
Memory Management



Allocating Data in a Program

• We have seen that data can be allocated on the stack as part of a 
procedure's stack frame (e.g., local variables).

• But this data disappears once the procedure returns.

• Data can be also be allocated statically at compile time, making it 
available for the entire lifetime of the program.

• Static allocation is not really done in WLP4, but could be used to 
implement global variables, for example.

• But since static allocation happens at compile time, it can't depend on 
things like user input.



Dynamic Memory Management

• Dynamic allocation allows us to allocate data at runtime that is not 
tied to the scope of a procedure. 

• The fact that the data needs to be allocated at runtime, and the data's 
lifetime is indefinite, introduces many complications.
• How do we find free space to store the allocated data?

• When the user is done with the data, how do we clean it up?

• Once we clean up the data, how do we ensure the space can be reused?

• Can we clean up the data automatically or does the user have to request it?

• If we clean it up automatically, how do we detect that it's no longer in use?

• Different programming languages take different approaches!



Explicit & Implicit Memory Management

• Dynamic allocation stores data in a pool of memory called the heap.
• No relation to the "heap data structure" you may have seen in CS 240.

• In explicit memory management, the programmer has a direct 
interface for requesting memory from the heap and returning 
memory back to the heap when they're done with it.

• Examples: C (malloc and free), C++/WLP4 (new and delete).

• In implicit memory management, when the programmer uses things 
like arrays or objects that require dynamic allocation, the heap 
management is done automatically in the background.

• Examples: Java, Racket, Python, any "garbage collected" language.



Aside: New & Delete in C++ and WLP4

• Implementing new and delete in your WLP4 code generator is mostly 
just a matter of calling the procedures we provide in alloc.merl.

• This lecture will discuss ways of implementing these procedures. 

• However, there are some small catches when using these procedures:
• new in C++ by default throws an exception when allocation fails. There is also 

a "nothrow" version of new that returns a null pointer. 
• In WLP4, we default to the "nothrow" version, so failed allocation should return NULL.

• delete in C++ is expected to do nothing when you try to delete a null pointer 
(as opposed to crashing or causing a weird memory error).

•  The provided procedures for "new" and "delete" don't work this way.



Aside: New & Delete in C++ and WLP4

• The "new" procedure provided by alloc.merl returns the value 0 on a 
failed allocation.

• In our WLP4 code generator, we use 1 for the value of NULL! 

• This means you need to detect when the "new" procedure returns 0, 
and place 1 (for NULL) in $3.

• The "delete" procedure provided by alloc.merl will crash if you tell it 
to delete address 1.

• So, you need to actually detect when 1 (for NULL) is about to be 
passed to the "delete" procedure, and skip the procedure call.



Lecture Overview

• We'll look at two memory management algorithms:
• The Free List Algorithm (used in "traditional" implementations of malloc)

• The Binary Buddy System Algorithm (used in alloc.merl)

• We'll discuss garbage collection algorithms, used for implicit memory 
management, at a high level (no implementation details).
• Reference counting (used by std::shared_ptr)

• Mark and sweep

• Copying collectors

• Generational garbage collection

• Modern garbage collectors generally combine several of these ideas.



The Worst Memory Allocator

• The easiest way to write an allocator is to never free anything.

• Choose somewhere to store your allocated data and go to town.
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The Worst Memory Allocator

• The easiest way to write an allocator is to never free anything.

• Choose somewhere to store your allocated data and go to town.

• This works perfectly for small toy programs!

• But it's obviously not suitable for real-world use….

a = malloc(2)
b = malloc(4)
c = malloc(1)

a b c



A Slightly Better Allocator

• Freeing is relatively easy if all blocks of memory are the same size.

• The idea is to maintain a linked list of free blocks.
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A Slightly Better Allocator

• Freeing is relatively easy if all blocks of memory are the same size.

• The idea is to maintain a linked list of free blocks.

• Two cases when allocating:
• If there's a free block available, reuse it (remove it from the front of the list).

• Otherwise, allocate at the front of "unused heap space".

• When freeing, add the block to the front of the free list.
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a (free) c

•head
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Supporting Variable Size Blocks

• Why does using fixed size blocks make things easier?
• We can always take the first block in the free list (it will be the right size).

• No possibility of fragmentation: when the heap has enough free space in 
total to support an allocation, but not enough space in individual blocks.

• In this example, the first block is too small, so we need to look further.

• The second and third block are also too small. But if we could merge 
these blocks there would be enough space.

a = malloc(2) free(a) 
b = malloc(4) free(c)
c = malloc(1) free(d)
d = malloc(5) e = malloc(6)  *Not to scale

(free) [2] b [4] (free) [1] (free) [5]



The Free List Algorithm

• Idea: Maintain a linked list of (variable size) free blocks, but perform 
merging when we have adjacent free blocks.

• If the free list is unsorted, it's hard to (efficiently) tell when two blocks 
are beside each other.

• We'll maintain the free list in sorted order by block address.

• Maintaining the order takes a little bit of extra time but makes 
merging efficient and simple.

• But how do we store linked list nodes if we don't have a way to 
dynamically allocate memory yet??

• We can store the links between free blocks in the blocks themselves.



The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• If the block is free, the second word is the address of the next free 
block in the free list.
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The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• If the block is free, the second word is the address of the next free 
block in the free list.

free(B)



The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• If the block is free, the second word is the address of the next free 
block in the free list.

free(B)



The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• We're not done! We have adjacent free blocks, so they can be 
merged.

free(B)



The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• We're not done! We have adjacent free blocks, so they can be 
merged. Merge the two left blocks…

free(B)



The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• We're not done! We have adjacent free blocks, so they can be 
merged. Then merge with the block to the right…

free(B)



The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• Both blocks we allocated were freed, and the heap is back in its initial 
state.

free(B)



Problems with the Free List Approach

• Merging reduces fragmentation, but it can still happen.



Problems with the Free List Approach

• Merging reduces fragmentation, but it can still happen.

• Different heuristics for finding a free block can affect fragmentation:
• First fit: Find the first block in the free list that fits and allocate there. Fast but 

makes no attempt to reduce fragmentation.

• Best fit: Find the free block whose size is closest to the amount we want to 
allocate. Slower but leaves smaller "gaps" behind.

• Worst fit: Find the free block whose size is farthest from the amount we want 
to allocate. Slower but leaves larger "gaps" behind.

• None is strictly better than the others (in a theoretical sense). It 
depends on the patterns of allocation.



The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To allocate, we recursively split the heap in half until we have a block 
whose size is the smallest power of 2 needed to store the data.

malloc(24) (need 28 bytes, smallest power of 2 is 32)

1024
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The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we 
merge. Continue merging until no more merges are possible.

Free leftmost block (32 bytes) Merge…

• When we split a block, the two halves are called buddies.
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The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.
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merge. Continue merging until no more merges are possible.
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• The heap size begins as a power of 2.
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Free last block Merge… Merge again…

• When we split a block, the two halves are called buddies.
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The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we 
merge. Continue merging until no more merges are possible.
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The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we 
merge. Continue merging until no more merges are possible.

Free last block Merge… Merge again… Merge again… Merge again…

• When we split a block, the two halves are called buddies.

1024



The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we 
merge. Continue merging until no more merges are possible.

The heap is restored to its original state.

• When we split a block, the two halves are called buddies.

1024



Binary Buddy Bookkeeping

• Like with the free list algorithm, we reserve one word in each block to 
keep track of the size.

• But we don't simply store the number of bytes. We store a code:
• The initial block has code 1.
• When we split the block, the left half gets code 10 and the right gets code 11.
• If we split the left block, the codes would be 100 and 101. And so on.

• If a block's code has n digits, and the heap has size S, the size of the 
block is S/2n-1.

• We can store the codes of free blocks in a list.
• Codes can be used to determine block addresses as well as sizes.
• If we flip the last bit of the block's code, we get the code for its buddy.



Garbage Collection

• Implicit memory management relies on a process called garbage 
collection: automatic reclaiming of memory that is no longer in use.

void typicalJavaCode() {
  AbstractSingletonProxyFactoryBean bean = 
    new AbstractSingletonProxyFactoryBean();
} // bean is no longer accessible

• After the typicalJavaCode function returns, the memory used for the 
AbstractSingletonProxyFactoryBean can be reclaimed.

• How do we know that we no longer need our bean?



Garbage Collection

Bean moreJavaCode(Bean a, Bean b) {
  BeanFactory beanFactory = null;
  if(a.tastierThan(b)) {
    BeanFactory temp = new BeanFactory();
    beanFactory = temp;
  } // temp goes out of scope
  Bean magicBean = beanFactory.buildBean();
  ...
} // beanFactory is no longer accessible

• In this example, "temp" goes out of scope, but is still accessible 
through the variable "beanFactory", so it can't be garbage collected!



Reference Counting

• Idea: Keep an internal counter of the number of pointers to each 
block (called the reference count for the block).

• When (and only when) the reference count is 0, the block can be 
deallocated.

• This is the idea behind std::shared_ptr in C++.

• Fairly cheap computationally (pointer operations become slightly 
more expensive since the reference count needs to be updated).

• However, the algorithm can't (easily) handle circular references since 
the reference count will never become zero.



Mark and Sweep

• This is known as a "Stop the World" algorithm because the program 
has to pause execution until the algorithm finishes.

• In the "Mark" phase, first the stack and global data are scanned for 
pointers into the heap.

• The blocks found are marked as reachable. Then the reachable blocks 
are scanned for pointers to more reachable blocks (and so on…)

• In the "Sweep" phase, all blocks not marked as reachable during the 
"Mark" phase are deallocated.

• Does not have problems with circular references, but long pauses or 
unpredictable pauses are unacceptable in some kinds of programs.



Copying Collector

• The heap is split into two halves named from and to.

• Memory is only allocated in the from half.

• When the from half is full, find all the reachable blocks (using a 
similar process to Mark and Sweep) and copy the reachable blocks to 
the to half. Then the roles of from and to are reversed.

• The heap can be compacted when copying, avoiding fragmentation.

• Downsides:
• It's a "Stop the World" algorithm.

• The amount of heap memory available is cut in half.



Generational Garbage Collection

• Copying collectors work well when few objects survive collection, 
while mark-and-sweep works well when most objects survive.

• Most objects in a program "die young"; they are only used for a short 
time and then must be deallocated.

• Divide the heap into "generations" based on the "age" of the objects 
in the heap.

• Use different techniques for different generations, e.g., copying for 
younger generations and mark-and-sweep for older generations.

• Frequency of garbage collection can vary by generation as well.
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