MIPS Assembly Language Programming: Part 1

Let's Learn More MIPS Instructions!

- So far we've seen:
- Addition (add \$d, \$s, \$t) and Subtraction (sub \$d, \$s, \$t)
- Load Immediate \& Skip (lis \$d) for loading constants
- Jump Register (jr \$s) to jump (set PC) to another memory location
- Load Word (lw \$t, i(\$s)) and Store Word (sw \$t, i(\$s)) for memory access
- The .word directive (for encoding non-instruction words in our program)
- Today we'll learn:
- Multiplication, Division and Modulo/Remainder
- Less-Than Comparison
- Conditional Branching (lets us implement conditionals and loops!)

Multiplication

- Assembly language notation:
mult \$s, \$t Signed values
multu \$s, \$t Unsigned values
- Machine language encodings:
mult 000000 sssss ttttt 0000000000011000
multu 000000 sssss ttttt 0000000000011001
- Multiplies the numbers in \$s and \$t.
- Where does the result get stored?
- Why do we need two versions here, but not for addition and subtraction?

Getting Multiplication Results

- When adding two 32-bit numbers, the result is at most 33 bits.
- In our simplified MIPS, we ignore overflow.
- The full version of MIPS provides two add instructions, one which raises an exception if overflow occurs, and one that ignores overflow.
- But when multiplying two 32-bit numbers, the result could need up to 64 bits to represent.
- Treating overflow as an error is undesirable in this case, but ignoring it and discarding the upper 32 bits may also be undesirable.
- Multiplication instructions in MIPS store the lower 32 bits of the result in the lo register, and the upper 32 bits in the hi register.

Move From Lo/Hi

- Assembly language notation:
mflo \$d Moves the value from lo into \$d
mfhi \$d Moves the value from hi into \$d
- Machine language encodings:
mflo 0000000000000000 dddd 00000010010
mfhi 0000000000000000 dddd 00000010000
- When writing assembly language programs in this course, it is safe to just use mflo to get multiplication results - we will not worry about multiplication overflow in assignments.

Division

- Assembly language notation:

div	$\$ s$,	$\$ t$
diven values		
div,	$\$ t$	Unsigned values

- Machine language encodings:
div 000000 sssss ttttt 0000000000011010
divu 000000 sssss ttttt 0000000000011011
- These instructions compute the quotient and remainder simultaneously, storing the quotient in lo and the remainder in hi.

Notes about (Signed) Division

- The remainder can be negative - similar to the modulo operator in C/C++ (as opposed to mathematical modulo).
- The quotient q and remainder r are solutions to this equation:
- $\$ s=(\$ t \cdot q)+r$, where $|\$ t \cdot q| \leq \$ s$ and $|r|<\$ t$
- The $\$ t \cdot q$ part is always bounded by $\$ \mathrm{~s}$ in absolute value, and the remainder makes up for any missing part.
- If $\$ s$ is positive, then: $(\$ t \cdot q) \leq \$ s$, so r must be positive.
- If $\$ s$ is negative, then: $(\$ t \cdot q) \geq \$ s$, so r must be negative.
- So the sign of the remainder matches the sign of \$s.
- Easy way to remember: if $\$ t$ is larger than $\$ s$, the quotient is 0 and the equation becomes $\$ s=r$, so the signs must match.

Comparison

- Assembly language notation:
slt $\$ d, \$ s, \$ t \quad$ Sets $\$ d$ to 1 if $\$ \mathrm{~s}<\$ \mathrm{t}, 0$ otherwise sltu $\$ d, \$ s, \$ t \quad$ slt is for signed values, sltu for unsigned
- Machine language encodings:
slt 000000 sssss ttttt ddddd 00000101010
sltu 000000 sssss ttttt ddddd 00000101011
- Consider the 32 -bit word 0xFFFFFFFF = 111... 11 .
- In unsigned this is $2^{32}-1$, but in two's complement it's -1 .
- So comparing this value with 0 would give opposite results for slt/sltu.

Conditional Branching

- Assembly language notation:

$$
\begin{array}{ll}
\text { beq } \$ s, \$ t, i & \text { Branch with offset i if } \$ s==\$ t \\
\text { bne } \$ s, \$ t, i & \text { Branch with offset if } \$ s!=\$ t
\end{array}
$$

- Machine language encodings:
beq 000100 sssss ttttt iiii iiii iiii iiii
bne 000101 sssss ttttt iiii iiii iiii iiii
- The offset value i is encoded in 16 -bit two's complement.
- What does "Branch with offset i" mean?

Conditional Branching, Explained

- Recall: The jr \$s (Jump Register) instruction sets PC to the value in \$s.
- The branch instructions increment PC by i words, where i is the 16 -bit immediate operand.
- Example: If $\$ 3$ is zero, set $\$ 3=\$ 1$, otherwise, set $\$ 3=\$ 2$.

$$
\begin{aligned}
& \text { bne } \$ 3, \$ 0,2 \\
& \text { add } \$ 3, \$ 1, \$ 0 \\
& \text { beq } \$ 0, \$ 0,1 \\
& \text { add } \$ 3, \$ 2, \$ 0 \\
& \text { jr } \$ 31
\end{aligned}
$$

Conditional Branching, Explained

- Recall: The jr \$s (Jump Register) instruction sets PC to the value in \$s.
- The branch instructions increment PC by i words, where i is the 16 -bit immediate operand.
- Example: If $\$ 3$ is zero, set $\$ 3=\$ 1$, otherwise, set $\$ 3=\$ 2$.

```
bne $3,$0, 2 < When this bne executes
add $3,$1,$0}\leqslant PC is her
beq $0, $0, 1
add $3, $2, $0
jr $31
```


Conditional Branching, Explained

- Recall: The jr \$s (Jump Register) instruction sets PC to the value in \$s.
- The branch instructions increment PC by i words, where i is the 16 -bit immediate operand.
- Example: If $\$ 3$ is zero, set $\$ 3=\$ 1$, otherwise, set $\$ 3=\$ 2$.

```
bne $3,$0, 2 < If $3 != 0, PC += 8 (2 words)
add $3, $1, $0
beq $0, $0, 1
add $3,$2,$0}\leqslant PC is now her
jr $31
```


Conditional Branching, Explained

- Recall: The jr \$s (Jump Register) instruction sets PC to the value in \$s.
- The branch instructions increment PC by i words, where i is the 16 -bit immediate operand.
- Example: If $\$ 3$ is zero, set $\$ 3=\$ 1$, otherwise, set $\$ 3=\$ 2$.

```
bne $3, $0, 2 < If $3 == 0, do not branch
add $3, $1, $0 < PC stays here
beq $0, $0, 1
add $3, $2, $0
jr $31
```


Conditional Branching, Explained

- Recall: The jr \$s (Jump Register) instruction sets PC to the value in \$s.
- The branch instructions increment PC by i words, where i is the 16 -bit immediate operand.
- Example: If $\$ 3$ is zero, set $\$ 3=\$ 1$, otherwise, set $\$ 3=\$ 2$.

```
bne $3, $0, 2
add $3, $1, $0
beq $0, $0, 1 < When this beq executes
add $3, $2, $0 < PC is here
jr $31
```


Conditional Branching, Explained

- Recall: The jr \$s (Jump Register) instruction sets PC to the value in \$s.
- The branch instructions increment PC by i words, where i is the 16 -bit immediate operand.
- Example: If $\$ 3$ is zero, set $\$ 3=\$ 1$, otherwise, set $\$ 3=\$ 2$.

```
bne $3, $0, 2
add $3, $1, $0
beq $0, $0, 1 < Since $0 == $0, PC += 4 (1 word)
add $3, $2, $0
jr $31 < PC is now here
```


Loops with Branching

- Branch offsets can be negative, which lets us implement loops.
- Example: A MIPS program that sums the numbers from 1 to n, where $\$ 2$ starts out holding the value of n.

```
add $3, $0, $0
add $3, $3, $2
lis $1
.word -1
add $2, $2, $1
    bne $2, $0, -5
    jr $31
Pseudocode version:
$3 = 0
```

```
repeat
```

repeat
\$3 += \$2
\$3 += \$2
\$1 = -1
\$1 = -1
\$2 += \$1
\$2 += \$1
until \$2 == 0

```
until $2 == 0
```


Loops with Branching

- Notice we load the value -1 into $\$ 1$ on every iteration of the loop.
- This is wasteful because the value doesn't change. It would be more efficient to move this code outside of the loop.
add \$3, \$0, \$0
add \$3, \$3, \$2
lis \$1
.word -1
add \$2, \$2, \$1
bne \$2, \$0, -5
jr \$31

Pseudocode version:
$\$ 3=0$
repeat
$\$ 3+=\$ 2$
$\$ 1=-1$

$$
\$ 2+=\$ 1
$$

$$
\text { until } \$ 2==0
$$

Loops with Branching

- We moved it out of the loop... or did we?
- We did not change the branch offset! It is still -5 , so the loop still includes the code we moved.

```
add $3, $0, $0
lis $1
.word -1
add $3, $3, $2
add $2, $2, $1
bne $2, $0, -5
jr $31
```

```
Pseudocode version:
```

Pseudocode version:
\$3 = 0
\$3 = 0
\$1 = -1
\$1 = -1
repeat
repeat
\$3 += \$2
\$3 += \$2
\$2 += \$1
\$2 += \$1
until \$2 == 0

```
until $2 == 0
```


Loops with Branching

- Now we have successfully moved it out of the loop.
- Updating the branch offsets every time you change the length of a loop is a hassle. Fortunately, there is a better way.

```
add $3, $0, $0
lis $1
.word -1
add $3, $3, $2
add $2, $2, $1
bne $2, $0, -3
jr $31
Pseudocode version:
$3 = 0
$1 = -1
repeat
    $3 += $2
    $2 += $1
until $2 == 0
```


Branching with Labels

- When working in assembly language, instead of using numeric offsets, we can use labels to specify the location to branch to.

```
(Without labels) (With labels)
bne $3, $0, 2
add $3, $1, $0
beq $0, $0, 1
add $3, $2, $0
jr $31 skip: jr $31
nonZero: add $3, $2, $0
```


Branching with Labels

- When working in assembly language, instead of using numeric offsets, we can use labels to specify the location to branch to.

```
(Without labels)
add $3, $0, $0
lis $1
.word -1
add $3, $3, $2
add $2, $2, $1
bne $2, $0, -3
jr $31
```

(With labels)

```
(With labels)
    add $3, $0, $0
    add $3, $0, $0
    lis $1
```

 lis $1
    ```
```

 .word -1
    ```
    .word -1
loop: add $3, $3, $2
loop: add $3, $3, $2
    add $2, $2, $1
    add $2, $2, $1
    bne $2, $0, loop
    bne $2, $0, loop
    jr $31
```

 jr $31
    ```

\section*{Example: Absolute Value}
- \$1 contains a two's complement integer.
- Write a program that computes the absolute value of this integer and store its unsigned representation in \(\$ 3\).
```

add \$3, \$0, \$1 ; Copy \$1 to \$3

```
slt \(\$ 2, \$ 1, \$ 0\); \(\$ 2=1\) if \(\$ 1\) is negative, 0 otherwise beq \(\$ 2\), \(\$ 0\), nonNegative
sub \$3, \$0, \$3 ; Negate the value in \$3
nonNegative:
jr \$31

\section*{Example: Sum of Bits}
- Compute the sum of bits of the value in \(\$ 1\), and store the result in \(\$ 3\).
- To get the rightmost bit of a binary value, take the value modulo 2 .
- To shift the value right by one bit, divide it by 2 .
- Our program will be based on the following pseudocode:
```

\$3 = 0
while(\$1 != 0):
lo = \$1 / 2
hi = \$1 % 2
\$1 = lo
\$3 += hi

```

\section*{Example: Sum of Bits}
- Compute the sum of bits of the value in \(\$ 1\), and store the result in \(\$ 3\).
\[
\begin{aligned}
& \$ 3=0 \\
& \text { while }(\$ 1!=0): \\
& \text { lo }=\$ 1 / 2 \\
& \text { hi }=\$ 1 \% 2 \\
& \$ 1=10 \\
& \$ 3+=h i
\end{aligned}
\]

\section*{Example: Sum of Bits}
- Compute the sum of bits of the value in \(\$ 1\), and store the result in \(\$ 3\).
\[
\begin{aligned}
& \text { add } \$ 3, \$ 0, \$ 0 \\
& \text { while }(\$ 1!=0): \\
& \text { lo }=\$ 1 / 2 \\
& \text { hi }=\$ 1 \% 2 \\
& \$ 1=10 \\
& \$ 3+=\mathrm{hi}
\end{aligned}
\]

\section*{Example: Sum of Bits}
- Compute the sum of bits of the value in \(\$ 1\), and store the result in \(\$ 3\).
\[
\begin{aligned}
& \text { add } \$ 3, \$ 0, \quad \$ 0 \\
& \text { while }(\$ 1!=0): \\
& 10=\$ 1 / 2 \\
& \text { hi }=\$ 1 \% 2 \\
& \$ 1=10 \\
& \$ 3+=\text { hi }
\end{aligned}
\]

\section*{Example: Sum of Bits}
- Compute the sum of bits of the value in \(\$ 1\), and store the result in \(\$ 3\).
```

add \$3, \$0, \$0
loop:
beq \$1, \$0, end
lo = \$1 / 2
hi = \$1 % 2
\$1 = lo
\$3 += hi
beq \$0, \$0, loop
end:

```

\section*{Example: Sum of Bits}
- Compute the sum of bits of the value in \(\$ 1\), and store the result in \(\$ 3\).
```

add \$3, \$0, \$0
loop:
beq \$1, \$0, end
lo = \$1 / 2
hi = \$1 % 2
\$1 = lo
\$3 += hi
beq \$0, \$0, loop
end:

```

\section*{Example: Sum of Bits}
- Compute the sum of bits of the value in \(\$ 1\), and store the result in \(\$ 3\).
```

add \$3, \$0, \$0
lis \$2
.word 2
loop:
beq \$1, \$0, end
divu \$1, \$2
\$1 = lo
\$3 += hi
beq \$0, \$0, loop
end:

```

\section*{Example: Sum of Bits}
- Compute the sum of bits of the value in \(\$ 1\), and store the result in \(\$ 3\).
```

add \$3, \$0, \$0
lis \$2
.word 2
loop:
beq \$1, \$0, end
divu \$1, \$2
\$1 = lo
\$3 += hi
beq \$0, \$0, loop
end:

```

\section*{Example: Sum of Bits}
- Compute the sum of bits of the value in \(\$ 1\), and store the result in \(\$ 3\).
```

add \$3, \$0, \$0
lis \$2
.word 2
loop:
beq \$1, \$0, end
divu \$1, \$2
mflo \$1
\$3 += hi
beq \$0, \$0, loop
end:

```

\section*{Example: Sum of Bits}
- Compute the sum of bits of the value in \(\$ 1\), and store the result in \(\$ 3\).
```

add \$3, \$0, \$0
lis \$2
.word 2
loop:
beq \$1, \$0, end
divu \$1, \$2
mflo \$1
\$3 += hi
beq \$0, \$0, loop
end:

```

\section*{Example: Sum of Bits}
- Compute the sum of bits of the value in \(\$ 1\), and store the result in \(\$ 3\).
```

add \$3, \$0, \$0
lis \$2
.word 2
loop:
beq \$1, \$0, end
divu \$1, \$2
mflo \$1
mfhi \$5
add \$3, \$3, \$5
beq \$0, \$0, loop
end:

```

\section*{Example: Sum of Bits}
- Compute the sum of bits of the value in \(\$ 1\), and store the result in \(\$ 3\).
```

add \$3, \$0, \$0
lis \$2
.word 2
loop:
beq \$1, \$0, end
divu \$1, \$2
mflo \$1
mfhi \$5
add \$3, \$3, \$5
beq \$0, \$0, loop
end: jr \$31

```

\section*{Example: Array Loops}
- \(\$ 1\) contains the address of an array \(A\) and \(\$ 2\) contains its size \(n\). Express the following loop in assembly, using \(\$ 5\) to hold the index i .
```

for(int i = 0; i < n; ++i) { A[i] = 0; }
lis \$11
.word 1
lis \$4
.word 4
add \$5, \$0, \$0 ; \$5 holds i
for: slt \$6, \$5, \$2 ; \$6 is 1 if i < n, 0 otherwise
beq \$6, \$0, end ; Go to end of loop if i < n is false
mult \$5,\$4
mflo \$6 ; \$6 = i * 4
add \$6, \$1,\$6; \$6= address of A + (i * 4) = address of A[i]
sw \$0, 0(\$6) ; A[i] = 0
add \$5, \$5, \$11 ; i += 1
beq \$0, \$0, for ; back to top of loop
end:

```

\section*{Example: Array Loops}
- \(\$ 1\) contains the address of an array \(A\) and \(\$ 2\) contains its size \(n\). There are a lot of ways to write a loop that zeroes out the array.
- Instead of multiplying by 4, can increment a separate counter by 4:
lis \$11
. word 1
lis \$4
.word 4
```

add \$5, \$0, \$0 ; \$5 holds i

```
for: slt \(\$ 6, \$ 5, \$ 2\); \(\$ 6\) is 1 if \(i<n, 0\) otherwise
        beq \$6, \$0, end ; Go to end of loop if i < n is false
        mult \$5, \$4
        \(\mathrm{mflo} \$ 6 ; \$ 6=\mathrm{i} * 4\)
        add \(\$ 6, \$ 1, \$ 6 ; \$ 6=\) address of \(A+(i * 4)=\) address of \(A[i]\)
        SW \(\$ 0,0(\$ 6) ; A[i]=0\)
        add \$5, \$5, \$11; i += 1
        beq \(\$ 0, \$ 0\), for ; back to top of loop
end:

\section*{Example: Array Loops}
- \(\$ 1\) contains the address of an array \(A\) and \(\$ 2\) contains its size \(n\). There are a lot of ways to write a loop that zeroes out the array.
- Instead of multiplying by 4, can increment a separate counter by 4:
lis \$11
. word 1
lis \$4
. word 4
```

add \$5,\$0, \$0 ; \$5 holds i

```
for: slt \(\$ 6, \$ 5, \$ 2\); \(\$ 6\) is 1 if \(i<n, 0\) otherwise
        beq \(\$ 6, \$ 0\), end ; Go to end of loop if i < \(n\) is false
        add \(\$ 6, \$ 1, \$ 6 ; \$ 6=\) address of \(A+(i * 4)=\) address of \(A[i]\)
        sw \$0, \(0(\$ 6) ; A[i]=0\)
        add \$5, \$5, \$11 ; i += 1
        beq \(\$ 0, \$ 0\), for ; back to top of loop
end:

\section*{Example: Array Loops}
- \(\$ 1\) contains the address of an array \(A\) and \(\$ 2\) contains its size \(n\). There are a lot of ways to write a loop that zeroes out the array.
- Instead of multiplying by 4, can increment a separate counter by 4:
lis \$11
. word 1
lis \$4
.word 4
add \(\$ 5, \$ 0, \$ 0 ; \$ 5\) holds I
for: slt \$6, \$5, \$2 ; \$6 is 1 if i < n, 0 otherwise
beq \(\$ 6, \$ 0\), end ; Go to end of loop if \(i<n\) is false
add \(\$ 6, \$ 1, \$ 6 ; \$ 6=\) address of \(A+(i * 4)=\) address of \(A[i]\) sw \$0, \(0(\$ 6) ; A[i]=0\) add \(\$ 5, \$ 5, \$ 11 ; i+=1\)
beq \$0, \$0, for ; back to top of loop
end:

\section*{Example: Array Loops}
- \(\$ 1\) contains the address of an array \(A\) and \(\$ 2\) contains its size \(n\). There are a lot of ways to write a loop that zeroes out the array.
- Instead of multiplying by 4, can increment a separate counter by 4:
lis \$11
.word 1
lis \$4
.word 4
add \$5, \$0, \$0 add \$7, \$0, \$0
for: slt \$6, \$5, \$2
beq \(\$ 6\); \(\$ 6\) is 1 if i < n, 0 otherwise , Go to end of loop if i < n is false add \(\$ 6, \$ 1, \$ 7 ; \$ 6=\) address of \(A+(i * 4)=\) address of \(A[i]\) sw \$0, 0(\$6)
; \(A\) i] \(=0\)
add \(\$ 5, \$ 5, \$ 11 ; i+=1\)
add \$7, \$7, \$4 ; \$7 += 4
beq \$0, \$0, for ; back to top of loop
end:

\section*{Example: Array Loops}
- \(\$ 1\) contains the address of an array \(A\) and \(\$ 2\) contains its size \(n\). There are a lot of ways to write a loop that zeroes out the array.
- Instead of comparison with slt, can decrement \(\$ 2\) until it reaches 0:
lis \$11
.word 1
lis \$4
.word 4
add \$5, \$0, \$0 add \$7, \$0, \$0
for: slt \$6, \$5, \$2
beq \(\$ 6, \$ 6\) is 1 if \(1<n\), 0 otherwise
en ; Go to end of loop if i < n is false
add \(\$ 6, \$ 1, \$ 7 ; \$ 6=\) address of \(A+(i * 4)=\) address of \(A[i]\)
sw \$0, 0(\$6) ; A[i] = 0
add \$5, \$5, \$11 ; i += 1
add \$7, \$7, \$4 ; \$7 += 4
beq \(\$ 0, \$ 0\), for ; back to top of loop
end:

\section*{Example: Array Loops}
- \(\$ 1\) contains the address of an array \(A\) and \(\$ 2\) contains its size \(n\). There are a lot of ways to write a loop that zeroes out the array.
- Instead of comparison with slt, can decrement \(\$ 2\) until it reaches 0:
lis \$11
. word 1
lis \$4
.word 4
add \(\$ 5, \$ 0, \$ 0 \quad ; \$ 5\) holds i
add \(\$ 7, \$ 0, \$ 0 \quad ; \$ 7\) holds i * 4
for: beq \$6, \$0, end ; Go to end of loop if i<n is false
    add \(\$ 6, \$ 1, \$ 7 ; \$ 6=\) address of \(A+(i * 4)=\) address of \(A[i]\)
    sw \$0, \(0(\$ 6) ; A[i]=0\)
    add \$5, \$5, \$11; i += 1
    add \(\$ 7, \$ 7, \$ 4 ; \$ 7+=4\)
        beq \$0, \$0, for ; back to top of loop
end:

\section*{Example: Array Loops}
- \(\$ 1\) contains the address of an array \(A\) and \(\$ 2\) contains its size \(n\). There are a lot of ways to write a loop that zeroes out the array.
- Instead of comparison with slt, can decrement \(\$ 2\) until it reaches 0:
lis \$11
.word 1
lis \$4
.word 4
add \(\$ 5, \$ 0, \$ 0 \quad ; \$ 5\) holds i
add \$7, \$0, \$0 ; \$7 holds i * 4
for: beq \$2, \$0, end ; Go to end of loop if \(n==0\)
    add \(\$ 6, \$ 1, \$ 7 ; \$ 6=\) address of \(A+(i * 4)=\) address of \(A[i]\)
    sw \$0, \(0(\$ 6) ; A[i]=0\)
    add \$5, \$5, \$11; i += 1
    add \(\$ 7, \$ 7, \$ 4 ; \$ 7+=4\)
    sub \$2, \$2, \$11 ; n -= 1
    beq \$0, \$0, for ; back to top of loop
end:

\section*{Example: Array Loops}
- \(\$ 1\) contains the address of an array \(A\) and \(\$ 2\) contains its size \(n\). There are a lot of ways to write a loop that zeroes out the array.
- Instead of comparison with slt, can decrement \(\$ 2\) until it reaches 0:
lis \$11
. word 1
lis \$4
.word 4
; \$5 is no longer used!
```

add \$7, \$0, \$0 ; \$7 holds i * 4

```
for: beq \(\$ 2, \$ 0\), end ; Go to end of loop if \(n==0\)
    add \(\$ 6, \$ 1, \$ 7 ; \$ 6=\) address of \(A+(i * 4)=\) address of \(A[i]\)
    sw \$0, \(0(\$ 6) ; A[i]=0\)
        add \$7, \$7, \$4 ; \$7 += 4
        sub \$2, \$2, \$11 ; n -= 1
        beq \(\$ 0, \$ 0\), for ; back to top of loop
end:

\section*{Example: Array Loops}
- \(\$ 1\) contains the address of an array \(A\) and \(\$ 2\) contains its size \(n\). There are a lot of ways to write a loop that zeroes out the array.
- Can modify the address in \(\$ 1\) directly instead of using a temporary register:
lis \$11
.word 1
lis \$4
.word 4
```

add \$7, \$0, \$0 ; \$7 holds i * 4
for: beq \$2, \$0, end ; Go to end of loop if n == 0
add \$6, \$1, \$7 ; \$6 = address of A + (i * 4) = address of A[i]
sw \$0, 0(\$6) ; A[i] = 0
add \$7, \$7, \$4 ; \$7 += 4
sub \$2, \$2, \$11 ; n -= 1
beq \$0, \$0, for ; back to top of loop
end:

```

\section*{Example: Array Loops}
- \(\$ 1\) contains the address of an array \(A\) and \(\$ 2\) contains its size \(n\). There are a lot of ways to write a loop that zeroes out the array.
- Can modify the address in \(\$ 1\) directly instead of using a temporary register:
lis \$11
.word 1
lis \$4
.word 4
```

add \$7, \$0, \$0 ; \$7 holds i * 4
for: beq \$2, \$0, end ; Go to end of loop if n == 0
sw \$0, 0(\$1) ; On iteration i, set A[i] = 0
add \$1, \$1, \$4 ; \$1 = address of A[i+1]
sub \$2, \$2, \$11 ; n -= 1
beq \$0, \$0, for ; back to top of loop
end:

```

\section*{Example: Array Loops}
- \(\$ 1\) contains the address of an array \(A\) and \(\$ 2\) contains its size \(n\). There are a lot of ways to write a loop that zeroes out the array.
- Can modify the address in \(\$ 1\) directly instead of using a temporary register:
lis \$11
.word 1
iis \$4
.word 4
```

; \$7 is no longer used!
for: beq \$2, \$0, end ; Go to end of loop if n == 0
sw \$0, 0(\$1) ; On iteration i, set A[i] = 0
add \$1, \$1, \$4 ; \$1 = address of A[i+1]
sub \$2, \$2, \$11 ; n -= 1
beq \$0, \$0, for ; back to top of loop
end:

```

\section*{Example: Array Loops}
- \(\$ 1\) contains the address of an array \(A\) and \(\$ 2\) contains its size \(n\). There are a lot of ways to write a loop that zeroes out the array.
- Can modify the address in \(\$ 1\) directly instead of using a temporary register:
lis \$11
.word 1
lis \$4
.word 4
for: beq \$2, \$0, end ; Go to end of loop if \(\mathrm{n}==0\)
sw \$0, \(0(\$ 1) \quad\); On iteration \(i\), set \(A[i]=0\)
add \$1, \$1, \$4 ; \$1 = address of A[i+1]
sub \(\$ 2, \$ 2, \$ 11 ; n-=1\)
beq \(\$ 0, \$ 0\), for ; back to top of loop
end:```

