
Semantic Analysis:
Implementation



Semantic Errors in WLP4

• Name errors are errors related to identifiers and their meanings.
• A name is used but a definition of the name cannot be found.

• A name is defined multiple times and there is no way to disambiguate.

• Type errors are errors related to the types of expressions.
• Adding two integers is valid, but adding two pointers is invalid.

• Calling "delete" on an expression that is not a pointer is invalid.

• If a procedure expects an integer parameter, passing a pointer is invalid.

• Semantic errors are detected by traversing and analyzing the parse 
tree produced in the parsing phase.



Working with Parse Trees

• You can tell what kind of feature or aspect of the program you are 
looking at by examining the rule that defines the parse tree node.

• For example, the rule for the main (wain) function looks like:
main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls statements RETURN expr SEMI RBRACE 

• The rule for a while loop looks like:
statement → WHILE LPAREN test RPAREN LBRACE statements RBRACE 

• When drawing parse trees, we usually just draw one symbol (terminal 
or nonterminal) in each node.

• Project 3 asks you to store the corresponding CFG rule in each parse 
tree node that corresponds to a nonterminal.



Parse Tree Data Structure: Considerations

• A very basic parse tree data structure could look like this (in C++):
class Node {
  std::string rule;
  std::vector<Node*> children;
};

• This is the bare minimum. You can and should improve upon this by adding 
extra fields and methods to make the class more usable.

• For example, it might make sense to store the left hand side and right hand 
side of the rule separately so you can do:
if(tree->lhs == "main") 

instead of 
if(tree->rule == "main INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls 
statements RETURN expr SEMI RBRACE")



Parse Tree Data Structure: Considerations

• A very basic parse tree data structure could look like this (in C++):
class Node {
  std::string rule;
  std::vector<Node*> children;
};

• If you want to access the second parameter of wain, you could do:
tree->children[5]; // since main -> INT WAIN LPAREN dcl COMMA dcl ...
                                    0   1    2      3   4     5

• This is awkward and prone to errors, so why not create a helper?
tree->getChild("dcl",2);



Parse Tree Data Structure: Considerations

• A very basic parse tree data structure could look like this (in C++):
class Node {
  std::string rule;
  std::vector<Node*> children;
};

• Use pointers for children if using C++. If you use std::vector<Node>, it will 
work, but it is extremely easy to make efficiency errors.

• For example: for(auto child : tree.children) { ... }

• Whoops, you forgot to write "auto&" so every iteration of the loop creates 
a deep copy of the entire child subtree (if not using pointers!)

• Smart pointers are fine too if you are comfortable with them.



Aside: Abstract Syntax Trees

• In practice, instead of using the raw parse tree from the parser and 
using grammar rules to distinguish nodes, we create different kinds of 
simplified tree nodes for each language construct.

• In object oriented languages, a class hierarchy would be used.

statement → WHILE LPAREN test RPAREN LBRACE statements RBRACE 

class WhileNode : public StatementNode {
  TestNode* test;
  std::vector<StatementNode*> statements;
}



Aside: Abstract Syntax Trees

• In practice, instead of using the raw parse tree from the parser and 
using grammar rules to distinguish nodes, we create different kinds of 
simplified tree nodes for each language construct.

• In object oriented languages, a class hierarchy would be used.

test → expr EQ expr | expr NE expr | ... | expr GT expr

class TestNode : public TreeNode {
  ExprNode* leftExpr, rightExpr;
  std::string compareOp;
}



Aside: Abstract Syntax Trees

• In practice, instead of using the raw parse tree from the parser and 
using grammar rules to distinguish nodes, we create different kinds of 
simplified tree nodes for each language construct.

• In object oriented languages, a class hierarchy would be used.

• The tree produced by the parser is called a concrete syntax tree.

• By removing nodes that are no longer needed after parsing (such as 
nodes only needed to ensure the grammar is unambiguous, or nodes 
for commas, brackets, etc. that the parser has already checked) and 
simplifying the tree structure, we obtain an abstract syntax tree.



Aside: Abstract Syntax Trees

• In practice, instead of using the raw parse tree from the parser and 
using grammar rules to distinguish nodes, we create different kinds of 
simplified tree nodes for each language construct.

• In object oriented languages, a class hierarchy would be used.

• You do not need to create an abstract syntax tree on the assignment 
(and most students do not because of the extra work involved).

• However, if you choose to do so, this up-front work might make the 
rest of the compiler easier.

• ASTs are not covered in detail in this course due to a lack of time.



Detecting Name Errors

• There are fundamentally two kinds of name errors in WLP4:
• Duplicate declarations

• Use without declaration

• This is complicated by the fact that WLP4 has scope. A declaration can 
be locally scoped to a procedure.
• Duplicate declarations in different scopes are allowed. It is only an error if the 

duplicate declarations occur in the same scope. 

• Even if a name has been declared somewhere, it might still be invalid to use it 
if the name is used in a different scope from the declaration.

• Let's first assume our only procedure is "wain" (only one scope).



Detecting Name Errors, One Scope

• If we only have wain, no other procedures, there are two kinds of 
name errors that can occur:
• Duplicate declaration of a variable

• Use of a variable that has not been declared

• We solved this exact problem already with labels in our assembler. 
The solution is to create a symbol table!

• Search the tree for variable declarations and uses.
• When you encounter a declaration, add it to the symbol table. 

If it's already there, produce an error.

• When you encounter a use, check if it's in the symbol table. If not, error.



Detecting Name Errors, One Scope

• If we only have wain, no other procedures, there are two kinds of 
name errors that can occur:
• Duplicate declaration of a variable

• Use of a variable that has not been declared

• We solved this exact problem already with labels in our assembler. 
The solution is to create a symbol table!

• Unlike the assembler, we only need to do one pass.

• This is because WLP4 enforces declaration before use. If you just 
explore the tree in the natural order, you will process all declarations 
before you encounter the first use.



Detecting Name Errors, One Scope

• To find variable declarations, search the tree for nodes corresponding 
to the rule "dcl → type ID".

• A sequence like "int n" or "int* ptr" corresponds to a subtree with 
rule "dcl → type ID".

dcl

type ID n

INT int

dcl

type ID ptr

INT int STAR *



Detecting Name Errors, One Scope

• To find variable declarations, search the tree for nodes corresponding 
to the rule "dcl → type ID".

• A sequence like "int n" or "int* ptr" corresponds to a subtree with 
rule "dcl → type ID".

• You can search for these nodes with 
a recursive tree traversal:

void traverse(Node *tree) {
  if(tree->rule == "dcl type ID") { ... }
  else {
    for(Tree *child : tree->children) {
      traverse(child);
    }
  }
}

dcl

type ID ptr

INT int STAR *



Detecting Name Errors, One Scope

• To find variable declarations, search the tree for nodes corresponding 
to the rule "dcl → type ID".

• A sequence like "int n" or "int* ptr" corresponds to a subtree with 
rule "dcl → type ID".

• When you find one, add the name
and type to the symbol table:

if(tree->rule == "dcl type ID") {
  // look at type subtree to determine type
  // look at ID child to determine name
  // add (name, type) pair to symbol table
}

dcl

type ID ptr

INT int STAR *



Detecting Name Errors, One Scope

• In the assembler, we stored the memory address corresponding to 
each label name in the symbol table.

• For semantic analysis, we will store the type of each variable.

• This will be useful later when checking for type errors, and will also be 
useful in code generation, where the type of an expression might 
affect the code we generate.

• For example, if "a" and "b" are int variables, then the code "a + b" will 
just add the integers. But if "a" is an int* variable and "b" is an int, 
then we do pointer arithmetic, which works slightly differently.



Detecting Name Errors, One Scope

• To find variable uses, we search the tree for nodes corresponding to 
the rules "factor → ID" and "lvalue → ID".

• The "factor → ID" rule represents a variable appearing as an element 
of an expression. For example, in "a + b", the "a" and "b" variables 
occur as the ID in a "factor → ID" subtree.

• An lvalue is a special kind of expression that is guaranteed to 
represent a memory location. It is called an "L" value because it is 
valid on the left side of an assignment statement.
• "3 = a;" is invalid because 3 is not an lvalue, but "a = 3;" is valid.

• To find all variable uses, need to consider "lvalue → ID" nodes as well.



Detecting Name Errors, Multiple Scopes

• Now let's suppose we can have procedures other than wain.

• Each procedure has its own local scope!

• There are no duplicate declaration errors in this program:

int f(int y) { int x = 241; return x+y; }
int wain(int x, int y) { return f(x)+f(y); }

• This program has an error though (a and b are out of scope in mult):

int abba(int a, int b) { return a+b+b+a; }
int mult() { return a*b; }
int wain(int a, int b) { return mult(); }



Detecting Name Errors, Multiple Scopes

• Now let's suppose we can have procedures other than wain.

• We can have name errors involving procedures!

• Duplicate procedure declarations:

int p() { return 241; }
int p() { return 242; }
int wain(int a, int b) { return p(); }

• Use of undeclared procedure:

int wain(int a, int b) { return q(a,b); }

• Also, what if q was declared, but doesn't take two int arguments?!



Detecting Name Errors, Multiple Scopes

• Let's first solve the problems involving variables.

• For each procedure, we will construct a separate symbol table.

• Previously, we had one table which mapped variable names to types.

• Now, we will have one global table which maps procedure names to 
local symbol tables.

• Each local symbol table maps variable names to types, but only 
includes the variables declared inside the relevant procedure.

• We keep track of the current procedure while traversing the tree, and 
use it to update or access the correct local symbol table.



Detecting Name Errors, Multiple Scopes

int p(int x) { 
int y = 241; 
return x + y; 

}
int q(int *a, int n) {

int *p = NULL;
p = a + n;
return p - a;

}
int wain(int a, int y) {

int *x = NULL;
x = new int[y];
return p(a) + q(x, y);

}

Procedure Variable Type

p
x int

y int

q

a int*

n int

p int*

wain

a int

y int

x int*



Detecting Name Errors, Multiple Scopes

• This idea of nested tables also solves another problem: detecting 
duplicate procedure declarations and undeclared procedures.

• The "global table" lets us check if a procedure name has already been 
declared, or is used without being declared!

• The only issue left is how to handle argument count or type 
mismatches, for example:

int f(int a, int *b, int c) { return 0; }
int wain(int *a, int b) { return f(b,a,b) + f(a,b,a) + f(b,a) + f(241); }

• Leftmost call to f is correct, the rest are not.



Detecting Name Errors, Multiple Scopes

• Similar to how we store the type of each variable, we can store the 
type signature of each procedure.

• Normally, the signature of a procedure is a list of the argument types 
and return value type.

• Since WLP4 procedures always return a single int, we can drop the 
return value type and just store a list of argument types.

• When we encounter a procedure, we extract the signature and store 
it in our global table.

• Then when we encounter a procedure call, we can compare the list of 
argument types to the signature.



Detecting Name Errors, Multiple Scopes

int p(int x) { 
int y = 241; 
return x + y; 

}
int q(int *a, int n) {

int *p = NULL;
p = a + n;
return p - a;

}
int wain(int a, int y) {

int *x = NULL;
x = new int[y];
return p(a) + q(x, y);

}

Procedure Signature Variable Type

p [int]
x int

y int

q [int*, int]

a int*

n int

p int*

wain [int, int]

a int

y int

x int*



Detecting Name Errors, Multiple Scopes

• Search for (or just loop over) all procedure declarations in the tree:
procedure → INT ID LPAREN params RPAREN LBRACE dcls statements RETURN expr SEMI RBRACE

• The ID node tells you the procedure name. Create a global symbol 
table entry for the procedure.

• Explore the params subtree to extract the signature, and to add the 
parameters to the local symbol table for the procedure.

• Explore the dcls subtree for the local non-parameter declarations.

• Explore the statements and expr subtrees to find variable uses and 
procedure calls and check them against the symbol table.



Detecting Name Errors, Multiple Scopes

• As a data structure, the global symbol table looks something like this:
map<string, pair< vector<string>, map<string, string> > >
    proc. name    signature       local symbol table

• But don't literally use this awful data structure, you will get confused. 
Create classes that wrap everything nicely.

For example: map<string, pair<Signature, SymbolTable>>
Or maybe:  map<string, ProcedureData>

• If you find yourself typing things like procTable[name].second.first[i] 
stop being silly and make classes with reasonably named helper 
methods like getSignature or getVariableType.



Detecting Name Errors, Multiple Scopes

• The params subtree of a procedure can either just be a leaf node (no 
parameters) or a paramlist:

paramlist → dcl COMMA paramlist        paramlist → dcl 

• Notice a paramlist tree is basically just a linked list of dcl trees.

• To extract the signature, just traverse this linked list with a loop.
void traverse(Node *tree) {
  if(tree->rule == "dcl type ID") { ... }
  else {
    for(Tree *child : tree->children) {
      traverse(child);
    }
  }
}

Don't try to extract the signature here by 
updating some global variable or something, 
you will make your life miserable



Detecting Name Errors, Multiple Scopes

• Procedure calls come in two forms:
• No arguments: "factor → ID LPAREN RPAREN"

• With arguments: "factor → ID LPAREN arglist RPAREN"

• You need to check if the ID is in the global table (i.e., the procedure 
being called has been declared).
• There is a tricky edge case here. See the next slide.

• You also need to check if the arguments match the signature 
(although this is more of a "type error" than a "name error").

• In the arglist case, extract the arglist using the same technique as for 
paramlists.



Detecting Name Errors, Multiple Scopes

• What if a procedure and a local variable share a name?

• The WLP4 specification says the local variable takes priority. So this 
procedure is legal:

int p(int p) { return p; }

• But the following procedure is not legal:
int p(int p) { return p(0); }

• This is illegal because p refers to the local variable, and you cannot 
"call" a local variable in WLP4.

• This is really a special case of a more general class of errors involving 
mixing up variables and procedures.



Detecting Name Errors, Multiple Scopes

• We don't really need to modify how we check variable uses.
• When we encounter a variable use, look up the ID in the current procedure's 

local symbol table.

• You should not look up the ID in the global table, because the ID is a variable, 
not a procedure. Whether it's in the global table is irrelevant.

• But we need to be careful about how we check procedure calls.
• When we encounter a procedure call, first look up the ID in the current 

procedure's local symbol table.

• If you find it, this is an error! The ID refers to a local variable in this scope, but 
we're trying to "call" it as a procedure.

• If you don't find it, then look up the ID in the global table.



Detecting Type Errors

• After detecting name errors and building the symbol table, the next 
step is to detect type errors.

• In the process, we will also compute the types of all subtrees that 
represent expressions.

• If an expression's type cannot be computed according to the type 
inference rules (to be discussed) then it contains a type error.

• We also need to check for type errors in statements and other 
structures that do not have types themselves, but have certain 
restrictions on the types of their subparts.



Detecting Type Errors

• There are two ways we can approach type checking.

• We could write a function "getType" that we can call on an expression 
subtree to compute and return its type.

• For example, suppose we have a tree for the expression "a + b". The 
getType function would recursively find the types of "a" and "b", then 
use this information to compute the type of "a + b" and return it.

• Before returning the type, you should cache it in the tree node.
• Add a "type" field to your parse tree class.

• Store the type in the field before returning.

• If getType is called and the type is already computed, return it immediately.



Detecting Type Errors

• There are two ways we can approach type checking.

• Another approach is to traverse the tree from the leaves to the root.

• The types of leaf nodes can be computed and cached without using 
additional information from the tree.

• When you reach a non-leaf node, assume its child nodes already have 
types cached and use them to compute and cache the node's type.

void annotateTypes(Node* tree) {
  for(Node *child : tree->children) { annotateTypes(child); }
  if(tree->rule == "expr term") { tree->type = tree->getChild("term")->type; }
  ...
}
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Look up "a" in the symbol table. Suppose we get int* as the type.
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The type of the factor is the same as the type of the ID child.
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The type of the term is the same as the type of the factor child.
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The type of the expr is the same as the type of the term child.
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term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: ?

ID i
type: ?

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?



lvalue
type: ?

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor
type: ?

expr
type: ?

LPAREN ( RPAREN )

expr
type: int*

term
type: ?

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: ?

ID i
type: ?

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?



lvalue
type: ?

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor
type: ?

expr
type: ?

LPAREN ( RPAREN )

expr
type: int*

term
type: ?

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: ?

ID i
type: ?

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?



lvalue
type: ?

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor
type: ?

expr
type: ?

LPAREN ( RPAREN )

expr
type: int*

term
type: ?

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: ?

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?

Look up "i" in the symbol table. Suppose we get int as the type.



lvalue
type: ?

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor
type: ?

expr
type: ?

LPAREN ( RPAREN )

expr
type: int*

term
type: ?

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?



lvalue
type: ?

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor
type: ?

expr
type: ?

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?



lvalue
type: ?

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor
type: ?

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?

int* + int (pointer arithmetic) should produce an int* expression.



lvalue
type: ?

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor
type: ?

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?



lvalue
type: ?

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor
type: ?

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?



lvalue
type: ?

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?

Dereferencing an int* produces an int expression.



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: ?

ID b
type: ?



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: ?

NUM 241
type: int

ID b
type: ?

A numeric constant always has int type. (No need for symbol table here)



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: ?

STAR *
factor
type: ?

factor
type: int

NUM 241
type: int

ID b
type: ?



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: int

STAR *
factor
type: ?

factor
type: int

NUM 241
type: int

ID b
type: ?



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: int

STAR *
factor
type: ?

factor
type: int

NUM 241
type: int

ID b
type: ?



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: int

STAR *
factor
type: ?

factor
type: int

NUM 241
type: int

ID b
type: ?



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: int

STAR *
factor
type: ?

factor
type: int

NUM 241
type: int

ID b
type: ?



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: int

STAR *
factor
type: ?

factor
type: int

NUM 241
type: int

ID b
type: ?



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: int

STAR *
factor
type: ?

factor
type: int

NUM 241
type: int

ID b
type: int

Look up "b" in the symbol table. Suppose we get int as the type.



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: int

STAR *
factor

type: int

factor
type: int

NUM 241
type: int

ID b
type: int



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: int

term
type: int

STAR *
factor

type: int

factor
type: int

NUM 241
type: int

ID b
type: int

Multiplying two ints gives an int.



lvalue
type: int

BECOMES =
expr

type: int
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: int

term
type: int

STAR *
factor

type: int

factor
type: int

NUM 241
type: int

ID b
type: int



lvalue
type: int

BECOMES =
expr

type: int
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: int

term
type: int

STAR *
factor

type: int

factor
type: int

NUM 241
type: int

ID b
type: int



lvalue
type: int

BECOMES =
expr

type: int
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: int

term
type: int

STAR *
factor

type: int

factor
type: int

NUM 241
type: int

ID b
type: int



lvalue
type: int

BECOMES =
expr

type: int
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: true

ID a
type: int*

factor
type: int

ID i
type: int

term
type: int

term
type: int

STAR *
factor

type: int

factor
type: int

NUM 241
type: int

ID b
type: int

Because the left hand side and right hand side are the same type, 
the statement is "well-typed" (no type errors).



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: int

STAR *
factor
type: ?

factor
type: int

NUM 241
type: int

ID b
type: ?

Let's go back here and consider an error case. What if the type of b was int*?



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: int

STAR *
factor
type: ?

factor
type: int

NUM 241
type: int

ID b
type: int*



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
type: ?

term
type: int

STAR *
factor

type: int*

factor
type: int

NUM 241
type: int

ID b
type: int*



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
ERROR

term
type: int

STAR *
factor

type: int*

factor
type: int

NUM 241
type: int

ID b
type: int*

Multiplying int with int* does not make sense. Type error!



lvalue
type: int

BECOMES =
expr

type: ?
SEMI ;

STAR *
factor

type: int*

expr
type: int*

LPAREN ( RPAREN )

expr
type: int*

term
type: int

PLUS +

term
type: int*

*(a+i) = 241 * b;

factor
type: int*

statement
well-typed: ?

ID a
type: int*

factor
type: int

ID i
type: int

term
ERROR

term
type: int

STAR *
factor

type: int*

factor
type: int

NUM 241
type: int

ID b
type: int*

We do not continue the traversal, just produce an error and exit.
(In practice, a compiler would probably continue on in the program to find more errors.)



Type Inference Rules

• The WLP4 specification lists the type rules in plain English, e.g.:

"The type of a factor or lvalue deriving STAR factor is int. The type of 
the derived factor (i.e. the one preceded by STAR) must be int*." 

• This is for pointer dereference. It says the expression you dereference 
must be a pointer, and the result of the dereference is an integer.

• In the course notes, you will see the same rules expressed in 
"deductive logic" notation:

𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠

𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑠

𝐸: 𝑖𝑛𝑡∗

∗𝐸: 𝑖𝑛𝑡



Type Correctness Rules

• A type inference rule allows you to deduce the type of an expression.

• A type correctness rule allows you to check if the type of a statement 
or other language structure is free of type errors.

"When statement derives lvalue BECOMES expr SEMI, the derived 
lvalue and the derived expr must have the same type."

• This is the type correctness rule for assignment statements.

𝐸1:  𝜏 𝐸2:  𝜏

𝑤𝑒𝑙𝑙−𝑡𝑦𝑝𝑒𝑑(𝐸1 = 𝐸2; )



Examples of Type Rules

• We won't go over every rule (see the course notes or the WLP4 
specification) but here are a few more examples.

𝑁𝑈𝑀: 𝑖𝑛𝑡

• The premises are empty, which means the conclusion is always true.

• "The type of a NUM is int."



Examples of Type Rules

• We won't go over every rule (see the course notes or the WLP4 
specification) but here are a few more examples.

𝐸:  𝜏

𝐸 :  𝜏

• Parentheses do not affect the type of an expression.
• "The type of a factor deriving LPAREN expr RPAREN is the same as the type of 

the expr. The type of an lvalue deriving LPAREN lvalue RPAREN is the same as 
the type of the derived lvalue."



Examples of Type Rules

• We won't go over every rule (see the course notes or the WLP4 
specification) but here are a few more examples.

𝐸1:  𝑖𝑛𝑡 ∗  𝐸2: 𝑖𝑛𝑡 ∗

𝐸1 − 𝐸2:  𝑖𝑛𝑡

• Subtracting two pointers is allowed, and the resulting type is int.
• This computes the "distance" between the pointers. For example, if you 

subtract two pointers into an array, it gives the number of elements between 
the two pointers.



Examples of Type Rules

• We won't go over every rule (see the course notes or the WLP4 
specification) but here are a few more examples.

𝐼𝐷. 𝑛𝑎𝑚𝑒, 𝜏 ∈ 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝐼𝐷. 𝑛𝑎𝑚𝑒:  𝜏

• This is formally expressing the idea that the type of a variable with a 
particular name is determined by the type that is used in the variable 
declaration. 



Examples of Type Rules

• We won't go over every rule (see the course notes or the WLP4 
specification) but here are a few more examples.

𝐸1:  𝜏 𝐸2:  𝜏

𝑤𝑒𝑙𝑙−𝑡𝑦𝑝𝑒𝑑(𝐸1 < 𝐸2)

• A Boolean test with the < operator is well-typed if both expressions 
being compared have the same type.

• WLP4 doesn't have a "bool" type!



Examples of Type Rules

• We won't go over every rule (see the course notes or the WLP4 
specification) but here are a few more examples.

𝑤𝑒𝑙𝑙−𝑡𝑦𝑝𝑒𝑑 𝑡𝑒𝑠𝑡  𝑤𝑒𝑙𝑙−𝑡𝑦𝑝𝑒𝑑 𝑆1  𝑤𝑒𝑙𝑙−𝑡𝑦𝑝𝑒𝑑(𝑆2)

𝑤𝑒𝑙𝑙−𝑡𝑦𝑝𝑒𝑑(𝑖𝑓 𝑡𝑒𝑠𝑡  𝑆1 𝑒𝑙𝑠𝑒  𝑆2 )

• An if statement is well-typed if the test is well-typed, the "if clause" 
statements are well-typed, and the "else clause" statements are well-
typed.



Examples of Type Rules

• We won't go over every rule (see the course notes or the WLP4 
specification) but here are a few more examples.

𝑑𝑐𝑙2:  𝑖𝑛𝑡 𝑤𝑒𝑙𝑙−𝑡𝑦𝑝𝑒𝑑 𝑑𝑐𝑙𝑠  𝑤𝑒𝑙𝑙−𝑡𝑦𝑝𝑒𝑑 𝑆  𝐸:  𝑖𝑛𝑡

𝑤𝑒𝑙𝑙−𝑡𝑦𝑝𝑒𝑑(𝑖𝑛𝑡 𝑤𝑎𝑖𝑛 𝑑𝑐𝑙1, 𝑑𝑐𝑙2  { 𝑑𝑐𝑙𝑠 𝑆 𝑟𝑒𝑡𝑢𝑟𝑛 𝐸; })

• The wain procedure requires that the second parameter is int, and 
the return expression is int.

• The declarations and statements in wain must all be well-typed.



The Next Step

• After semantic analysis, we know the program is free of compile-time 
errors. The next step is to generate MIPS code for the program!

• The flavour is similar to type checking in that we traverse the tree and 
take different actions depending on what kind of rule we see.

• Instead of computing types, we output MIPS code to implement the 
various language constructs.

• We will make use of the type information we computed, and extend 
our symbol table a little bit to help with implementing variables.
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