
Representing Programs in
Machine Language

Machine Language

• Previously, we saw methods of representing numbers and text in
binary, as certain patterns of 0s and 1s.

• How do we represent programs in binary?

• The idea is to define patterns of bits that represent instructions for
the computer to perform.

• The computer then runs a simple loop (implemented in hardware)
that fetches the instructions and executes them.

• The patterns of bits that a computer understands as valid instructions
are the computer’s machine language.

MIPS Machine Language

• In CS 241, we use a machine language called MIPS.
• It stands for “Microprocessor without Interlocked Pipeline Stages”, in

reference to the hardware design.

• MIPS is not as widely used today as other machine languages like
ARM (used in CS 251).

• However, the basic concepts transfer to other machine languages, so
understanding MIPS is still helpful.

• There is some interest in switching CS 241 to use ARM eventually (for
parity with CS 251) but it’s a lot of work.

MIPS Hardware

MIPS Hardware: Key Points

• The control unit determines the sequence of instructions to execute.

• The arithmetic logic unit (ALU) performs mathematical operations.

• There are a small number of registers, which are physically located on
the processor, and each store a 32-bit word.

• We have random access memory (RAM), which is separate from the
processor. We think of it as a large array of bytes (8-bit chunks).

• Registers are significantly faster to access than RAM, but we only have
a handful of registers, and we have a lot of RAM.

• In real-world computers there are more levels of “memory hierarchy”.

More About Registers

• We have 32 “general purpose registers”, labelled $0 to $31.
• $0 always holds 0. If you try to assign it a non-zero value, nothing will happen.

• The other general purpose registers can be assigned values freely, but $30
and $31 have special meanings in MIPS machine language programming.

• $29 will also have a special meaning later in this course.

• PC (Program Counter) and IR (Instruction Register) are used to fetch
and execute instructions. More on this shortly!

• MDR (Memory Data Register) and MAR (Memory Address Register)
are used internally by memory access instructions.

• “hi” and “lo” are special registers used for multiplication and division.

More about RAM

• We will often just refer to RAM as “memory”. Technically registers are
a type of “memory”, so “main memory” would be more accurate.

• We think of RAM as an array of bytes, i.e., each “slot” in RAM
contains a single byte. We will call this array “MEM” (for “memory”).

• We will use array-style notation: MEM[0] refers to the first byte in
memory, MEM[1] refers to the second byte, etc.

• The index of a byte in the MEM array is called the memory address of
the byte.

• We usually write memory addresses in hexadecimal.

RAM and Words

• Each slot in RAM is a single byte, but our simplified MIPS instruction
set only allows accessing one word of memory at a time.

• Recall: A word in our MIPS architecture is 32 bits (4 bytes).

• Additionally, our MIPS instruction set only allows word-aligned
accesses, that is, the address we access must be a multiple of 4.
• Real MIPS allows unaligned memory access, but it is potentially slower.

• Memory accesses (loading from memory or storing to memory) will
load or store the entire word that begins at the provided address (4
consecutive memory slots) rather than just a single byte.

Code is Data

• Recall: The computer executes code by running a simple loop that
fetches instructions and executes them.

• We call this the fetch-execute cycle.

• The instructions themselves are stored in RAM.

• But other non-instruction data, like the input or files the program is
operating on, might also be stored in RAM.

• The fetch-execute cycle makes no distinction between code and
other types of data! In other words, program code is just data.

• We’ll see some consequences of this later.

The Fetch-Execute Cycle

• At the start of each cycle, the program counter (PC) register contains
the memory address of the next instruction to execute.

1. The instruction at the memory address in PC is loaded into IR.

2. PC is incremented by 4 bytes (one word), which is the size of a
single instruction.

3. The instruction in IR is executed.

• The order is very important – some instructions use or modify PC!

• When the instruction is executed in step 3, PC is already pointing to
the next instruction.

Running a Program

• A program is a sequence of machine language instructions.

• Each instruction is represented by a 32-bit (4 byte) word.

• To run a program, we need to place the sequence of instruction words
in memory, then set PC to the memory address of the first word.

• Then the fetch-execute cycle takes care of the rest.

• A program called a loader is used to place programs in memory and
set PC, but we won’t discuss loaders until the middle of the course.

• For now we will make the simplifying (but unrealistic) assumption
that programs are always loaded at memory address 0x00.

MIPS Machine Language in Detail

• We use a simplified version of the real-world MIPS machine language.

• This lecture, we’ll cover instructions for the following:
• Addition and subtraction
• Loading a constant into a register
• Jumps (like “go to”, transfers control to a certain location in memory)
• Memory access (load from memory, store in memory)

• Later in the course, we’ll cover:
• Multiplication, division, and modulo
• Numeric “less than” comparison
• Conditional branching (like “go to”, but conditional)
• Calls (jumps with the ability to “return” to the call location)

Addition

• Machine language encoding: Add [$d = $s + $t]

 000000 sssss ttttt ddddd 00000 100000

• The “sssss”, “ttttt” and “ddddd” parts are replaced with the numbers
of registers $s, $t and $d, encoded as 5-bit unsigned values.

• For example, for $3 = $2 + $1 we write:

 000000 00010 00001 00011 00000 100000

• This instruction treats $s and $t as integers, adds $s + $t, and stores
the result in $d.

Subtraction

• Machine language encoding: Subtract [$d = $s – $t]

 000000 sssss ttttt ddddd 00000 100010

• The only difference from addition is in the last 6 bits.

• These are called the function bits.

• If the first 6 bits, called the opcode bits, are all 0, the function bits are
used to decide which instruction to perform.

• This instruction treats $s and $t as integers, subtracts $s – $t, and
stores the result in $d.

Loading Constant Values

• Constant values are often called immediates in the context of
machine language.

• Real MIPS has an “add immediate” instruction that lets you do
addition with a register and a constant.

• You can do something like $r = $0 + [constant] to set $r to a constant.

• Our MIPS variant doesn’t have this, so instead we have a special
instruction for loading constant values into registers.

• This special instruction takes advantage of the fact that code is data
and is not treated differently from other data in memory.

Load Immediate and Skip

• Machine language encoding: Load Immediate And Skip [$d]

 000000 00000 00000 ddddd 00000 010100

• We’ll call this “LIS” for short.

• This instruction has two steps:
• Copy the value in memory at PC into $d. (For short: $d = MEM[PC])

• Increment PC by 4.

• This is the first instruction we have seen that uses PC.

• Think carefully about how this interacts with the fetch-execute cycle.

How LIS Works

• Recall the order of operations in the fetch-execute cycle:
1. Fetch the instruction at MEM[PC], storing it in IR.
2. Increment PC by 4 bytes (1 word).
3. Execute the instruction in IR.

• When LIS runs, at step 3, PC is pointing to the word in memory after
the LIS instruction.

• We use this word in memory to store the constant we want to load.

• The LIS instruction does $d = MEM[PC], storing the constant in $d.

• Then it increments PC by 4. Why is this important?

• Otherwise the fetch-execute cycle would try to execute our constant!

MIPS in Action

Instructions Machine Language (Binary) (Hex)

PC LIS into $8 00000000000000000100000000010100 0x00004014

 (constant) 00000000000000000000000000001011 0x0000000B

 LIS into $9 00000000000000000100100000010100 0x00004814

 (constant) 00000000000000000000000000001101 0x0000000D

 Add $3 = $8 + $9 00000001000010010001100000100000 0x01091820

$3 = ? PC = 0x00000000

$8 = ? IR = ?

$9 = ? Next Step: Fetch

MIPS in Action

Instructions Machine Language (Binary) (Hex)

PC LIS into $8 00000000000000000100000000010100 0x00004014

 (constant) 00000000000000000000000000001011 0x0000000B

 LIS into $9 00000000000000000100100000010100 0x00004814

 (constant) 00000000000000000000000000001101 0x0000000D

 Add $3 = $8 + $9 00000001000010010001100000100000 0x01091820

$3 = ? PC = 0x00000000

$8 = ? IR = 0x00004014 (LIS into $8)

$9 = ? Next Step: Increment PC by 4

MIPS in Action

Instructions Machine Language (Binary) (Hex)

 LIS into $8 00000000000000000100000000010100 0x00004014

PC (constant) 00000000000000000000000000001011 0x0000000B

 LIS into $9 00000000000000000100100000010100 0x00004814

 (constant) 00000000000000000000000000001101 0x0000000D

 Add $3 = $8 + $9 00000001000010010001100000100000 0x01091820

$3 = ? PC = 0x00000004

$8 = ? IR = 0x00004014 (LIS into $8)

$9 = ? Next Step: Execute

MIPS in Action

Instructions Machine Language (Binary) (Hex)

 LIS into $8 00000000000000000100000000010100 0x00004014

PC (constant) 00000000000000000000000000001011 0x0000000B

 LIS into $9 00000000000000000100100000010100 0x00004814

 (constant) 00000000000000000000000000001101 0x0000000D

 Add $3 = $8 + $9 00000001000010010001100000100000 0x01091820

$3 = ? PC = 0x00000004

$8 = ? IR = 0x00004014 (LIS into $8)

$9 = ? Next Step (LIS): Set $d = MEM[PC]

MIPS in Action

Instructions Machine Language (Binary) (Hex)

 LIS into $8 00000000000000000100000000010100 0x00004014

PC (constant) 00000000000000000000000000001011 0x0000000B

 LIS into $9 00000000000000000100100000010100 0x00004814

 (constant) 00000000000000000000000000001101 0x0000000D

 Add $3 = $8 + $9 00000001000010010001100000100000 0x01091820

$3 = ? PC = 0x00000004

$8 = 0x0000000B IR = 0x00004014 (LIS into $8)

$9 = ? Next Step (LIS): Increment PC by 4

MIPS in Action

Instructions Machine Language (Binary) (Hex)

 LIS into $8 00000000000000000100000000010100 0x00004014

 (constant) 00000000000000000000000000001011 0x0000000B

PC LIS into $9 00000000000000000100100000010100 0x00004814

 (constant) 00000000000000000000000000001101 0x0000000D

 Add $3 = $8 + $9 00000001000010010001100000100000 0x01091820

$3 = ? PC = 0x00000008

$8 = 0x0000000B IR = 0x00004014 (LIS into $8)

$9 = ? Next Step: Fetch

MIPS in Action

Instructions Machine Language (Binary) (Hex)

 LIS into $8 00000000000000000100000000010100 0x00004014

 (constant) 00000000000000000000000000001011 0x0000000B

PC LIS into $9 00000000000000000100100000010100 0x00004814

 (constant) 00000000000000000000000000001101 0x0000000D

 Add $3 = $8 + $9 00000001000010010001100000100000 0x01091820

$3 = ? PC = 0x00000008

$8 = 0x0000000B IR = 0x00004814 (LIS into $9)

$9 = ? Next Step: Increment PC by 4

MIPS in Action

Instructions Machine Language (Binary) (Hex)

 LIS into $8 00000000000000000100000000010100 0x00004014

 (constant) 00000000000000000000000000001011 0x0000000B

 LIS into $9 00000000000000000100100000010100 0x00004814

PC (constant) 00000000000000000000000000001101 0x0000000D

 Add $3 = $8 + $9 00000001000010010001100000100000 0x01091820

$3 = ? PC = 0x0000000C

$8 = 0x0000000B IR = 0x00004814 (LIS into $9)

$9 = ? Next Step: Execute

MIPS in Action

Instructions Machine Language (Binary) (Hex)

 LIS into $8 00000000000000000100000000010100 0x00004014

 (constant) 00000000000000000000000000001011 0x0000000B

 LIS into $9 00000000000000000100100000010100 0x00004814

PC (constant) 00000000000000000000000000001101 0x0000000D

 Add $3 = $8 + $9 00000001000010010001100000100000 0x01091820

$3 = ? PC = 0x0000000C

$8 = 0x0000000B IR = 0x00004814 (LIS into $9)

$9 = ? Next Step (LIS): Set $d = MEM[PC]

MIPS in Action

Instructions Machine Language (Binary) (Hex)

 LIS into $8 00000000000000000100000000010100 0x00004014

 (constant) 00000000000000000000000000001011 0x0000000B

 LIS into $9 00000000000000000100100000010100 0x00004814

PC (constant) 00000000000000000000000000001101 0x0000000D

 Add $3 = $8 + $9 00000001000010010001100000100000 0x01091820

$3 = ? PC = 0x0000000C

$8 = 0x0000000B IR = 0x00004814 (LIS into $9)

$9 = 0x0000000D Next Step (LIS): Increment PC by 4

MIPS in Action

Instructions Machine Language (Binary) (Hex)

 LIS into $8 00000000000000000100000000010100 0x00004014

 (constant) 00000000000000000000000000001011 0x0000000B

 LIS into $9 00000000000000000100100000010100 0x00004814

 (constant) 00000000000000000000000000001101 0x0000000D

PC Add $3 = $8 + $9 00000001000010010001100000100000 0x01091820

$3 = ? PC = 0x00000010

$8 = 0x0000000B IR = 0x00004814 (LIS into $9)

$9 = 0x0000000D Next Step: Fetch

MIPS in Action

Instructions Machine Language (Binary) (Hex)

 LIS into $8 00000000000000000100000000010100 0x00004014

 (constant) 00000000000000000000000000001011 0x0000000B

 LIS into $9 00000000000000000100100000010100 0x00004814

 (constant) 00000000000000000000000000001101 0x0000000D

PC Add $3 = $8 + $9 00000001000010010001100000100000 0x01091820

$3 = ? PC = 0x00000010

$8 = 0x0000000B IR = 0x01091820 (Add $3 = $8 + $9)

$9 = 0x0000000D Next Step: Increment PC by 4

MIPS in Action

Instructions Machine Language (Binary) (Hex)

 LIS into $8 00000000000000000100000000010100 0x00004014

 (constant) 00000000000000000000000000001011 0x0000000B

 LIS into $9 00000000000000000100100000010100 0x00004814

 (constant) 00000000000000000000000000001101 0x0000000D

 Add $3 = $8 + $9 00000001000010010001100000100000 0x01091820

PC

$3 = ? PC = 0x00000014

$8 = 0x0000000B IR = 0x01091820 (Add $3 = $8 + $9)

$9 = 0x0000000D Next Step: Execute

MIPS in Action

Instructions Machine Language (Binary) (Hex)

 LIS into $8 00000000000000000100000000010100 0x00004014

 (constant) 00000000000000000000000000001011 0x0000000B

 LIS into $9 00000000000000000100100000010100 0x00004814

 (constant) 00000000000000000000000000001101 0x0000000D

 Add $3 = $8 + $9 00000001000010010001100000100000 0x01091820

PC

$3 = 0x00000018 PC = 0x00000014

$8 = 0x0000000B IR = 0x01091820 (Add $3 = $8 + $9)

$9 = 0x0000000D Next Step: Fetch

What Happens After The End

• In the previous example, what happens after the last instruction?

• The fetch-execute cycle is just going to go on fetching and executing
whatever is in memory after our program.

• What we actually want is for our program to stop and return to the
loader (the program that placed our program in memory).

• There is an instruction that lets us jump (i.e., set PC to) an arbitrary
memory address, so that we can transfer control to some other code.

• Before running our program, the loader stores the correct return
address in $31 so that we can return there when we’re done.

Jump Register

• Machine language encoding: Jump Register [$s]

 000000 sssss 00000 00000 00000 001000

• This instruction sets PC to the value in $s.

• After the jump, the MIPS machine will resume the fetch-execute cycle
from the new location.

• Most commonly used with $31 to return to the loader when a
program is finished (thus ending the program).

• Later when we discuss how to implement procedures, it will also be
used for returning from a procedure call.

Memory Access Instructions

• Machine language encodings:

Load Word 100011 sssss ttttt iiii iiii iiii iiii

Store Word 101011 sssss ttttt iiii iiii iiii iiii

• These instructions operate on words, not single bytes.
• Load Word loads the 4 consecutive bytes starting at address $s + i into $t.

• Store Word stores $t in the 4 consecutive bytes starting at address $s + i.

• We’ll use this notation:
• Load Word [$t  $s + i] means load the word from address $s + i into $t.

• Store Word [$t → $s + i] means store the word in $t into address $s + i.

Memory Access Instructions

• Machine language encodings:

Load Word 100011 sssss ttttt iiii iiii iiii iiii

Store Word 101011 sssss ttttt iiii iiii iiii iiii

• This is the first instruction we have seen that has an immediate
(constant) operand.

• The i field is interpreted as a 16-bit two’s complement integer.

• You can think of the register operand $s as a “base address”, and the
immediate operand i can be used to easily specify an “offset” from
this base address.

Example: Working with Arrays

• When you write “int A[3] = {1,2,3};” in C/C++, how is this stored?

• Assuming “int” is 32 bits, it’s like this: →

• When you use A[i] to access an element,
C/C++ implicitly multiplies i by sizeof(int)
to ensure you access the right data.

• This does not happen automatically in
machine code. You must do it yourself!

• If $1 contains the address of A:
• Load Word [$3  $1 + 0] loads A[0] into $3
• Load Word [$3  $1 + 4] loads A[1] into $3

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000001

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

Example: Working with Arrays

• Because LW loads one word at a time, use multiples of 4 as offsets.
• Element A[i] starts at (address of A) + (4 ∙ i)

• This works fine for “hardcoded” accesses,
e.g. for $3 = A[2], use offset i = 8 from the
starting address of the array.

• What if we want to access A[i] where i is
the value in $2? We can’t encode register
numbers in the i field of the instruction.

• We need to multiply $2 by 4 in code.

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000001

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

Example: Working with Arrays

• Suppose $1 contains the address of A and $2 contains the size of A.

• Write MIPS machine code that sets the last element of A to 0x241c.

• Goal: A[size – 1] = 0x241c

• What’s the memory address of A[size – 1]?
• $1 = address of A[0]

• $1 + 4 = address of A[1]

• $1 + 8 = address of A[2] …

• $1 + (size – 1) * 4 = address of A[size – 1]

• The size is stored in $2, so we can compute this address.

Example: Working with Arrays

• Suppose $1 contains the address of A and $2 contains the size of A.

• Write MIPS machine code that sets the last element of A to 0x241c.

• Goal: A[size – 1] = 0x241c

• Using Store Word, set address $1 + (size – 1) * 4 to value 0x241c.

• We can rewrite this as $1 + (size * 4) – 4.
• Store Word [$t → $s + i] becomes Store Word [0x241c → $1 + (size * 4) + (-4)]

• But Store Word [$t → $s + i] is encoded in machine language as:
101011 sssss ttttt iiii iiii iiii iiii

• The s and t bits encode register numbers.

Example: Working with Arrays

• Suppose $1 contains the address of A and $2 contains the size of A.

• Write MIPS machine code that sets the last element of A to 0x241c.

• Goal: A[size – 1] = 0x241c

• Using Store Word, set address $1 + (size – 1) * 4 to value 0x241c.

• We could do this with something like:
Store Word [0x241c → $1 + (size * 4) + (-4)]

• But we need to load 0x241c into a register.

• We also need to compute $1 + (size * 4) and place it in a register.

Example: Working with Arrays

• Suppose $1 contains the address of A and $2 contains the size of A.

• Write MIPS machine code that sets the last element of A to 0x241c.

• Goal: A[size – 1] = 0x241c

• The Plan:
LIS [$3  0x241c] load the hex constant
Add [$2 = $2 + $2] $2 = size * 2
Add [$2 = $2 + $2] $2 = size * 4
Add [$1 = $1 + $2] $1 = $1 + (size * 4)
SW [$3 → $1 – 4] use store word to set A[size-1] to 0x241c
$3 contains 0x241c
$1 contains address of A[size], subtracting 4 gives address of A[size-1]

Example: Working with Arrays

• Suppose $1 contains the address of A and $2 contains the size of A.

• Write MIPS machine code that sets the last element of A to 0x241c.
LIS [$3  0x241c] load the hex constant
Add [$2 = $2 + $2] $2 = size * 2
Add [$2 = $2 + $2] $2 = size * 4
Add [$1 = $1 + $2] $1 = $1 + (size * 4)
SW [$3 → $1 – 4] use store word to set A[size-1] to 0x241c

• We now have to translate our “plan” into actual machine language
instructions that the MIPS processor can understand.

• This is a simple but tedious matter of looking up the encodings and
filling in the necessary parameters.

Example: Working with Arrays

• Suppose $1 contains the address of A and $2 contains the size of A.

• Write MIPS machine code that sets the last element of A to 0x241c.
LIS [$3  0x241c] load the hex constant

• This line will become two machine code words: the LIS instruction
and the constant 0x241c.

• LIS [$d] encoding: 000000 00000 00000 ddddd 00000 010100
• For $3, d = 00011 → 000000 00000 00000 00011 00000 010100

• 0x241c as a 32-bit word is: 0000 0000 0000 0000 0010 0100 0001 1100
• Just translate each hex digit and pad on the left with 0s.

Example: Working with Arrays

• Suppose $1 contains the address of A and $2 contains the size of A.

• Write MIPS machine code that sets the last element of A to 0x241c.
00000000000000000001100000010100 LIS [$3]
00000000000000000010010000011100 0x241c
Add [$2 = $2 + $2] $2 = size * 2
Add [$2 = $2 + $2] $2 = size * 4
Add [$1 = $1 + $2] $1 = $1 + (size * 4)
SW [$3 → $1 – 4] use store word to set A[size-1] to 0x241c

• Add [$d = $s + $t]: 000000 sssss ttttt ddddd 00000 100000
• Replacing s, t, d with 00010 for $2:
000000 00010 00010 00010 00000 100000

Example: Working with Arrays

• Suppose $1 contains the address of A and $2 contains the size of A.

• Write MIPS machine code that sets the last element of A to 0x241c.
00000000000000000001100000010100 LIS [$3]
00000000000000000010010000011100 0x241c
00000000010000100001000000100000 Add [$2 = $2 + $2]
00000000010000100001000000100000 Add [$2 = $2 + $2]
Add [$1 = $1 + $2] $1 = $1 + (size * 4)
SW [$3 → $1 – 4] use store word to set A[size-1] to 0x241c

• Add [$d = $s + $t]: 000000 sssss ttttt ddddd 00000 100000
• Replacing d and s with 00001 for $1, and t with 00010 for $2:
000000 00001 00010 00001 00000 100000

Example: Working with Arrays

• Suppose $1 contains the address of A and $2 contains the size of A.

• Write MIPS machine code that sets the last element of A to 0x241c.
00000000000000000001100000010100 LIS [$3]
00000000000000000010010000011100 0x241c
00000000010000100001000000100000 Add [$2 = $2 + $2]
00000000010000100001000000100000 Add [$2 = $2 + $2]
00000000001000100000100000100000 Add [$1 = $1 + $2]
SW [$3 → $1 – 4] use store word to set A[size-1] to 0x241c

• SW [$t → $s + i]: 101011 sssss ttttt iiii iiii iiii iiii
• Replace s with 00001 for $1, and t with 00011 for $3.

• For i, encode -4 in two’s complement! 00…0100 → 11…1011 + 1 → 11…1100

Example: Working with Arrays

• Suppose $1 contains the address of A and $2 contains the size of A.

• Write MIPS machine code that sets the last element of A to 0x241c.
00000000000000000001100000010100 LIS [$3]
00000000000000000010010000011100 0x241c
00000000010000100001000000100000 Add [$2 = $2 + $2]
00000000010000100001000000100000 Add [$2 = $2 + $2]
00000000001000100000100000100000 Add [$1 = $1 + $2]
SW [$3 → $1 – 4] use store word to set A[size-1] to 0x241c

• SW [$t → $s + i]: 101011 sssss ttttt iiii iiii iiii iiii

101011 00001 00011 1111 1111 1111 1100

Example: Working with Arrays

• Suppose $1 contains the address of A and $2 contains the size of A.

• Write MIPS machine code that sets the last element of A to 0x241c.
00000000000000000001100000010100 LIS [$3]
00000000000000000010010000011100 0x241c
00000000010000100001000000100000 Add [$2 = $2 + $2]
00000000010000100001000000100000 Add [$2 = $2 + $2]
00000000001000100000100000100000 Add [$1 = $1 + $2]
10101100001000111111111111111100 SW [$3 → $1 – 4]

• Technically we are done if the goal is just to write a “code snippet”,
but if we want a proper program that terminates when it is finished,
we need a Jump Register [$31] instruction at the end!

Example: Working with Arrays

• Suppose $1 contains the address of A and $2 contains the size of A.

• Write MIPS machine code that sets the last element of A to 0x241c.
00000000000000000001100000010100 LIS [$3]
00000000000000000010010000011100 0x241c
00000000010000100001000000100000 Add [$2 = $2 + $2]
00000000010000100001000000100000 Add [$2 = $2 + $2]
00000000001000100000100000100000 Add [$1 = $1 + $2]
10101100001000111111111111111100 SW [$3 → $1 – 4]

• JR [$s]: 000000 sssss 00000 00000 00000 001000
• Replacing s with 11111 for $31:
00000 11111 00000 00000 00000 001000

Example: Working with Arrays

• Suppose $1 contains the address of A and $2 contains the size of A.

• Write MIPS machine code that sets the last element of A to 0x241c.
00000000000000000001100000010100 LIS [$3]
00000000000000000010010000011100 0x241c
00000000010000100001000000100000 Add [$2 = $2 + $2]
00000000010000100001000000100000 Add [$2 = $2 + $2]
00000000001000100000100000100000 Add [$1 = $1 + $2]
10101100001000111111111111111100 SW [$3 → $1 – 4]
00000011111000000000000000001000 JR [$31]

• This is a complete MIPS machine language program that overwrites
the last element of an array (location and size specified by $1 and $2)
with the constant value 0x241c and then returns.

Example: Working with Arrays

• Suppose $1 contains the address of A and $2 contains the size of A.

• Write MIPS machine code that sets the last element of A to 0x241c.

00000000000000000001100000010100
00000000000000000010010000011100
00000000010000100001000000100000
00000000010000100001000000100000
00000000001000100000100000100000
10101100001000111111111111111100
00000011111000000000000000001000

Example: A Strange Input

• Let’s suppose we load our array-modifying program into memory at
address zero.

Address Data in Memory Meaning
0x00 (0) 00000000000000000001100000010100 LIS [$3]
0x04 (4) 00000000000000000010010000011100 0x241c
0x08 (8) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x0c (12) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x10 (16) 00000000001000100000100000100000 Add [$1 = $1 + $2]
0x14 (20) 10101100001000111111111111111100 SW [$3 → $1 – 4]
0x18 (24) 00000011111000000000000000001000 JR [$31]

• Something wonderful will happen if we specify the array address $1
as zero, and the array size $2 as 7.

Example: A Strange Input

• Suppose $1 = 0 and $2 = 7 initially when we run this program.
What is going to happen?

Address Data in Memory Meaning
0x00 (0) 00000000000000000001100000010100 LIS [$3]
0x04 (4) 00000000000000000010010000011100 0x241c
0x08 (8) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x0c (12) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x10 (16) 00000000001000100000100000100000 Add [$1 = $1 + $2]
0x14 (20) 10101100001000111111111111111100 SW [$3 → $1 – 4]
0x18 (24) 00000011111000000000000000001000 JR [$31]

Example: A Strange Input

• Suppose $1 = 0 and $2 = 7 initially when we run this program.
What is going to happen?

Address Data in Memory Meaning
0x00 (0) 00000000000000000001100000010100 LIS [$3]
0x04 (4) 00000000000000000010010000011100 0x241c
0x08 (8) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x0c (12) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x10 (16) 00000000001000100000100000100000 Add [$1 = $1 + $2]
0x14 (20) 10101100001000111111111111111100 SW [$3 → $1 – 4]
0x18 (24) 00000011111000000000000000001000 JR [$31]

• Let’s focus on when PC is at the red line (right before the Store Word
instruction is executed).

Example: A Strange Input

• Suppose $1 = 0 and $2 = 7 initially when we run this program.
What is going to happen?

Address Data in Memory Meaning
0x00 (0) 00000000000000000001100000010100 LIS [$3]
0x04 (4) 00000000000000000010010000011100 0x241c
0x08 (8) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x0c (12) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x10 (16) 00000000001000100000100000100000 Add [$1 = $1 + $2]
0x14 (20) 10101100001000111111111111111100 SW [$3 → $1 – 4]
0x18 (24) 00000011111000000000000000001000 JR [$31]

• We fetch the instruction and PC moves to the next line. When we
execute the instruction, it will overwrite MEM[$1 – 4] with $3.

Example: A Strange Input

• Suppose $1 = 0 and $2 = 7 initially when we run this program.
What is going to happen?

Address Data in Memory Meaning
0x00 (0) 00000000000000000001100000010100 LIS [$3]
0x04 (4) 00000000000000000010010000011100 0x241c
0x08 (8) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x0c (12) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x10 (16) 00000000001000100000100000100000 Add [$1 = $1 + $2]
0x14 (20) 10101100001000111111111111111100 SW [$3 → $1 – 4]
0x18 (24) 00000011111000000000000000001000 JR [$31]

• What is $1? Earlier on we added the value of $2 to it. Since $1 was
initially 0, now $1 = $2 when the SW instruction executes.

Example: A Strange Input

• Suppose $1 = 0 and $2 = 7 initially when we run this program.
What is going to happen?

Address Data in Memory Meaning
0x00 (0) 00000000000000000001100000010100 LIS [$3]
0x04 (4) 00000000000000000010010000011100 0x241c
0x08 (8) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x0c (12) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x10 (16) 00000000001000100000100000100000 Add [$1 = $1 + $2]
0x14 (20) 10101100001000111111111111111100 SW [$3 → $1 – 4]
0x18 (24) 00000011111000000000000000001000 JR [$31]

• What is $2? Earlier on we added $2 to itself twice. Since the initial
value was 7, the final value is 28 or 0x1c in hexadecimal.

Example: A Strange Input

• Suppose $1 = 0 and $2 = 7 initially when we run this program.
What is going to happen?

Address Data in Memory Meaning
0x00 (0) 00000000000000000001100000010100 LIS [$3]
0x04 (4) 00000000000000000010010000011100 0x241c
0x08 (8) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x0c (12) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x10 (16) 00000000001000100000100000100000 Add [$1 = $1 + $2]
0x14 (20) 10101100001000111111111111111100 SW [$3 → $1 – 4]
0x18 (24) 00000011111000000000000000001000 JR [$31]

• So $1 = $2 = 28 (0x1c) when the SW executes, and therefore it will
modify memory address 28 – 4 = 24 (0x18).

Example: A Strange Input

• Suppose $1 = 0 and $2 = 7 initially when we run this program.
What is going to happen?

Address Data in Memory Meaning
0x00 (0) 00000000000000000001100000010100 LIS [$3]
0x04 (4) 00000000000000000010010000011100 0x241c
0x08 (8) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x0c (12) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x10 (16) 00000000001000100000100000100000 Add [$1 = $1 + $2]
0x14 (20) 10101100001000111111111111111100 SW [$3 → $1 – 4]
0x18 (24) 00000011111000000000000000001000 JR [$31]

• Let’s now see what happens when we execute the Store Word
instruction that places the value in $3 at address 0x18.

Self-Modifying Code!

• Suppose $1 = 0 and $2 = 7 initially when we run this program.
What is going to happen?

Address Data in Memory Meaning
0x00 (0) 00000000000000000001100000010100 LIS [$3]
0x04 (4) 00000000000000000010010000011100 0x241c
0x08 (8) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x0c (12) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x10 (16) 00000000001000100000100000100000 Add [$1 = $1 + $2]
0x14 (20) 10101100001000111111111111111100 SW [$3 → $1 – 4]
0x18 (24) 00000000000000000010010000011100 0x241c

• The program code itself was modified! The Jump Register instruction
has been overwritten with the value 0x241c.

Self-Modifying Code!

• Suppose $1 = 0 and $2 = 7 initially when we run this program.
What is going to happen?

Address Data in Memory Meaning
0x00 (0) 00000000000000000001100000010100 LIS [$3]
0x04 (4) 00000000000000000010010000011100 0x241c
0x08 (8) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x0c (12) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x10 (16) 00000000001000100000100000100000 Add [$1 = $1 + $2]
0x14 (20) 10101100001000111111111111111100 SW [$3 → $1 – 4]
0x18 (24) 00000000000000000010010000011100 0x241c

• Note that PC is still at this line waiting to fetch and execute the next
instruction.

Self-Modifying Code!

• Suppose $1 = 0 and $2 = 7 initially when we run this program.
What is going to happen?

Address Data in Memory Meaning
0x00 (0) 00000000000000000001100000010100 LIS [$3]
0x04 (4) 00000000000000000010010000011100 0x241c
0x08 (8) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x0c (12) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x10 (16) 00000000001000100000100000100000 Add [$1 = $1 + $2]
0x14 (20) 10101100001000111111111111111100 SW [$3 → $1 – 4]
0x18 (24) 00000000000000000010010000011100 0x241c

• The next thing the MIPS machine will do is try to fetch and execute
0x241c. This isn’t a valid instruction so the program crashes.

Self-Modifying Code!

• Suppose $1 = 0 and $2 = 7 initially when we run this program.
What is going to happen?

Address Data in Memory Meaning
0x00 (0) 00000000000000000001100000010100 LIS [$3]
0x04 (4) 00000000000000000010010000011100 0x241c
0x08 (8) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x0c (12) 00000000010000100001000000100000 Add [$2 = $2 + $2]
0x10 (16) 00000000001000100000100000100000 Add [$1 = $1 + $2]
0x14 (20) 10101100001000111111111111111100 SW [$3 → $1 – 4]
0x18 (24) 00000000000000000010010000011100 0x241c

• Code is just another form of data in memory. Our program
interpreted itself as an “array” and modified its own “last element”.

A Better Way?

00000000000000000001100000010100 LIS [$3]
00000000000000000010010000011100 0x241c
00000000010000100001000000100000 Add [$2 = $2 + $2]
00000000010000100001000000100000 Add [$2 = $2 + $2]
00000000001000100000100000100000 Add [$1 = $1 + $2]
10101100001000111111111111111100 SW [$3 → $1 – 4]
00000011111000000000000000001000 JR [$31]

• After coming up with our “plan” on the right, translating it into
machine language was a straightforward but very tedious process.

• We’ll put our study of machine language on hold for now, and instead
try to find a way to automate this translation process so that we can
write more interesting and complicated programs.

MIPS Assembly Language

• An assembly language is a text representation of a machine language.

• MIPS machine language has a corresponding assembly language. It
looks quite similar to the “program plan” we came up with, but is a
little different syntactically.

MIPS Machine Language MIPS Assembly Language
00000000000000000001100000010100 lis $3
00000000000000000010010000011100 .word 0x241c
00000000010000100001000000100000 add $2, $2, $2
00000000010000100001000000100000 add $2, $2, $2
00000000001000100000100000100000 add $1, $1, $2
10101100001000111111111111111100 sw $3, -4($1)
00000011111000000000000000001000 jr $31

Moving Forward: Writing an Assembler

• A program that translates assembly language to machine language is
called an assembler. Having an assembler will make writing programs
much more convenient.

• Unfortunately, writing an assembler is non-trivial and we’ll need
several more lectures to explain how it’s done.

• The process of putting together the sequences of bits is not that bad.
The difficult part is actually string processing:
"add $1, $1, $2" is really ['a', 'd', 'd', ' ', '$', '1', ',', ' ', ...]

• Our next topic will be scanning, a technique for grouping sequences
of characters into meaningful chunks of data.

	Slide 1: Representing Programs in Machine Language
	Slide 2: Machine Language
	Slide 3: MIPS Machine Language
	Slide 4: MIPS Hardware
	Slide 5: MIPS Hardware: Key Points
	Slide 6: More About Registers
	Slide 7: More about RAM
	Slide 8: RAM and Words
	Slide 9: Code is Data
	Slide 10: The Fetch-Execute Cycle
	Slide 11: Running a Program
	Slide 12: MIPS Machine Language in Detail
	Slide 13: Addition
	Slide 14: Subtraction
	Slide 15: Loading Constant Values
	Slide 16: Load Immediate and Skip
	Slide 17: How LIS Works
	Slide 18: MIPS in Action
	Slide 19: MIPS in Action
	Slide 20: MIPS in Action
	Slide 21: MIPS in Action
	Slide 22: MIPS in Action
	Slide 23: MIPS in Action
	Slide 24: MIPS in Action
	Slide 25: MIPS in Action
	Slide 26: MIPS in Action
	Slide 27: MIPS in Action
	Slide 28: MIPS in Action
	Slide 29: MIPS in Action
	Slide 30: MIPS in Action
	Slide 31: MIPS in Action
	Slide 32: What Happens After The End
	Slide 33: Jump Register
	Slide 34: Memory Access Instructions
	Slide 35: Memory Access Instructions
	Slide 36: Example: Working with Arrays
	Slide 37: Example: Working with Arrays
	Slide 38: Example: Working with Arrays
	Slide 39: Example: Working with Arrays
	Slide 40: Example: Working with Arrays
	Slide 41: Example: Working with Arrays
	Slide 42: Example: Working with Arrays
	Slide 43: Example: Working with Arrays
	Slide 44: Example: Working with Arrays
	Slide 45: Example: Working with Arrays
	Slide 46: Example: Working with Arrays
	Slide 47: Example: Working with Arrays
	Slide 48: Example: Working with Arrays
	Slide 49: Example: Working with Arrays
	Slide 50: Example: Working with Arrays
	Slide 51: Example: Working with Arrays
	Slide 52: Example: A Strange Input
	Slide 53: Example: A Strange Input
	Slide 54: Example: A Strange Input
	Slide 55: Example: A Strange Input
	Slide 56: Example: A Strange Input
	Slide 57: Example: A Strange Input
	Slide 58: Example: A Strange Input
	Slide 59: Example: A Strange Input
	Slide 60: Self-Modifying Code!
	Slide 61: Self-Modifying Code!
	Slide 62: Self-Modifying Code!
	Slide 63: Self-Modifying Code!
	Slide 64: A Better Way?
	Slide 65: MIPS Assembly Language
	Slide 66: Moving Forward: Writing an Assembler

