
Scanning & Regular 
Languages: Part 2



An Important Insight

• Some regular languages are easy to describe with regular expressions. 
But some are actually a little unintuitive to describe using regular 
expressions, and are easier to describe by just specifying the 
recognition program directly.

• We're going to explore how to specify simple recognition programs 
using finite automata (also known as finite state machines).

• Recognition programs based on finite automata are efficient and easy 
to implement, and can actually recognize any regular language 
(though this fact is not obvious!)

• We will ultimately use finite automata to implement our scanner.



Deterministic Finite Automata

• Deterministic finite automata (DFAs) are a tool for describing simple 
language recognition programs, which work as follows:
• The program has a finite number of distinct states. 

• The program can occupy one state at a time.

• The program reads one character of input at a time, and cannot backtrack in 
the input.

• Each time the program reads a character, the state is updated, following a 
deterministic process. The new state is completely determined by the 
previous state and the character that was read.

• Some states are designated accepting states. Once all input has been read, 
the string is accepted if the current state is accepting, and rejected otherwise.



DFA State Diagrams

• Although DFAs represent recognition programs, we often represent 
them with state diagrams, rather than code.

• Each state in the program is represented by a circle.
• The state can have a name written inside the circle.

• Names are optional and don't have any meaning, but can make it easier to 
understand.

• If reading character "a" takes the program from state X to state Y, we 
draw it like this:

X Y
a



DFA State Diagrams, Continued

• The initial state of the program is represented by a circle with an 
arrow pointing inwards.

• If a state is "double-circled", it is an accepting state. If the program 
ends up in this state after reading all input, it will accept the input. 
Otherwise, it will reject the input.

RejectAccept



DFA Examples

• The following DFA recognizes strings of a's that have odd length.

• The following DFA recognizes strings of a's and b's with an odd 
number of a's and an arbitrary number of b's.

even 
a's

a

a

odd 
a's
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a's

b

a
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a

b



DFA Examples

• Construct a DFA that recognizes strings of a's and b's with an odd 
number of a's and an even number of b's. 

• If we change which state is accepting, we can recognize any 
combination of parity.
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a
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DFA: Strings Ending in "baba"

• The languages on the previous slides are probably easier to describe 
with DFAs than regular expressions.

• However, sometimes regular expressions do have the advantage.

• Consider this language: 
Strings of a's and b's that end with "baba".

• This is very easy to describe with a regular expression: "(a|b)*baba"

• Let's try to come up with a DFA.



DFA: Strings Ending in "baba"

• We start out with a structure like this which just recognizes "baba".

BABAB BA BAB
b a ab



DFA: Strings Ending in "baba"

• Is there any problem if we do this?

BABAB BA BAB
b a ab

a,b



DFA: Strings Ending in "baba"

• Is there any problem if we do this?

• Yes. Remember that the next state depends only on the current state 
and the next symbol.

• In the empty state, if the next symbol is b, we have two choices (loop 
or go to state B). This is not allowed since DFAs are deterministic.

BABAB BA BAB
b a ab

a,b



DFA: Strings Ending in "baba"

• Instead, for each state, let's carefully think about what we should do 
when we see a certain letter.

• From the empty state, looping back on "a" is okay.

BABAB BA BAB
b a ab

a



DFA: Strings Ending in "baba"

• Let's say we're in state B. Then the string currently ends with "b".

BABAB BA BAB
b a ab

a



DFA: Strings Ending in "baba"

• Let's say we're in state B. Then the string currently ends with "b".

• If we see another "b", the string still ends with "b", and we are still 
waiting for "aba". Nothing has changed, so we can loop.

BABAB BA BAB
b a ab

a b



DFA: Strings Ending in "baba"

• Let's say we're in state BA. Then the string currently ends with "ba".

• If we see another "a", the string now ends with "baa". We lost our 
progress and now need to see the entire suffix "baba".

BABAB BA BAB
b a ab

a b



DFA: Strings Ending in "baba"

• Let's say we're in state BA. Then the string currently ends with "ba".

• If we see another "a", the string now ends with "baa". We lost our 
progress and now need to see the entire suffix "baba".

• We actually need to backtrack to the empty state if we see "a".

BABAB BA BAB
b a ab

a b

a



DFA: Strings Ending in "baba"

• Let's say we're in state BAB. The string currently ends with "bab".

• If we see another "b", the string ends with "babb". We didn't lose all 
progress, but we still need to see "aba".

BABAB BA BAB
b a ab

a b

a



DFA: Strings Ending in "baba"

• Let's say we're in state BAB. The string currently ends with "bab".

• If we see another "b", the string ends with "babb". We didn't lose all 
progress, but we still need to see "aba".

• Backtrack to state B.

BABAB BA BAB
b a ab

a b

a

b



DFA: Strings Ending in "baba"

• Finally, state BABA. The string currently ends with "baba".

• If we see another "a", the string ends in "babaa" and we lost all our 
progress again.

BABAB BA BAB
b a ab

a b

a

b



DFA: Strings Ending in "baba"

• Finally, state BABA. The string currently ends with "baba".

• If we see another "a", the string ends in "babaa" and we lost all our 
progress again. Go back to the empty state.

BABAB BA BAB
b a ab

a b

a

b

a



DFA: Strings Ending in "baba"

• Finally, state BABA. The string currently ends with "baba".

• If we see "b", the string ends in "babab". We only lost one letter of 
progress in this case (waiting for "a").

BABAB BA BAB
b a ab

a b

a

b

a



DFA: Strings Ending in "baba"

• Finally, state BABA. The string currently ends with "baba".

• If we see "b", the string ends in "babab". We only lost one letter of 
progress in this case (waiting for "a"). Go to state BAB.

BABAB BA BAB
b a ab

a b

a

b

a

b



DFA: Strings Ending in "baba"

• We are done, because for each state, there is an arrow leading out on 
each symbol. The behaviour is totally specified.

• This was much more complicated than the regular expression 
"(a|b)*baba".

BABAB BA BAB
b a ab

a b

a

b

a

b



Nondeterministic Finite Automata?

• The "deterministic" aspect of DFAs might now seem inconvenient. 
What's wrong with just doing this?

• There is actually such a thing as a nondeterministic finite automaton 
(NFA) where this is valid. We will discuss them later in the course.

• NFAs are sometimes easier to come up with than DFAs. However, 
implementing the recognition program for a DFA is easier.

BABAB BA BAB
b a ab

a,b



DFA Recognition Algorithm

• We can develop a general algorithm that takes both a string and a 
DFA as input, and determines if the DFA accepts a string.

• This algorithm is very efficient. It can be implemented in linear time in 
the length of the string, and linear space in the number of DFA states.

• The idea of the algorithm is just to "follow the arrows". 
• Start at the initial state and read characters from the string one at a time.

• If there is an arrow on the current character, follow it to the next state.

• If there is no arrow on the current character, reject the string.

• After reading the entire string, if we ended up in an accepting state, accept 
the string.



Representing a DFA in Code

• How do we actually represent a DFA in a computer program?

• The fundamental components are:
1. A list of states

2. A specification of which states are accepting

3. A specification of the "arrows" between states

• If the states are specified as strings, we can use maps for (2) and (3).
• A [state → boolean] map that tells us whether a state is accepting.

• A [(state, character) → state] map that encodes arrows. If there is an entry 
(X, a) → Y in the map, there is an arrow from state X to state Y labelled with a.

• There's only one possible new state for each (state, character) pair!



Representing a DFA in Code

• How do we actually represent a DFA in a computer program?

• The fundamental components are:
1. A list of states

2. A specification of which states are accepting

3. A specification of the "arrows" between states

• If the states are specified as integers, we can be more efficient and 
use arrays for (2) and (3).
• Accepting[i] is true if state i is accepting, false otherwise.

• Arrows[i][a] = j if there is an arrow from state i to state j on character a. 
(This assumes characters are encoded as small numbers, like in ASCII!)



DFA Recognition Algorithm: Pseudocode

• Let's assume we have the following two helper functions:
• Accepting(X): Returns true if X is an accepting state, false otherwise.

• Arrow(X, a): If there is an arrow leading out of state X labelled with character 
a going to state Y, return Y. Otherwise, return undefined.

state = initial state of DFA
for each character a in the input string:
  nextState = Arrow(state, a) (look for arrow to new state)
  if nextState is undefined:  (if there is no arrow…)
    return False              (reject input string)
  state = nextState           (otherwise go to new state)
return Accepting(state) (after reading the whole string…)
(accept if current state is accepting, otherwise reject)



DFAs and Regular Languages

• Every regular language can be recognized by a DFA, and every 
language recognized by a DFA is regular. (Kleene's Theorem)

• This fact is not obvious. We won't prove it in this course, but we will 
give some of the intuition later on.

• While some languages might be easier to describe with regular 
expressions than DFAs (and vice versa), we ultimately don't lose any 
expressive power by using DFAs.

• In fact, one common approach to implementing regular expression 
engines is to convert regular expressions to DFAs, then use the 
recognition algorithm we just saw!



Implementing Maximal Munch

• Our goal this whole time has been to implement the maximal munch 
algorithm:

1. Find the longest prefix of the input that is a valid token lexeme.
If no such prefix exists, halt with an error (scanning failed).

2. If a prefix was found, remove it from the front of the input and 
generate a token for this prefix.

3. Repeat the above steps until either an error occurs, or the input 
becomes empty (scanning successful).

• We can do it if we represent the set of valid token lexemes as a DFA!



Implementing Maximal Munch

1. Find the longest prefix of the input that is a valid token lexeme.
If no such prefix exists, halt with an error (scanning failed).

• Suppose we have a DFA for the language of valid token lexemes.

• One way to solve this problem is to take every prefix of the input and 
run it through the DFA recognition algorithm.

• But this would repeat the same work over and over again. 
• If we run "bab" through DFA recognition, and then next we run "baba" 

through DFA recognition, the same first three steps are repeated.

• Instead we use a backtracking strategy.



Implementing Maximal Munch

1. Find the longest prefix of the input that is a valid token lexeme.
If no such prefix exists, halt with an error (scanning failed).

• Suppose we have a DFA for the language of valid token lexemes.

• Start running the input string through the DFA.

• Whenever we land on an accepting state, we remember two pieces of 
information: the state we are in, and the prefix of input read so far.
• The prefix read so far is a valid token lexeme, since we reached an accepting 

state after reading it. We're just not sure if it's the longest one.

• Keep reading until the recognition algorithm gets "stuck".



Implementing Maximal Munch

1. Find the longest prefix of the input that is a valid token lexeme.
If no such prefix exists, halt with an error (scanning failed).

• Suppose we have a DFA for the language of valid token lexemes.

• Run the input string through the DFA, remembering the state and 
input prefix whenever we pass through an accepting state.

• Keep going until the DFA recognition algorithm gets "stuck":
• There is no arrow leading out of the current state on the next character.

• We reached the end of the input.

• The state we're stuck in can be accepting or non-accepting.



Implementing Maximal Munch

1. Find the longest prefix of the input that is a valid token lexeme.
If no such prefix exists, halt with an error (scanning failed).

• Suppose we have a DFA for the language of valid token lexemes.

• Run the input string through the DFA, remembering the state and 
input prefix whenever we pass through an accepting state, until we 
get "stuck". We can be stuck in an accepting or non-accepting state.

• If we're stuck in an accepting state, the prefix we read so far is a valid 
token, and no longer prefix will be accepted, so we found the desired 
prefix and we're done Step 1!



Implementing Maximal Munch

1. Find the longest prefix of the input that is a valid token lexeme.
If no such prefix exists, halt with an error (scanning failed).

• Suppose we have a DFA for the language of valid token lexemes.

• Run the input string through the DFA, remembering the state and 
input prefix whenever we pass through an accepting state, until we 
get "stuck". We can be stuck in an accepting or non-accepting state.

• If we're stuck in a non-accepting state, the prefix we read so far is not 
a valid token. Fortunately, we remembered the last prefix that was 
valid, and what state we were in, so we can backtrack to that point!



Implementing Maximal Munch

1. Find the longest prefix of the input that is a valid token lexeme.
If no such prefix exists, halt with an error (scanning failed).
• Run the input string through the DFA for valid token lexemes, using the same 

process as the DFA recognition algorithm.

• Whenever we pass through an accepting state, take note of the state itself 
and the current prefix of the input we have read.

• If we get "stuck" (no valid next arrow or reached end of input) in a non-
accepting state, backtrack in both the DFA and the input to the last accepting 
state and prefix we remembered. This is the longest prefix we are looking for. 

• We remember the state since it can tell us information about the token's kind.

• If we get "stuck" and never passed through an accepting state, that is an error.



Implementing Maximal Munch

• Our goal this whole time has been to implement the maximal munch 
algorithm:

1. Find the longest prefix of the input that is a valid token lexeme.
If no such prefix exists, halt with an error (scanning failed).

2. If a prefix was found, remove it from the front of the input and 
generate a token for this prefix.

3. Repeat the above steps until either an error occurs, or the input 
becomes empty (scanning successful).



Implementing Maximal Munch

2. If a prefix was found, remove it from the front of the input and 
generate a token for this prefix.

• Because of how we implemented Step 1, "removing the prefix" is 
something that happens implicitly.

• We backtrack in the input to the point right after we read the desired 
prefix. So if we just go back to Step 1 and continue from where we 
left off, that's the same as "removing the prefix".

• Generating a token: The prefix becomes the lexeme. We can often 
assign a kind to the lexeme by looking at which state we ended up in, 
but analysis of the lexeme itself may also be needed.



Implementing Maximal Munch

• Our goal this whole time has been to implement the maximal munch 
algorithm:

1. Find the longest prefix of the input that is a valid token lexeme.
If no such prefix exists, halt with an error (scanning failed).

2. If a prefix was found, remove it from the front of the input and 
generate a token for this prefix.

3. Repeat the above steps until either an error occurs, or the input 
becomes empty (scanning successful).

• Reset the DFA and repeat Step 1 from where we left off in the input.



Simplified Maximal Munch

• The need for backtracking makes maximal munch a little finicky to 
implement correctly. The version we presented also has poor performance 
(quadratic time) in some cases due to the backtracking.

• In the first project, we'll ask you to implement a simplified version with no 
backtracking. This version does not need to "remember" anything.

• When "stuck" in a non-accepting state, simplified maximal munch just gives 
up and produces an error. 

• It is easier to implement and efficient (linear time) but it is naturally more 
limited in what it can correctly tokenize. Still, it is often "good enough".

• Pseudocode for simplified maximal munch is given in the course notes.



A Scanning Example: Regular Expressions

• The grep and egrep tools in Unix lets you search for lines in a file 
matching a regular expression. (egrep has simpler syntax than grep)

• Example: egrep "a(ba)*|c" file.txt finds all lines in file.txt 
that contain a substring matching the expression a(ba)*|c.

• Part of implementing a tool like this involves breaking down the 
regular expression into smaller parts to understand its meaning.

• Scanning might not seem necessary for formal regular expressions 
since they are composed by combining individual characters.

• But practical implementations often have extra syntax and features.



A Scanning Example: Regular Expressions

• The grep and egrep tools have additional features not present in the 
formal version of regular expressions.

• For example, they support character sets enclosed in square brackets:
• [abc] is a shorter way to write (a|b|c).

• Character ranges are supported: [a-z] means (a|b|c|…|z).

• These elements can be combined: [241a-z] means (2|4|1|a|b|c|…|z).

• Special character classes are supported: [[:alnum:]] is short for [a-zA-Z0-9].

• You can even do something like [_[:alnum:]] (alphanumerics and underscore).

• Let us create a scanning DFA for character sets that breaks them 
down into smaller parts for easier processing.



A Scanning Example: Regular Expressions

• We will formally define a character set as a sequence of tokens 
surrounded by an opening [ character and a closing ] character.

• The allowed token kinds and their lexemes are:
• CHAR: A single printable ASCII character. 
• RANGE: A CHAR, followed by a - character, followed by a CHAR.
• CLASS: A string of the form [:name:], where name is a non-empty sequence of 

lowercase alphabetic characters.

Here is a DFA for these tokens:

• Pr means printable characters

• Pr – [excludes the [ character



A Scanning Example: Regular Expressions

• Pr means printable characters

• Pr – [ excludes the [ character

• Let's go through the following examples:

1. Scan "x[:digit:]a-fA-F" using simplified maximal munch.

2. Scan ":3-[:[:[" using maximal munch.

3. Scan "[::" using simplified maximal munch.



A Scanning Example: Regular Expressions

• Pr means printable characters

• Pr – [ excludes the [ character

1. Scan "x[:digit:]a-fA-F" using simplified maximal munch.
• CHAR "x"  (remaining string: "[:digit:]a-fA-F")

• CLASS "[:digit:]" (remaining string: "a-fA-F")

• RANGE "a-f" (remaining string: "A-F")

• RANGE "A-F" (remaining string: "")

• The input string is empty, so we output the tokenization successfully.



A Scanning Example: Regular Expressions

• Pr means printable characters

• Pr – [ excludes the [ character

2. Scan ":3-[:[:[" using maximal munch.
• CHAR ":"   (remaining string: "3-[:[:[")
• RANGE "3-["  (remaining string: ":[:[")
• CHAR ":"   (remaining string: "[:[")
• After reading "[:" we get stuck on [ in a non-accepting state. Backtrack and output: 

CHAR "["   (remaining string: ":[")
• CHAR ":" then CHAR "[" (remaining string: "") Scan successful!



A Scanning Example: Regular Expressions

• Pr means printable characters

• Pr – [ excludes the [ character

3. Scan "[::" using simplified maximal munch.
• As before, after reading "[:" we get stuck on [ in a non-accepting state.

• In Simplified Maximal Munch, this is an ERROR and we stop scanning.

• Maximal Munch would successfully scan this as:
CHAR "["    CHAR ":"    CHAR ":"



Limitations of Maximal Munch

• We just saw an example where simplified maximal munch fails but maximal 
munch works.

• Sometimes a tokenization exists, but maximal munch does not find it.

• Example: token lexemes = {"aa", "aaa"}, input string = "aaaa". 
• Maximal munch will find token ["aaa"], then produce an error.
• But this can be tokenized as ["aa"] ["aa"].

• Sometimes even if maximal munch produces a tokenization, it might not be 
the "best" or "expected" one.

• Example: C++ template parameters. Consider vector<pair<int,int>>.

• Prior to C++11, the C++ scanner interpreted >> as an operator and 
produced an error. Had to write vector<pair<int,int> > with a space.



Looking Forward

• Why did we take a break from studying machine language and start 
studying scanning?

• Machine language is annoying to write, so we wanted to use 
assembly language instead.

• MIPS instructions are a lot 
easier to read and write if we
use assembly language.

• This will allow us to write more
complex programs in MIPS. (Or 
at least make it much easier!)



Looking Forward

• MIPS assembly language syntax is simple enough that you
might be able to get by without a scanner, but it might
be awkward to deal with things like whitespace:
add $1, $2, $3 and add$1,$2,  $3 are both valid

• Scanning simplifies the process of understanding the
meaning of a program, and using a DFA for scanning
often means you just need to figure out how to describe 
the valid tokens, then implement MM or SMM.

• Next time, we'll start writing an assembler for MIPS and
look at how to create a scanning DFA for MIPS tokens!
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