with Parse Trees

• You can tell what kind of feature or aspect of the program you are
looking at by examining the rule that defines the parse tree node.

• For example, the rule for the main (wain) function looks like:
main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls statements RETURN expr SEMI RBRACE

• The rule for a while loop looks like:
statement → WHILE LPAREN test RPAREN LBRACE statements RBRACE

• When drawing parse trees, we usually just draw one symbol (terminal
or nonterminal) in each node.

• Project 3 asks you to store the corresponding CFG rule in each parse
tree node that corresponds to a nonterminal.

	Slide 1: Bottom-Up Parsing: SLR(1) and LR(1)
	Slide 2: SLR(1): Using Follow Sets to Resolve Conflicts
	Slide 3: SLR(1): Using Follow Sets to Resolve Conflicts
	Slide 4: SLR(1): Using Follow Sets to Resolve Conflicts
	Slide 5: The LR(0) Parsing Algorithm: Pseudocode
	Slide 6: The LR(1) Parsing Algorithm: Pseudocode
	Slide 7: SLR(1) vs. LR(1)
	Slide 8: Building a Parse Tree
	Slide 9: ⊢ num * num ⊣
	Slide 10: ⊢ num * num ⊣
	Slide 11: ⊢ num * num ⊣
	Slide 12: ⊢ num * num ⊣
	Slide 13: ⊢ num * num ⊣
	Slide 14: ⊢ num * num ⊣
	Slide 15: ⊢ num * num ⊣
	Slide 16: ⊢ num * num ⊣
	Slide 17: ⊢ num * num ⊣
	Slide 18: ⊢ num * num ⊣
	Slide 19: ⊢ num * num ⊣
	Slide 20: ⊢ num * num ⊣
	Slide 21: ⊢ num * num ⊣
	Slide 22: ⊢ num * num ⊣
	Slide 23: ⊢ num * num ⊣
	Slide 24: ⊢ num * num ⊣
	Slide 25: ⊢ num * num ⊣
	Slide 26: ⊢ num * num ⊣
	Slide 27: ⊢ num * num ⊣
	Slide 28: ⊢ num * num ⊣
	Slide 29: ⊢ num * num ⊣
	Slide 30: ⊢ num * num ⊣
	Slide 31: ⊢ num * num ⊣
	Slide 32: ⊢ num * num ⊣
	Slide 33: ⊢ num * num ⊣
	Slide 34: ⊢ num * num ⊣
	Slide 35: ⊢ num * num ⊣
	Slide 36: Semantic Analysis
	Slide 37: The Stages of Compilation
	Slide 38: The Stages of Compilation
	Slide 39: The WLP4 Programming Language
	Slide 40: Semantic Errors in WLP4
	Slide 41: Detecting Semantic Errors
	Slide 42: Working with Parse Trees

