
Code Generation

The Stages of Compilation

• The compilation process can be broadly divded into four stages.
• Scanning: Group the individual characters in the source into meaningful

chunks called tokens, and detect errors related to syntax of tokens.

• Parsing: Group the tokens into meaningful high-level structures like
statements and expressions, and detect errors related to syntax of structures.

• Semantic Analysis: Gather further information about the semantics
(meaning) of the program, e.g. scope of identifiers and types of expressions,
and detect errors related to semantics.
• The program should be free of compile-time errors after this stage.

• Code Generation: Translate each structural component of the program into
the target language using the information obtained in the previous stages.

Code Generation

• The idea behind code generation is very similar to type checking.

• We traverse the tree, and depending on the rule at the current node,
we output code implementing the functionality of the rule.

• Type checking has a "correct answer", but there are (infinitely) many
possible correct code generation strategies.

• Modern compilers use very complex algorithms to produce code that
is optimized for speed (i.e., the generated program should be fast).

• We will focus on ease of implementation at the expense of speed.

• First, let's look at some examples of generated code.

Code Generation: Basic Example

int wain(int a, int b) { return a; }

• WLP4 programs, when compiled to MIPS, take parameters in $1 and
$2 (either via mips.twoints or mips.array) and return a value in $3.

• Here are two possible ways to generate code for this program.

• The second program is much
more complicated, but is actually
easier to generate.

lis $4
.word 4
sw $1, -4($30)
sub $30, $30, $4
sw $2, -4($30)
sub $30, $30, $4
sub $29, $30, $4
lw $3, 8($29)
jr $31

add $3, $1, $0
jr $31

Handling Variables

int wain(int a, int b) {
 int c = 240;
 int d = 241;
 int e = 242;
 return d;
}

• Let's say we try to compile a program with non-parameter local
variables. The parameters start out in $1 and $2, but what about
other variables?

• Do we put them in $3, $4 and $5? What if we run out of registers?

Handling Variables

int wain(int a, int b) {
 int c = 240;
 int d = 241;
 int e = 242;
 return d;
}

• The reason the second program is easier to generate is because it
stores all variables on the stack. We will follow this strategy.

• There could be more variables than registers, and allocating some to
registers and some to the stack makes things more complicated.

The Frame Pointer

int wain(int a, int b) {
 int c = 240;
 int d = 241;
 int e = 242;
 return d;
}

• Suppose we store our variables
on the stack as follows.

• We can access them using stack pointer offsets, e.g., to load "d" into
$3 we could use "lw $3, 4($30)".

Stack

$30 e = 242

$30+4 d = 241

$30+8 c = 240

$30+12 b = $2

$30+16 a = $1

The Frame Pointer

int wain(int a, int b) {
 int c = 240;
 int d = 241;
 int e = 242;
 return d;
}

• Suppose we store our variables
on the stack as follows.

• But if $30 changes for any reason, all our offsets change, which makes
code generation for variable accesses harder.

Stack

$30 e = 242

$30+4 d = 241

$30+8 c = 240

$30+12 b = $2

$30+16 a = $1

The Frame Pointer

int wain(int a, int b) {
 int c = 240;
 int d = 241;
 int e = 242;
 return d;
}

• To solve this problem, we make a
copy of $30 in $29 and do not
change it after initialization.

• Offsets from $29 stay constant throughout the program.

Stack

$29-8 $30 e = 242

$29-4 $30+4 d = 241

$29 $30+8 c = 240

$29+4 $30+12 b = $2

$29+8 $30+16 a = $1

The Frame Pointer

int wain(int a, int b) {
 int c = 240;
 int d = 241;
 int e = 242;
 return d;
}

• $29 is called the frame pointer
and is used to access variables
in the current stack frame.

• Each procedure gets its own stack frame (more on this later).

Stack

$29-8 $30 e = 242

$29-4 $30+4 d = 241

$29 $30+8 c = 240

$29+4 $30+12 b = $2

$29+8 $30+16 a = $1

Code Generation

int wain(int a, int b) { return a; }

• Now we can make sense of this generated code.

lis $4
.word 4 ; initialize constant $4 = 4
sw $1, -4($30) ; push a = $1 (offset 8 from frame pointer)
sub $30, $30, $4 ; decrement stack pointer $30 by 4
sw $2, -4($30) ; push b = $2 (offset 4 from frame pointer)
sub $30, $30, $4 ; decrement stack pointer $30 by 4
sub $29, $30, $4 ; set the frame pointer $29 to $30-4
lw $3, 8($29) ; set $3 = a
jr $31 ; return

Notes about the Frame Pointer

• In the previous example, we set the frame pointer $29 after pushing
the parameters of wain.

• The exact position of the frame pointer doesn't really matter as long
as you are consistent about it and compute the offsets correctly.

• The scheme on the previous slide is the one used by the course notes.

• This scheme uses the frame pointer to separate parameters and non-
parameter local variables.
• Positive offsets for parameters, non-positive for non-parameters.

Code Generation: Expressions

int wain(int a, int b) {
 int c = 241;
 return a+b-c;
}

• An intuitive way to represent this as a MIPS program might be:
add $5, $1, $2
lis $3
.word 241
sub $3, $5, $3
jr $31

• But again, it's hard to write a code generator that works this way!

Code Generation: Expressions

int wain(int a, int b) {
 int c = 241;
 return a+b-c;
}

• We run into a similar problem as for handling variables.

• We need to store temporary expression results somewhere. For
example, we put a+b in $5 so that we could use $3 to hold c.

• If we use registers, we will run out of registers when processing large
expressions, and it's also tricky to decide which registers to use.

Code Generation: Expressions

int wain(int a, int b) {
 int c = 241;
 return a+b-c;
}

• Solution: Use the stack again!

• When we encounter a single term (variable or constant) we load it
into $3 (like we would if we were returning that value).

• For a binary operation, we compute the left subexpression, push the
result to the stack, compute the right subexpression, pop the left
result, and use the two results to get the final value of the expression.

Code Generation: Expressions

int wain(int a, int b) {
 int c = 241;
 return a+b-c;
}

• Let's just consider the "a+b" part.
$3 = a lw $3, a_offset($29) ; assuming frame pointer is set up
push $3 to stack sw $3, -4($30)
 sub $30, $30, $4 ; assuming $4 contains 4
$3 = b lw $3, b_offset($29)
pop into $5 add $30, $30, $4
 lw $5, -4($30)
$3 = a+b add $3, $5, $3

Code Generation: Expressions

int wain(int a, int b) {
 int c = 241;
 return a+b-c;
}

• Let's just consider the "a+b" part.
$3 = a lw $3, a_offset($29) ; assuming frame pointer is set up
push $3 to stack sw $3, -4($30) ; offsets from $30 change here!
 sub $30, $30, $4 ; assuming $4 contains 4
$3 = b lw $3, b_offset($29) ; but $29 stays constant!
pop into $5 add $30, $30, $4
 lw $5, -4($30)
$3 = a+b add $3, $5, $3

Code Generation: Expressions

int wain(int a, int b) {
 int c = 241;
 return a+b-c;
}

• The overall structure of "a+b-c" is the same:
$3 = a+b ; ENTIRE BLOCK OF CODE FROM PREVIOUS SLIDE GOES HERE
push $3 to stack sw $3, -4($30)
 sub $30, $30, $4
$3 = c lw $3, c_offset($29)
pop into $5 add $30, $30, $4
 lw $5, -4($30)
$3 = (a+b)-c sub $3, $5, $3

Code Generation: Expressions

int wain(int a, int b) {
 int c = 241;
 return a+b-c;
}

• How do we know that we need to do "(a+b)-c" and not "a+(b-c)"?

• The parse tree tells us!! Our grammar unambiguously forces the tree
structure to account for order of operations correctly.

• If you just traverse the tree and use this push/pop strategy at each
node, your code will evaluate expressions in the right order.

Notes about Expressions

• Because WLP4 programs return a value in $3, it is convenient to
follow the convention that all expressions generate code which puts
their result in $3.

• This means we do not need extra code to move an expression result
to $3 for return purposes.

• However, this also means that when we pop the "left subexpression
result" from the stack, we can't put it in $3 since $3 will already be
holding the "right subexpression result".

• We will use $5 as a temporary register to pop values into, but this is
an arbitrary choice that has no special meaning.

Implementing Code Generation

• For now, we will assume that wain is the only procedure.

• Later, we will discuss how to non-wain procedures.

• The general idea is to output code based on the rules in the tree.

• If wain is the only procedure, then the tree starts off like this:

start → BOF procedures EOF
procedures → main
main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls statements
RETURN expr SEMI RBRACE

Implementing Code Generation

• Because we are using a concrete syntax tree instead of an abstract
syntax tree, a lot of tree nodes are superfluous.

• start → BOF procedures EOF
• To generate code for "start", generate code for "procedures".

• procedures → main
• To generate code for "procedures", generate code for "main".

• For simplicity, we will assume you have a single function called "code"
that handles code generation for all rules.
• It's arguably cleaner to split it into multiple smaller helper functions.

• For these rules, "code" can just do a recursive call on the child node.

Implementing Code Generation

main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls
statements RETURN expr SEMI RBRACE

• This rule defines the overall structure of the main function. You will
need to look at the subparts and generate code for each.

• The first step is to set up the frame pointer and put the local variables
on the stack.

• Before examining any subtrees, initialize constants, e.g., put 4 in $4.

• Another useful constant is 1, but $1 contains the first parameter of
wain, so the course notes use $11 to store 1.

Implementing Code Generation

main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls
statements RETURN expr SEMI RBRACE

• The two "dcl" subtrees and the "dcls" subtree define the local
variables of wain (parameters and non-parameters).

• Using the same techniques as in the semantic analysis phase, create a
table that maps local variable names to frame pointer offsets.
• You could also just directly extend your semantic analysis code instead of

reusing the techniques.

• You could add the offsets to your existing symbol table structure instead of
creating a separate table.

Implementing Code Generation

main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls
statements RETURN expr SEMI RBRACE

• Once you have a table of frame pointer offsets, push the local
variables to the stack at the appropriate locations.

• There are essentially two approaches to this. One is to ensure that
you compute the offsets and push the variables in the same order.
• Note that std::map and std::unordered_map in C++ store keys in an arbitrary

order, so don't rely on iterating over the map to produce the correct order.

• You could also use the table to directly store variables at their offsets.
• But make sure you update the stack pointer appropriately!

Implementing Code Generation

main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls statements
RETURN expr SEMI RBRACE

• Approach 1: Compute offsets and push variables in the same order.
• Keep a counter of how many variables you have seen.

• Look at the first dcl subtree. Store the pair (variable name, (counter – 2) * -4) in the
offset table, increment the counter, and output code to push $1 to the stack.
• It's (counter – 2) to account for the fact that there are 2 parameters of wain.

• Look at the second dcl subtree. Repeat the previous step but with $2.

• Now set the FP to divide parameters and non-parameters:
sub $29, $30, $4

• Traverse the dcls subtree and for each dcl you find, repeat the previous step but
store the variable's initial value instead of $1 or $2.

Implementing Code Generation

main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls statements
RETURN expr SEMI RBRACE

• Approach 2: Use the table to store variables directly at their offsets.
• This might be easier if you prefer to compute the offset table in a separate pass,

instead of doing it at the same time as pushing the variables.

• Set the frame pointer to $30 – 12 (so that it is one slot above the second parameter).

• Loop over the offset table, and for each variable, output code that stores $1, $2, or
the initial value at the correct offset from $29.

• Then, set $30 to the address of the highest-up thing you placed on the stack ($29 +
most negative offset). This is extremely important.

• If you don't do this, then when you push things to the stack later, it will wipe out
your local variables (since they will be above the stack pointer!!)

Implementing Code Generation

main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls
statements RETURN expr SEMI RBRACE

• The big picture:

1. Initialize constants (e.g. $4 = 4). [Done]

2. Set up the frame pointer and put variables on the stack. [Done]

3. Generate code for all statements in the "statements" subtree.

4. Generate code for the return "expr".

5. Generate code that cleans up the stack ("optional", but can be
helpful for debugging) and returns (jr $31).

Implementing Code Generation

main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls
statements RETURN expr SEMI RBRACE

• Skipping ahead to step 5…

5. Generate code that cleans up the stack ("optional", but can be
helpful for debugging) and returns (jr $31).

• It's "optional" in the sense that nothing bad will actually happen if
you don't reset the stack (nor does Marmoset check for it).
• It's sort of a "memory leak", but the OS can handle it after the program ends.

• But it can be useful as a "sanity check".

Implementing Code Generation

main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls
statements RETURN expr SEMI RBRACE

• Skipping ahead to step 5…

5. Generate code that cleans up the stack ("optional", but can be
helpful for debugging) and returns (jr $31).

• At the end of the program, pop N times where N is the number of
local variables you pushed onto the stack.

• If you used the stack correctly, the stack pointer $30 should be at its
original address. If it's not, this might be a sign of a bug!

Implementing Code Generation

main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls
statements RETURN expr SEMI RBRACE

• How about step 4?

4. Generate code for the return "expr".

• Aside from rules related to pointers and procedures, we have mostly
already covered this.

• For rules like this:

expr → term term → factor factor → LPAREN expr RPAREN

• Just recurse on the relevant child node.

Implementing Code Generation

main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls
statements RETURN expr SEMI RBRACE

• How about step 4?

4. Generate code for the return "expr".

• Aside from rules related to pointers and procedures, we have mostly
already covered this.

• For factor → ID, look up the ID in the frame pointer offset table, and
generate code that loads from that offset into $3.

• For factor → NUM, put the numeric constant in $3 with lis.

Implementing Code Generation

main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls
statements RETURN expr SEMI RBRACE

• How about step 4?

4. Generate code for the return "expr".

• For binary operation rules, e.g. expr → expr PLUS term:
• Recursively generate code that puts the left subexpression result in $3.

• Generate code that pushes $3 to the stack.

• Recursively generate code that puts the right subexpression result in $3.

• Generate code that pops from the stack into $5.

• Perform the operation using the values in $5 and $3, storing the result in $3.

Implementing Code Generation

main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls
statements RETURN expr SEMI RBRACE

• How about step 4?

4. Generate code for the return "expr".

• We still need to discuss expressions involving pointers (dereference,
address-of, pointer arithmetic, memory allocation with new).

• Expressions can also include procedure calls. We need to discuss how
non-wain procedures are implemented.

Implementing Code Generation

main → INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls
statements RETURN expr SEMI RBRACE

• We also still need to discuss step 3:

3. Generate code for all statements in the "statements" subtree.

• Statements include assignment statements, if statements, while
loops, println statements, and delete (memory deallocation).

• If statements and while loops involve implementing comparison tests.

• For println and delete (and new) we will use external libraries and
linking!

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}

start

procedures EOFBOF

main

…

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}

lis $4
.word 4

Initialize constants

start

procedures EOFEOF

main

…

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}

lis $4
.word 4

main

dcl COMMA …… LPAREN

type

INT int

ID a

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}

lis $4
.word 4
sw $1, -4($30)
sub $30, $30, $4

Add (a, 8) to offset table
Store a = $1 on stack

main

dcl COMMA …… LPAREN

type

INT int

ID a

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}

lis $4
.word 4
sw $1, -4($30)
sub $30, $30, $4

Add (a, 8) to offset table
Store a = $1 on stack

main

dcl COMMA …… LPAREN

type

INT int

ID a

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}

lis $4
.word 4
sw $1, -4($30)
sub $30, $30, $4

main

dcl RPAREN …… COMMA

type

INT int

ID b

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}

lis $4
.word 4
sw $1, -4($30)
sub $30, $30, $4
sw $2, -4($30) Add (b, 4) to offset table
sub $30, $30, $4 Store b = $2 on the stack

main

dcl RPAREN …… COMMA

type

INT int

ID b

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}

lis $4
.word 4
sw $1, -4($30)
sub $30, $30, $4
sw $2, -4($30) Add (b, 4) to offset table
sub $30, $30, $4 Store b = $2 on the stack

main

dcl RPAREN …… COMMA

type

INT int

ID b

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}

lis $4
.word 4
sw $1, -4($30)
sub $30, $30, $4
sw $2, -4($30)
sub $30, $30, $4 Before processing "dcls",
sub $29, $30, $4 set up the frame pointer

main

dcls statements …… LBRACE

…

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int c = 482;
int d = 2;

dcls

dcldcls BECOMES = NUM 482

… type

INT int

ID c

SEMI ;

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int c = 482;
int d = 2;

lis $3
.word 482

dcls

dcldcls BECOMES = NUM 482

… type

INT int

ID c

SEMI ;

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int c = 482;
int d = 2;

lis $3
.word 482

dcls

dcldcls BECOMES = NUM 482

… type

INT int

ID c

SEMI ;

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int c = 482;
int d = 2;

lis $3
.word 482
sw $3, -4($30)
sub $30, $30, $4

Also add (c, 0) to offset table.

dcls

dcldcls BECOMES = NUM 482

… type

INT int

ID c

SEMI ;

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int c = 482;
int d = 2;

lis $3
.word 482
sw $3, -4($30)
sub $30, $30, $4

Done with this declaration.
Move on to the next.

dcls

dcldcls BECOMES = NUM 482

… type

INT int

ID c

SEMI ;

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int c = 482;
int d = 2;

lis $3
.word 482
sw $3, -4($30)
sub $30, $30, $4

dcls

dcldcls BECOMES = NUM 2

(no children!) type

INT int

ID d

SEMI ;

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int c = 482;
int d = 2;

lis $3
.word 482
sw $3, -4($30)
sub $30, $30, $4
lis $3
.word 2

dcls

dcldcls BECOMES = NUM 2

(no children!) type

INT int

ID d

SEMI ;

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int c = 482;
int d = 2;

lis $3
.word 482
sw $3, -4($30)
sub $30, $30, $4
lis $3
.word 2
sw $3, -4($30)
sub $30, $30, $4

Also add (d, -4) to offset table.

dcls

dcldcls BECOMES = NUM 2

(no children!) type

INT int

ID d

SEMI ;

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int c = 482;
int d = 2;

lis $3
.word 482
sw $3, -4($30)
sub $30, $30, $4
lis $3
.word 2
sw $3, -4($30)
sub $30, $30, $4

No more declarations to process,
so we are fully done.

dcls

dcldcls BECOMES = NUM 2

(no children!) type

INT int

ID d

SEMI ;

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}

lis $4 lis $3
.word 4 .word 482
sw $1, -4($30) sw $3, -4($30)
sub $30, $30, $4 sub $30, $30, $4
sw $2, -4($30) lis $3
sub $30, $30, $4 .word 2
sub $29, $30, $4 sw $3, -4($30) Done with the "prologue" (setting up constants,
 sub $30, $30, $4 frame pointer, and storing variables on the stack.)

main

dcls statements …… LBRACE

…

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}

Time for the procedure body (statements and return expression).

main

statements RETURN …… dcls

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}

Time for the procedure body (statements and return expression).

This procedure has no statements.

main

statements RETURN …… dcls

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}

main

expr SEMI …… RETURN

…

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

a+c/d
expr

expr PLUS + term

SLASH /term factor

ID dfactorfactor

ID c

term

ID a

Variable Offset

a 8

b 4

c 0

d -4

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

a+c/d

lw $3, 8($29)

expr

expr PLUS + term

SLASH /term factor

ID dfactorfactor

ID c

term

ID a

Variable Offset

a 8

b 4

c 0

d -4

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

a+c/d

lw $3, 8($29)

Load value of a into $3.

expr

expr PLUS + term

SLASH /term factor

ID dfactorfactor

ID c

term

ID a

Variable Offset

a 8

b 4

c 0

d -4

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

a+c/d

lw $3, 8($29)
sw $3, -4($30)
sub $30, $30, $4

Before examining the
right subexpression,
we push the result of
the left subexpression to the stack.

expr

expr PLUS + term

SLASH /term factor

ID dfactorfactor

ID c

term

ID a

Variable Offset

a 8

b 4

c 0

d -4

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

a+c/d

lw $3, 8($29)
sw $3, -4($30)
sub $30, $30, $4

expr

expr PLUS + term

SLASH /term factor

ID dfactorfactor

ID c

term

ID a

Variable Offset

a 8

b 4

c 0

d -4

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

a+c/d

lw $3, 8($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, 0($29)

Load value of c into $3.

expr

expr PLUS + term

SLASH /term factor

ID dfactorfactor

ID c

term

ID a

Variable Offset

a 8

b 4

c 0

d -4

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

a+c/d

lw $3, 8($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, 0($29)
sw $3, -4($30)
sub $30, $30, $4

Push the result of the left subexpression onto
the stack before looking at the right.

expr

expr PLUS + term

SLASH /term factor

ID dfactorfactor

ID c

term

ID a

Variable Offset

a 8

b 4

c 0

d -4

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

a+c/d

lw $3, 8($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, 0($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, -4($29)

Load the value of d into $3.

expr

expr PLUS + term

SLASH /term factor

ID dfactorfactor

ID c

term

ID a

Variable Offset

a 8

b 4

c 0

d -4

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

a+c/d

lw $3, 8($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, 0($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, -4($29)

The left and right subexpressions are both
computed now.

expr

expr PLUS + term

SLASH /term factor

ID dfactorfactor

ID c

term

ID a

Variable Offset

a 8

b 4

c 0

d -4

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

a+c/d

lw $3, 8($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, 0($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, -4($29)
add $30, $30, $4
lw $5, -4($30)

Before looking at the operation, pop the left
result off the stack into $5.

expr

expr PLUS + term

SLASH /term factor

ID dfactorfactor

ID c

term

ID a

Variable Offset

a 8

b 4

c 0

d -4

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

a+c/d

lw $3, 8($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, 0($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, -4($29)
add $30, $30, $4
lw $5, -4($30)
div $5, $3
mflo $3 Do the operation.

expr

expr PLUS + term

SLASH /term factor

ID dfactorfactor

ID c

term

ID a

Variable Offset

a 8

b 4

c 0

d -4

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

a+c/d

lw $3, 8($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, 0($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, -4($29)
add $30, $30, $4
lw $5, -4($30)
div $5, $3
mflo $3 Now repeat for the PLUS.

expr

expr PLUS + term

SLASH /term factor

ID dfactorfactor

ID c

term

ID a

Variable Offset

a 8

b 4

c 0

d -4

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

a+c/d

lw $3, 8($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, 0($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, -4($29)
add $30, $30, $4
lw $5, -4($30)
div $5, $3
mflo $3
add $30, $30, $4
lw $5, -4($30) First pop into $5.

expr

expr PLUS + term

SLASH /term factor

ID dfactorfactor

ID c

term

ID a

Variable Offset

a 8

b 4

c 0

d -4

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

a+c/d

lw $3, 8($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, 0($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, -4($29)
add $30, $30, $4
lw $5, -4($30)
div $5, $3
mflo $3
add $30, $30, $4
lw $5, -4($30)
add $3, $5, $3 Do the operation. And, we're done.

expr

expr PLUS + term

SLASH /term factor

ID dfactorfactor

ID c

term

ID a

Variable Offset

a 8

b 4

c 0

d -4

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}

Almost done. We just need to clean up the stack and return with jr $31.

main

expr SEMI …… RETURN

…

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}

Pop 4 times, since we pushed 4 variables, and then return.

add $30, $30, $4 OR lis $5
add $30, $30, $4 .word 16
add $30, $30, $4 add $30, $30, $5
add $30, $30, $4 jr $31
jr $31

main

…

Code Generation: Example

• Before we proceed with further discussion, let's look at an example of
code generation in action.

int wain(int a, int b) {
 int c = 482;
 int d = 2;
 return a+c/d;
}
; set up constants
lis $4
.word 4
; push variables
sw $1, -4($30)
sub $30, $30, $4
sw $2, -4($30)
sub $30, $30, $4
; set up FP
sub $29, $30, $4

lis $3
.word 482
sw $3, -4($30)
sub $30, $30, $4
lis $3
.word 2
sw $3, -4($30)
sub $30, $30, $4
; procedure body
lw $3, 8($29)

sw $3, -4($30)
sub $30, $30, $4
lw $3, 0($29)
sw $3, -4($30)
sub $30, $30, $4
lw $3, -4($29)
add $30, $30, $4
lw $5, -4($30)
div $5, $3
mflo $3

add $30, $30, $4
lw $5, -4($30)
add $3, $5, $3
; restore stack
add $30, $30, $4
add $30, $30, $4
add $30, $30, $4
add $30, $30, $4
; end program
jr $31

main

…

	Slide 1: Code Generation
	Slide 2: The Stages of Compilation
	Slide 3: Code Generation
	Slide 4: Code Generation: Basic Example
	Slide 5: Handling Variables
	Slide 6: Handling Variables
	Slide 7: The Frame Pointer
	Slide 8: The Frame Pointer
	Slide 9: The Frame Pointer
	Slide 10: The Frame Pointer
	Slide 11: Code Generation
	Slide 12: Notes about the Frame Pointer
	Slide 13: Code Generation: Expressions
	Slide 14: Code Generation: Expressions
	Slide 15: Code Generation: Expressions
	Slide 16: Code Generation: Expressions
	Slide 17: Code Generation: Expressions
	Slide 18: Code Generation: Expressions
	Slide 19: Code Generation: Expressions
	Slide 20: Notes about Expressions
	Slide 21: Implementing Code Generation
	Slide 22: Implementing Code Generation
	Slide 23: Implementing Code Generation
	Slide 24: Implementing Code Generation
	Slide 25: Implementing Code Generation
	Slide 26: Implementing Code Generation
	Slide 27: Implementing Code Generation
	Slide 28: Implementing Code Generation
	Slide 29: Implementing Code Generation
	Slide 30: Implementing Code Generation
	Slide 31: Implementing Code Generation
	Slide 32: Implementing Code Generation
	Slide 33: Implementing Code Generation
	Slide 34: Implementing Code Generation
	Slide 35: Implementing Code Generation
	Slide 36: Code Generation: Example
	Slide 37: Code Generation: Example
	Slide 38: Code Generation: Example
	Slide 39: Code Generation: Example
	Slide 40: Code Generation: Example
	Slide 41: Code Generation: Example
	Slide 42: Code Generation: Example
	Slide 43: Code Generation: Example
	Slide 44: Code Generation: Example
	Slide 45: Code Generation: Example
	Slide 46: Code Generation: Example
	Slide 47: Code Generation: Example
	Slide 48: Code Generation: Example
	Slide 49: Code Generation: Example
	Slide 50: Code Generation: Example
	Slide 51: Code Generation: Example
	Slide 52: Code Generation: Example
	Slide 53: Code Generation: Example
	Slide 54: Code Generation: Example
	Slide 55: Code Generation: Example
	Slide 56: Code Generation: Example
	Slide 57: Code Generation: Example
	Slide 58: Code Generation: Example
	Slide 59: Code Generation: Example
	Slide 60: Code Generation: Example
	Slide 61: Code Generation: Example
	Slide 62: Code Generation: Example
	Slide 63: Code Generation: Example
	Slide 64: Code Generation: Example
	Slide 65: Code Generation: Example
	Slide 66: Code Generation: Example
	Slide 67: Code Generation: Example
	Slide 68: Code Generation: Example
	Slide 69: Code Generation: Example
	Slide 70: Code Generation: Example
	Slide 71: Code Generation: Example
	Slide 72: Code Generation: Example
	Slide 73: Code Generation: Example
	Slide 74: Code Generation: Example

