
Compiler Optimizations

Compiler Optimizations

• The goal of optimizations is generally to make the code run faster.
• For the Project 5 bonus component, we’re instead concerned about the size

of the generated code, since this is easier to measure.

• Size may sometimes be important in specialized domains like embedded
systems or micro-controllers which have very limited memory.

• We will just discuss the high-level ideas behind optimizations.

• Implementing these optimizations is easier said than done.
• Typically, compilers create intermediate representations of the program that

are somewhere in between a parse tree and assembly code.

• Many optimizations become easier to implement with an appropriate IR.

Constant Folding

• Our code generator would produce the following code for 1+2:

lis $3 ; $3 = 1
.word 1
sw $3, -4($30) ; push($3)
sub $30, $30, $4
lis $3 ; $3 = 2
.word 2
add $30, $30, $4 ; pop($5)
lw $5, -4($30)
add $3, $5, $3 ; $3 = 1 + 2

• But 1 and 2 are constants that we know at compile time!

Constant Folding

• Our code generator could produce the following code for 1+2:

lis $3
.word 3

• If we notice that each element of the expression is a constant, we can
add the constants at compile time and output code for the final value.

• Note that if the expression was 1+x, we would need to know the
value of the variable x.

• If the value of x depends on the input to the program, we cannot
determine it at compile time.

Constant Propagation

• Sometimes the value of a variable is known at compile time:

int x = 1; return x + x;

• We can replace x with its known value, so this is equivalent to:

int x = 1; return 1 + 1;

• Now we can apply constant folding!

int x = 1; return 2;

• In this code snippet, x isn’t used anywhere else, so we could even
eliminate the variable declaration entirely:

return 2;

Constant Propagation

• Constant propagation is more difficult than constant folding.

int wain(int x, int y) {
 println(x + x); // Constant propagation cannot be applied
 x = 1;
 println(x + x); // Constant propagation can be applied
 x = y;
 return x + x; // Constant propagation cannot be applied
}

• We can only apply it if we know the variable’s value does not depend
on the input during the part of the program we’re processing.

Common Subexpression Elimination

• Even if the value of x is not known, there is a simplification we can
make when generating code for x+x.

• Here is the “naïve” code (assuming x is at offset 0 from $29):

lw $3, 0($29) ; $3 = x
sw $3, -4($30) ; push($3)
sub $30, $30, $4
lw $3, 0($29) ; $3 = x
add $30, $30, $4 ; pop($5)
lw $5, -4($30)
add $3, $5, $3 ; $3 = x + x

Common Subexpression Elimination

• Even if the value of x is not known, there is a simplification we can
make when generating code for x+x.

• Since we’re adding the same variable twice, we can just do this!

lw $3, 0($29) ; $3 = x
add $3, $3, $3 ; $3 = x + x

• We can do the same trick with larger expressions, e.g., if we have
(a*b-c)+(a*b-c):

[block of code that computes a*b-c]
add $3, $3, $3

Common Subexpression Elimination

• Can we apply common subexpression elimination to this code?

int f(int x) { println(x); return 2*x; }
int wain(int a, int b) {
 return f(a) + f(a);
}

• No! CSE must not eliminate side effects.

• If the procedure had no side effects, you technically could, but this
complicates your analysis (you now need to determine whether
procedures have side effects before applying CSE!)

Dead Code Elimination

• Sometimes the compiler can determine that certain code will never
execute, and eliminate this code.

int wain(int a, int b) {
 if (a < b) {
 if (b < a) {
 b = 0;
 } else { }
 } else { b = 0; }
 return a + b;
}

• The code inside the innermost if can be ignored.

Dead Code Elimination

• Sometimes the compiler can determine that certain code will never
execute, and eliminate this code.

int wain(int a, int b) {
 if (a < b) {
 if (b < a) {
 // dead code
 } else { }
 } else { b = 0; }
 return a + b;
}

• Deleting this code has a size benefit, but no real performance benefit.

Dead Code Elimination

• Sometimes the compiler can determine that certain code will never
execute, and eliminate this code.

int wain(int a, int b) {
 if (a < b) {
 // if condition eliminated
 } else { b = 0; }
 return a + b;
}

• However, since the else condition of the innermost if was empty, we
can now simply eliminate the innermost if entirely!

Dead Code Elimination

• Sometimes the compiler can determine that certain code will never
execute, and eliminate this code.

• Dead code elimination interacts with other optimizations.

int wain(int x, int y) {
 int releaseVersion = 0;
 if (releaseVersion == 1) {
 x = 1;
 } else { x = 0; }
 return x * y;
}

• Normally, we can’t apply constant propagation to x in the return.

Dead Code Elimination

• Sometimes the compiler can determine that certain code will never
execute, and eliminate this code.

• Dead code elimination interacts with other optimizations.

int wain(int x, int y) {
 int releaseVersion = 0;
 x = 0;
 return x * y;
}

• Constant propagation + dead code elimination results in this.

• Now constant propagation can be used on x as well.

Dead Code Elimination

• Sometimes the compiler can determine that certain code will never
execute, and eliminate this code.

• Dead code elimination interacts with other optimizations.

int wain(int x, int y) {
 return 0;
}

• The program could ultimately be simplified to this if the compiler uses
the rule that anything times zero is zero.

• So DCE can allow constant propagation to occur. Conversely, constant
propagation can allow the compiler to prove code is dead.

Register Allocation

• We repeatedly ran into the issue that for sufficiently complicated
code, it is not possible to store all values in registers.
• If there are more variables than registers, some must be stored on the stack.

• The same was true for temporary values of expressions.

• The same was true for arguments passed to procedures.

• Our solution was to simply put everything on the stack because this
makes generating code simpler and more consistent.

• But using registers for storage is much faster than using RAM.
• When using RAM, we need extra sw/lw instructions. Not only does this

increase the number of instructions, but these instructions are slow.

Register Allocation

• Real-world compilers will try to use registers as much as possible.

• We say a variable is live if the current value of the variable will be
used at a later point in the program.
• We can apply this definition to e.g. temporary expression values as well.

• Ideally, a variable should be in a register if and only if it is live.

• When the variable is no longer live, it should be removed from its
register to make room to put other variables or values in registers.

• If too many variables or values are live at the same time, we have to
choose which ones to put in RAM vs. registers.

Register Allocation: Live Ranges

1 x = 3;
2 y = 10;
3 println(x);
4 z = 7;
5 y = y - x;
6 y = y - z;
7 println(z);
8 return z;

Register Allocation: Live Ranges

1 x = 3;
2 y = 10;
3 println(x);
4 z = 7;
5 y = y - x;
6 y = y - z;
7 println(z);
8 return z;

• x becomes live on line 1, and is last used on line 5.

Register Allocation: Live Ranges

1 x = 3; Live Ranges:
2 y = 10; x: Lines 1 to 5
3 println(x);
4 z = 7;
5 y = y - x;
6 y = y - z;
7 println(z);
8 return z;

• y becomes live on line 2, and is last used on line 6.

Register Allocation: Live Ranges

1 x = 3; Live Ranges:
2 y = 10; x: Lines 1 to 5
3 println(x); y: Lines 2 to 6
4 z = 7;
5 y = y - x;
6 y = y - z;
7 println(z);
8 return z;

• z becomes live on line 4, and is last used on line 8.

Register Allocation: Live Ranges

1 x = 3; Live Ranges:
2 y = 10; x: Lines 1 to 5
3 println(x); y: Lines 2 to 6
4 z = 7; z: Lines 4 to 8
5 y = y - x;
6 y = y - z;
7 println(z);
8 return z;

• Notice on lines 4 to 5, all three variables are live. If we only had two
registers available, we would need to put one variable in RAM.

Register Allocation: Live Ranges

1 x = 3; Live Ranges:
2 y = 10; x: Lines 1 to 5
3 println(x); y: Lines 2 to 6
4 z = 7; z: Lines 4 to 8
5 y = y - x;
6 y = y - z;
7 println(z);
8 return z;

• We can use live ranges to construct a graph indicating which ranges
overlap, and use graph coloring algorithms to allocate registers.

Register Allocation

• If the live range graph can be k-colored, where k is the number of
available registers, we can allocate all variables to registers.

• Graph coloring can be slow (it is a NP-complete problem) so it is often
approximated.

• If we cannot allocate all variables to registers, we need to decide
which ones to “spill” into RAM.
• No easy solution to this – heuristics are often used.

• Aside: What if the address-of operator is used on a variable?
• We can’t take the address of a register, so this variable must go in RAM.

Simple Register Allocation

• For the Project 5 bonus, you can get significant gains by just
implementing a basic register allocator.
• Our recommended code generation strategy uses the stack heavily, and each

push/pop takes two instructions.

• Optimizations that eliminate pushes/pops or decrease the number of
instructions for a push/pop are very effective on Project 5.

• Instead of a complex live range analysis, you can allocate variables
and temporaries to registers on a "first-come, first-served" basis.

• In your code generator, keep track of which registers are free/unused
and which are allocated to a variable or temporary value.

Simple Register Allocation

• Modify your offset table so that there are two kinds of "variable
locations": offsets from the frame pointer, or registers.

• Allocate non-parameter local variables in registers whenever possible.

• Also allocate registers for temporary values in expressions, and return
them to the "free registers" list when done.

• Procedures complicate things. Procedure calls (particularly recursive
calls) should not mess up the values in allocated registers.

• Can you pass (some) parameters in registers? Probably, but this
changes the calling convention.

Strength Reduction

• This optimization involves replacing costly operations with equivalent
faster operations.

• For example, multiplication is slower than addition.
• n * 2 could be replaced with n + n (or a left bit shift of n).

• (x + y) * 2 could be replaced with (x + y) + (x + y), which can then be optimized
further using common subexpression elimination!

• A more complex version involves optimizing loops which perform
expensive operations involving the loop counter.
• A loop that does multiplication on every iteration could potentially be

transformed into a loop which computes the same thing with addition.

Peephole Optimization

• This optimization happens after code generation is finished.

• Instead of directly outputting the generated code, the code is placed
in a data structure and subject to further analysis.

• The analysis tries to find sequences of instructions that can be
replaced with simpler sequences.

• For example, I wrote a code generator that outputs a lot of stuff like:
add $3, $1, $0 ; $3 = a
add $7, $3, $0 ; copy $3 to temporary register

• Peephole optimization could change this to add $7, $1, $0. This might
be easier than making the code generation step itself "smarter".

Inlining Functions

• This optimization consists of replacing a function call with the body of
the function itself.

int foo(int x) { return x + x; }
int wain(int a, int b) { return foo(a); }

• This is equivalent to:

int wain(int a, int b) { return a + a; }

• This removes the overhead of doing a function call.

• As a size optimization, it maybe not be effective unless the function is
shorter than the number of instructions needed to call it.

Tail Recursion

• A recursive function call is in tail position if it is the last thing the
function executes before returning.

• In this case, what happens normally is:
• The recursive call happens, and pushes local variables etc. to the stack.

• The recursive call finishes, pops from the stack, then returns.

• The original call finishes, pops from the stack, then returns.

• Tail call optimization is based on the observation that in this situation,
the recursive call can reuse the stack frame of the original call instead
of pushing its own stack frame, saving lots of stack space.

• The original call pops the reused stack frame.

	Slide 1: Compiler Optimizations
	Slide 2: Compiler Optimizations
	Slide 3: Constant Folding
	Slide 4: Constant Folding
	Slide 5: Constant Propagation
	Slide 6: Constant Propagation
	Slide 7: Common Subexpression Elimination
	Slide 8: Common Subexpression Elimination
	Slide 9: Common Subexpression Elimination
	Slide 10: Dead Code Elimination
	Slide 11: Dead Code Elimination
	Slide 12: Dead Code Elimination
	Slide 13: Dead Code Elimination
	Slide 14: Dead Code Elimination
	Slide 15: Dead Code Elimination
	Slide 16: Register Allocation
	Slide 17: Register Allocation
	Slide 18: Register Allocation: Live Ranges
	Slide 19: Register Allocation: Live Ranges
	Slide 20: Register Allocation: Live Ranges
	Slide 21: Register Allocation: Live Ranges
	Slide 22: Register Allocation: Live Ranges
	Slide 23: Register Allocation: Live Ranges
	Slide 24: Register Allocation
	Slide 25: Simple Register Allocation
	Slide 26: Simple Register Allocation
	Slide 27: Strength Reduction
	Slide 28: Peephole Optimization
	Slide 29: Inlining Functions
	Slide 30: Tail Recursion

