
Memory Management

Allocating Data in a Program

• We have seen that data can be allocated on the stack as part of a
procedure's stack frame (e.g., local variables).

• But this data disappears once the procedure returns.

• Data can be also be allocated statically at compile time, making it
available for the entire lifetime of the program.

• Static allocation is not really done in WLP4, but could be used to
implement global variables, for example.

• But since static allocation happens at compile time, it can't depend on
things like user input.

Dynamic Memory Management

• Dynamic allocation allows us to allocate data at runtime that is not
tied to the scope of a procedure.

• The fact that the data needs to be allocated at runtime, and the data's
lifetime is indefinite, introduces many complications.
• How do we find free space to store the allocated data?

• When the user is done with the data, how do we clean it up?

• Once we clean up the data, how do we ensure the space can be reused?

• Can we clean up the data automatically or does the user have to request it?

• If we clean it up automatically, how do we detect that it's no longer in use?

• Different programming languages take different approaches!

Explicit & Implicit Memory Management

• Dynamic allocation stores data in a pool of memory called the heap.
• No relation to the "heap data structure" you may have seen in CS 240.

• In explicit memory management, the programmer has a direct
interface for requesting memory from the heap and returning
memory back to the heap when they're done with it.

• Examples: C (malloc and free), C++/WLP4 (new and delete).

• In implicit memory management, when the programmer uses things
like arrays or objects that require dynamic allocation, the heap
management is done automatically in the background.

• Examples: Java, Racket, Python, any "garbage collected" language.

Aside: New & Delete in C++ and WLP4

• Implementing new and delete in your WLP4 code generator is mostly
just a matter of calling the procedures we provide in alloc.merl.

• This lecture will discuss ways of implementing these procedures.

• However, there are some small catches when using these procedures:
• new in C++ by default throws an exception when allocation fails. There is also

a "nothrow" version of new that returns a null pointer.
• In WLP4, we default to the "nothrow" version, so failed allocation should return NULL.

• delete in C++ is expected to do nothing when you try to delete a null pointer
(as opposed to crashing or causing a weird memory error).

• The provided procedures for "new" and "delete" don't work this way.

Aside: New & Delete in C++ and WLP4

• The "new" procedure provided by alloc.merl returns the value 0 on a
failed allocation.

• In our WLP4 code generator, we use 1 for the value of NULL!

• This means you need to detect when the "new" procedure returns 0,
and place 1 (for NULL) in $3.

• The "delete" procedure provided by alloc.merl will crash if you tell it
to delete address 1.

• So, you need to actually detect when 1 (for NULL) is about to be
passed to the "delete" procedure, and skip the procedure call.

Lecture Overview

• We'll look at two memory management algorithms:
• The Free List Algorithm (used in "traditional" implementations of malloc)

• The Binary Buddy System Algorithm (used in alloc.merl)

• We'll discuss garbage collection algorithms, used for implicit memory
management, at a high level (no implementation details).
• Reference counting (used by std::shared_ptr)

• Mark and sweep

• Copying collectors

• Generational garbage collection

• Modern garbage collectors generally combine several of these ideas.

The Worst Memory Allocator

• The easiest way to write an allocator is to never free anything.

• Choose somewhere to store your allocated data and go to town.

The Worst Memory Allocator

• The easiest way to write an allocator is to never free anything.

• Choose somewhere to store your allocated data and go to town.

a = malloc(2)

a

The Worst Memory Allocator

• The easiest way to write an allocator is to never free anything.

• Choose somewhere to store your allocated data and go to town.

a = malloc(2)
b = malloc(4) a b

The Worst Memory Allocator

• The easiest way to write an allocator is to never free anything.

• Choose somewhere to store your allocated data and go to town.

a = malloc(2)
b = malloc(4)
c = malloc(1)

a b c

The Worst Memory Allocator

• The easiest way to write an allocator is to never free anything.

• Choose somewhere to store your allocated data and go to town.

• This works perfectly for small toy programs!

• But it's obviously not suitable for real-world use….

a = malloc(2)
b = malloc(4)
c = malloc(1)

a b c

A Slightly Better Allocator

• Freeing is relatively easy if all blocks of memory are the same size.

• The idea is to maintain a linked list of free blocks.

A Slightly Better Allocator

• Freeing is relatively easy if all blocks of memory are the same size.

• The idea is to maintain a linked list of free blocks.

a = malloc()
b = malloc()
c = malloc()

a b c

A Slightly Better Allocator

• Freeing is relatively easy if all blocks of memory are the same size.

• The idea is to maintain a linked list of free blocks.

• Two cases when allocating:
• If there's a free block available, reuse it (remove it from the front of the list).

• Otherwise, allocate at the front of "unused heap space".

• When freeing, add the block to the front of the free list.

a = malloc() free(b)
b = malloc()
c = malloc()

a (free) c

•head

A Slightly Better Allocator

• Freeing is relatively easy if all blocks of memory are the same size.

• The idea is to maintain a linked list of free blocks.

• Two cases when allocating:
• If there's a free block available, reuse it (remove it from the front of the list).

• Otherwise, allocate at the front of "unused heap space".

• When freeing, add the block to the front of the free list.

a = malloc() free(b)
b = malloc() free(c)
c = malloc()

a (free) (free)

• • •head

A Slightly Better Allocator

• Freeing is relatively easy if all blocks of memory are the same size.

• The idea is to maintain a linked list of free blocks.

• Two cases when allocating:
• If there's a free block available, reuse it (remove it from the front of the list).

• Otherwise, allocate at the front of "unused heap space".

• When freeing, add the block to the front of the free list.

a = malloc() free(b)
b = malloc() free(c)
c = malloc() d = malloc()

a (free) (free)

• • •head

A Slightly Better Allocator

• Freeing is relatively easy if all blocks of memory are the same size.

• The idea is to maintain a linked list of free blocks.

• Two cases when allocating:
• If there's a free block available, reuse it (remove it from the front of the list).

• Otherwise, allocate at the front of "unused heap space".

• When freeing, add the block to the front of the free list.

a = malloc() free(b)
b = malloc() free(c)
c = malloc() d = malloc()

a (free) d

• • •head

A Slightly Better Allocator

• Freeing is relatively easy if all blocks of memory are the same size.

• The idea is to maintain a linked list of free blocks.

• Two cases when allocating:
• If there's a free block available, reuse it (remove it from the front of the list).

• Otherwise, allocate at the front of "unused heap space".

• When freeing, add the block to the front of the free list.

a = malloc() free(b)
b = malloc() free(c)
c = malloc() d = malloc()

a (free) d

•head

A Slightly Better Allocator

• Freeing is relatively easy if all blocks of memory are the same size.

• The idea is to maintain a linked list of free blocks.

• Two cases when allocating:
• If there's a free block available, reuse it (remove it from the front of the list).

• Otherwise, allocate at the front of "unused heap space".

• When freeing, add the block to the front of the free list.

a = malloc() free(b)
b = malloc() free(c)
c = malloc() d = malloc()

a (free) d

•head

A Slightly Better Allocator

• Freeing is relatively easy if all blocks of memory are the same size.

• The idea is to maintain a linked list of free blocks.

• Two cases when allocating:
• If there's a free block available, reuse it (remove it from the front of the list).

• Otherwise, allocate at the front of "unused heap space".

• When freeing, add the block to the front of the free list.

a = malloc() free(b)
b = malloc() free(c)
c = malloc() d = malloc()

a (free) d

•head

Supporting Variable Size Blocks

• Why does using fixed size blocks make things easier?
• We can always take the first block in the free list (it will be the right size).

• No possibility of fragmentation: when the heap has enough free space in
total to support an allocation, but not enough space in individual blocks.

• In this example, the first block is too small, so we need to look further.

• The second and third block are also too small. But if we could merge
these blocks there would be enough space.

a = malloc(2) free(a)
b = malloc(4) free(c)
c = malloc(1) free(d)
d = malloc(5) e = malloc(6) *Not to scale

(free) [2] b [4] (free) [1] (free) [5]

The Free List Algorithm

• Idea: Maintain a linked list of (variable size) free blocks, but perform
merging when we have adjacent free blocks.

• If the free list is unsorted, it's hard to (efficiently) tell when two blocks
are beside each other.

• We'll maintain the free list in sorted order by block address.

• Maintaining the order takes a little bit of extra time but makes
merging efficient and simple.

• But how do we store linked list nodes if we don't have a way to
dynamically allocate memory yet??

• We can store the links between free blocks in the blocks themselves.

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• If the block is free, the second word is the address of the next free
block in the free list.

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

A = malloc(16)

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• We actually allocate 20 bytes because we need one extra word to
store the size of the block.

A = malloc(16)

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• We actually allocate 20 bytes because we need one extra word to
store the size of the block.

A = malloc(16)

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• We actually allocate 20 bytes because we need one extra word to
store the size of the block.

A = malloc(16)

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

B = malloc(28)

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• We actually allocate 32 bytes.

B = malloc(28)

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• We actually allocate 32 bytes.

B = malloc(28)

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

free(A)

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

free(A)

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• If the block is free, the second word is the address of the next free
block in the free list.

free(A)

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• If the block is free, the second word is the address of the next free
block in the free list.

free(B)

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• If the block is free, the second word is the address of the next free
block in the free list.

free(B)

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• We're not done! We have adjacent free blocks, so they can be
merged.

free(B)

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• We're not done! We have adjacent free blocks, so they can be
merged. Merge the two left blocks…

free(B)

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• We're not done! We have adjacent free blocks, so they can be
merged. Then merge with the block to the right…

free(B)

The Free List Algorithm: Example

• Each block is a sequence of words (think of it as an array).

• The first word in the block stores the size in bytes.

• Both blocks we allocated were freed, and the heap is back in its initial
state.

free(B)

Problems with the Free List Approach

• Merging reduces fragmentation, but it can still happen.

Problems with the Free List Approach

• Merging reduces fragmentation, but it can still happen.

• Different heuristics for finding a free block can affect fragmentation:
• First fit: Find the first block in the free list that fits and allocate there. Fast but

makes no attempt to reduce fragmentation.

• Best fit: Find the free block whose size is closest to the amount we want to
allocate. Slower but leaves smaller "gaps" behind.

• Worst fit: Find the free block whose size is farthest from the amount we want
to allocate. Slower but leaves larger "gaps" behind.

• None is strictly better than the others (in a theoretical sense). It
depends on the patterns of allocation.

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To allocate, we recursively split the heap in half until we have a block
whose size is the smallest power of 2 needed to store the data.

malloc(24) (need 28 bytes, smallest power of 2 is 32)

1024

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To allocate, we recursively split the heap in half until we have a block
whose size is the smallest power of 2 needed to store the data.

malloc(24) (need 28 bytes, smallest power of 2 is 32)

• When we split a block, the two halves are called buddies.

512 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To allocate, we recursively split the heap in half until we have a block
whose size is the smallest power of 2 needed to store the data.

malloc(24) (need 28 bytes, smallest power of 2 is 32)

• When we split a block, the two halves are called buddies.

256 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To allocate, we recursively split the heap in half until we have a block
whose size is the smallest power of 2 needed to store the data.

malloc(24) (need 28 bytes, smallest power of 2 is 32)

• When we split a block, the two halves are called buddies.

128 128 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To allocate, we recursively split the heap in half until we have a block
whose size is the smallest power of 2 needed to store the data.

malloc(24) (need 28 bytes, smallest power of 2 is 32)

• When we split a block, the two halves are called buddies.

64 64 128 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To allocate, we recursively split the heap in half until we have a block
whose size is the smallest power of 2 needed to store the data.

malloc(24) (need 28 bytes, smallest power of 2 is 32)

• When we split a block, the two halves are called buddies.

32 32 64 128 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To allocate, we recursively split the heap in half until we have a block
whose size is the smallest power of 2 needed to store the data.

malloc(24) (need 28 bytes, smallest power of 2 is 32)

• When we split a block, the two halves are called buddies.

32 32 64 128 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To allocate, we recursively split the heap in half until we have a block
whose size is the smallest power of 2 needed to store the data.

malloc(40) (need 44 bytes, smallest power of 2 is 64)

• When we split a block, the two halves are called buddies.

32 32 64 128 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To allocate, we recursively split the heap in half until we have a block
whose size is the smallest power of 2 needed to store the data.

malloc(40) (need 44 bytes, smallest power of 2 is 64)

• When we split a block, the two halves are called buddies.

32 32 64 128 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To allocate, we recursively split the heap in half until we have a block
whose size is the smallest power of 2 needed to store the data.

malloc(50) (need 54 bytes, smallest power of 2 is 64)

• When we split a block, the two halves are called buddies.

32 32 64 128 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To allocate, we recursively split the heap in half until we have a block
whose size is the smallest power of 2 needed to store the data.

malloc(50) (need 54 bytes, smallest power of 2 is 64)

• When we split a block, the two halves are called buddies.

32 32 64 64 64 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To allocate, we recursively split the heap in half until we have a block
whose size is the smallest power of 2 needed to store the data.

malloc(50) (need 54 bytes, smallest power of 2 is 64)

• When we split a block, the two halves are called buddies.

32 32 64 64 64 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we
merge. Continue merging until no more merges are possible.

• When we split a block, the two halves are called buddies.

32 32 64 64 64 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we
merge. Continue merging until no more merges are possible.

Free middle block (first 64 byte block)

• When we split a block, the two halves are called buddies.

32 32 64 64 64 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we
merge. Continue merging until no more merges are possible.

Free middle block (first 64 byte block)

• When we split a block, the two halves are called buddies.

32 32 64 64 64 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we
merge. Continue merging until no more merges are possible.

Free leftmost block (32 bytes)

• When we split a block, the two halves are called buddies.

32 32 64 64 64 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we
merge. Continue merging until no more merges are possible.

Free leftmost block (32 bytes)

• When we split a block, the two halves are called buddies.

32 32 64 64 64 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we
merge. Continue merging until no more merges are possible.

Free leftmost block (32 bytes) Merge…

• When we split a block, the two halves are called buddies.

64 64 64 64 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we
merge. Continue merging until no more merges are possible.

Free leftmost block (32 bytes) Merge… Merge again…

• When we split a block, the two halves are called buddies.

128 64 64 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we
merge. Continue merging until no more merges are possible.

Free leftmost block (32 bytes) Merge… Merge again… Done.

• When we split a block, the two halves are called buddies.

128 64 64 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we
merge. Continue merging until no more merges are possible.

Free last block

• When we split a block, the two halves are called buddies.

128 64 64 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we
merge. Continue merging until no more merges are possible.

Free last block

• When we split a block, the two halves are called buddies.

128 64 64 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we
merge. Continue merging until no more merges are possible.

Free last block Merge…

• When we split a block, the two halves are called buddies.

128 128 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we
merge. Continue merging until no more merges are possible.

Free last block Merge… Merge again…

• When we split a block, the two halves are called buddies.

256 256 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we
merge. Continue merging until no more merges are possible.

Free last block Merge… Merge again… Merge again…

• When we split a block, the two halves are called buddies.

512 512

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we
merge. Continue merging until no more merges are possible.

Free last block Merge… Merge again… Merge again… Merge again…

• When we split a block, the two halves are called buddies.

1024

The Binary Buddy System Algorithm

• This algorithm uses a fairly different approach: splitting the heap.

• The heap size begins as a power of 2.

• To free a block, we first mark it as free. If its buddy is also free, we
merge. Continue merging until no more merges are possible.

The heap is restored to its original state.

• When we split a block, the two halves are called buddies.

1024

Binary Buddy Bookkeeping

• Like with the free list algorithm, we reserve one word in each block to
keep track of the size.

• But we don't simply store the number of bytes. We store a code:
• The initial block has code 1.
• When we split the block, the left half gets code 10 and the right gets code 11.
• If we split the left block, the codes would be 100 and 101. And so on.

• If a block's code has n digits, and the heap has size S, the size of the
block is S/2n-1.

• We can store the codes of free blocks in a list.
• Codes can be used to determine block addresses as well as sizes.
• If we flip the last bit of the block's code, we get the code for its buddy.

Garbage Collection

• Implicit memory management relies on a process called garbage
collection: automatic reclaiming of memory that is no longer in use.

void typicalJavaCode() {
 AbstractSingletonProxyFactoryBean bean =
 new AbstractSingletonProxyFactoryBean();
} // bean is no longer accessible

• After the typicalJavaCode function returns, the memory used for the
AbstractSingletonProxyFactoryBean can be reclaimed.

• How do we know that we no longer need our bean?

Garbage Collection

Bean moreJavaCode(Bean a, Bean b) {
 BeanFactory beanFactory = null;
 if(a.tastierThan(b)) {
 BeanFactory temp = new BeanFactory();
 beanFactory = temp;
 } // temp goes out of scope
 Bean magicBean = beanFactory.buildBean();
 ...
} // beanFactory is no longer accessible

• In this example, "temp" goes out of scope, but is still accessible
through the variable "beanFactory", so it can't be garbage collected!

Reference Counting

• Idea: Keep an internal counter of the number of pointers to each
block (called the reference count for the block).

• When (and only when) the reference count is 0, the block can be
deallocated.

• This is the idea behind std::shared_ptr in C++.

• Fairly cheap computationally (pointer operations become slightly
more expensive since the reference count needs to be updated).

• However, the algorithm can't (easily) handle circular references since
the reference count will never become zero.

Mark and Sweep

• This is known as a "Stop the World" algorithm because the program
has to pause execution until the algorithm finishes.

• In the "Mark" phase, first the stack and global data are scanned for
pointers into the heap.

• The blocks found are marked as reachable. Then the reachable blocks
are scanned for pointers to more reachable blocks (and so on…)

• In the "Sweep" phase, all blocks not marked as reachable during the
"Mark" phase are deallocated.

• Does not have problems with circular references, but long pauses or
unpredictable pauses are unacceptable in some kinds of programs.

Copying Collector

• The heap is split into two halves named from and to.

• Memory is only allocated in the from half.

• When the from half is full, find all the reachable blocks (using a
similar process to Mark and Sweep) and copy the reachable blocks to
the to half. Then the roles of from and to are reversed.

• The heap can be compacted when copying, avoiding fragmentation.

• Downsides:
• It's a "Stop the World" algorithm.

• The amount of heap memory available is cut in half.

Generational Garbage Collection

• Copying collectors work well when few objects survive collection,
while mark-and-sweep works well when most objects survive.

• Most objects in a program "die young"; they are only used for a short
time and then must be deallocated.

• Divide the heap into "generations" based on the "age" of the objects
in the heap.

• Use different techniques for different generations, e.g., copying for
younger generations and mark-and-sweep for older generations.

• Frequency of garbage collection can vary by generation as well.

	Slide 1: Memory Management
	Slide 2: Allocating Data in a Program
	Slide 3: Dynamic Memory Management
	Slide 4: Explicit & Implicit Memory Management
	Slide 5: Aside: New & Delete in C++ and WLP4
	Slide 6: Aside: New & Delete in C++ and WLP4
	Slide 7: Lecture Overview
	Slide 8: The Worst Memory Allocator
	Slide 9: The Worst Memory Allocator
	Slide 10: The Worst Memory Allocator
	Slide 11: The Worst Memory Allocator
	Slide 12: The Worst Memory Allocator
	Slide 13: A Slightly Better Allocator
	Slide 14: A Slightly Better Allocator
	Slide 15: A Slightly Better Allocator
	Slide 16: A Slightly Better Allocator
	Slide 17: A Slightly Better Allocator
	Slide 18: A Slightly Better Allocator
	Slide 19: A Slightly Better Allocator
	Slide 20: A Slightly Better Allocator
	Slide 21: A Slightly Better Allocator
	Slide 22: Supporting Variable Size Blocks
	Slide 23: The Free List Algorithm
	Slide 24: The Free List Algorithm: Example
	Slide 25: The Free List Algorithm: Example
	Slide 26: The Free List Algorithm: Example
	Slide 27: The Free List Algorithm: Example
	Slide 28: The Free List Algorithm: Example
	Slide 29: The Free List Algorithm: Example
	Slide 30: The Free List Algorithm: Example
	Slide 31: The Free List Algorithm: Example
	Slide 32: The Free List Algorithm: Example
	Slide 33: The Free List Algorithm: Example
	Slide 34: The Free List Algorithm: Example
	Slide 35: The Free List Algorithm: Example
	Slide 36: The Free List Algorithm: Example
	Slide 37: The Free List Algorithm: Example
	Slide 38: The Free List Algorithm: Example
	Slide 39: The Free List Algorithm: Example
	Slide 40: The Free List Algorithm: Example
	Slide 41: Problems with the Free List Approach
	Slide 42: Problems with the Free List Approach
	Slide 43: The Binary Buddy System Algorithm
	Slide 44: The Binary Buddy System Algorithm
	Slide 45: The Binary Buddy System Algorithm
	Slide 46: The Binary Buddy System Algorithm
	Slide 47: The Binary Buddy System Algorithm
	Slide 48: The Binary Buddy System Algorithm
	Slide 49: The Binary Buddy System Algorithm
	Slide 50: The Binary Buddy System Algorithm
	Slide 51: The Binary Buddy System Algorithm
	Slide 52: The Binary Buddy System Algorithm
	Slide 53: The Binary Buddy System Algorithm
	Slide 54: The Binary Buddy System Algorithm
	Slide 55: The Binary Buddy System Algorithm
	Slide 56: The Binary Buddy System Algorithm
	Slide 57: The Binary Buddy System Algorithm
	Slide 58: The Binary Buddy System Algorithm
	Slide 59: The Binary Buddy System Algorithm
	Slide 60: The Binary Buddy System Algorithm
	Slide 61: The Binary Buddy System Algorithm
	Slide 62: The Binary Buddy System Algorithm
	Slide 63: The Binary Buddy System Algorithm
	Slide 64: The Binary Buddy System Algorithm
	Slide 65: The Binary Buddy System Algorithm
	Slide 66: The Binary Buddy System Algorithm
	Slide 67: The Binary Buddy System Algorithm
	Slide 68: The Binary Buddy System Algorithm
	Slide 69: The Binary Buddy System Algorithm
	Slide 70: Binary Buddy Bookkeeping
	Slide 71: Garbage Collection
	Slide 72: Garbage Collection
	Slide 73: Reference Counting
	Slide 74: Mark and Sweep
	Slide 75: Copying Collector
	Slide 76: Generational Garbage Collection

