
MIPS Assembly Language
Programming: Part 1

Let's Learn More MIPS Instructions!

• So far we've seen:
• Addition (add $d, $s, $t) and Subtraction (sub $d, $s, $t)

• Load Immediate & Skip (lis $d) for loading constants

• Jump Register (jr $s) to jump (set PC) to another memory location

• Load Word (lw $t, i($s)) and Store Word (sw $t, i($s)) for memory access

• The .word directive (for encoding non-instruction words in our program)

• Today we'll learn:
• Multiplication, Division and Modulo/Remainder

• Less-Than Comparison

• Conditional Branching (lets us implement conditionals and loops!)

Multiplication

• Assembly language notation:

 mult $s, $t Signed values

 multu $s, $t Unsigned values

• Machine language encodings:

 mult 000000 sssss ttttt 00000 00000 011000

 multu 000000 sssss ttttt 00000 00000 011001

• Multiplies the numbers in $s and $t.
• Where does the result get stored?

• Why do we need two versions here, but not for addition and subtraction?

Getting Multiplication Results

• When adding two 32-bit numbers, the result is at most 33 bits.
• In our simplified MIPS, we ignore overflow.

• The full version of MIPS provides two add instructions, one which raises an
exception if overflow occurs, and one that ignores overflow.

• But when multiplying two 32-bit numbers, the result could need up to
64 bits to represent.

• Treating overflow as an error is undesirable in this case, but ignoring
it and discarding the upper 32 bits may also be undesirable.

• Multiplication instructions in MIPS store the lower 32 bits of the
result in the lo register, and the upper 32 bits in the hi register.

Move From Lo/Hi

• Assembly language notation:

 mflo $d Moves the value from lo into $d

 mfhi $d Moves the value from hi into $d

• Machine language encodings:

 mflo 000000 00000 00000 ddddd 00000 010010

 mfhi 000000 00000 00000 ddddd 00000 010000

• When writing assembly language programs in this course, it is safe to
just use mflo to get multiplication results – we will not worry about
multiplication overflow in assignments.

Division

• Assembly language notation:

 div $s, $t Signed values

 divu $s, $t Unsigned values

• Machine language encodings:

 div 000000 sssss ttttt 00000 00000 011010

 divu 000000 sssss ttttt 00000 00000 011011

• These instructions compute the quotient and remainder
simultaneously, storing the quotient in lo and the remainder in hi.

Notes about (Signed) Division

• The remainder can be negative – similar to the modulo operator in
C/C++ (as opposed to mathematical modulo).

• The quotient q and remainder r are solutions to this equation:
• $s = ($t ∙ q) + r, where |$t ∙ q| ≤ $s and |r| < $t

• The $t ∙ q part is always bounded by $s in absolute value, and the
remainder makes up for any missing part.
• If $s is positive, then: ($t ∙ q) ≤ $s, so r must be positive.
• If $s is negative, then: ($t ∙ q) ≥ $s, so r must be negative.

• So the sign of the remainder matches the sign of $s.
• Easy way to remember: if $t is larger than $s, the quotient is 0 and the

equation becomes $s = r, so the signs must match.

Comparison

• Assembly language notation:

 slt $d, $s, $t Sets $d to 1 if $s < $t, 0 otherwise

 sltu $d, $s, $t slt is for signed values, sltu for unsigned

• Machine language encodings:

 slt 000000 sssss ttttt ddddd 00000 101010

 sltu 000000 sssss ttttt ddddd 00000 101011

• Consider the 32-bit word 0xFFFFFFFF = 111…11.

• In unsigned this is 232 – 1, but in two’s complement it’s -1.

• So comparing this value with 0 would give opposite results for slt/sltu.

Conditional Branching

• Assembly language notation:

 beq $s, $t, i Branch with offset i if $s == $t

 bne $s, $t, i Branch with offset i if $s != $t

• Machine language encodings:

 beq 000100 sssss ttttt iiii iiii iiii iiii

 bne 000101 sssss ttttt iiii iiii iiii iiii

• The offset value i is encoded in 16-bit two’s complement.

• What does "Branch with offset i" mean?

Conditional Branching, Explained

• Recall: The jr $s (Jump Register) instruction sets PC to the value in $s.

• The branch instructions increment PC by i words, where i is the 16-bit
immediate operand.

• Example: If $3 is zero, set $3 = $1, otherwise, set $3 = $2.

 bne $3, $0, 2

 add $3, $1, $0

 beq $0, $0, 1

 add $3, $2, $0

 jr $31

Conditional Branching, Explained

• Recall: The jr $s (Jump Register) instruction sets PC to the value in $s.

• The branch instructions increment PC by i words, where i is the 16-bit
immediate operand.

• Example: If $3 is zero, set $3 = $1, otherwise, set $3 = $2.

 bne $3, $0, 2  When this bne executes

 add $3, $1, $0  PC is here

 beq $0, $0, 1

 add $3, $2, $0

 jr $31

Conditional Branching, Explained

• Recall: The jr $s (Jump Register) instruction sets PC to the value in $s.

• The branch instructions increment PC by i words, where i is the 16-bit
immediate operand.

• Example: If $3 is zero, set $3 = $1, otherwise, set $3 = $2.

 bne $3, $0, 2  If $3 != 0, PC += 8 (2 words)

 add $3, $1, $0

 beq $0, $0, 1

 add $3, $2, $0  PC is now here

 jr $31

Conditional Branching, Explained

• Recall: The jr $s (Jump Register) instruction sets PC to the value in $s.

• The branch instructions increment PC by i words, where i is the 16-bit
immediate operand.

• Example: If $3 is zero, set $3 = $1, otherwise, set $3 = $2.

 bne $3, $0, 2  If $3 == 0, do not branch

 add $3, $1, $0  PC stays here

 beq $0, $0, 1

 add $3, $2, $0

 jr $31

Conditional Branching, Explained

• Recall: The jr $s (Jump Register) instruction sets PC to the value in $s.

• The branch instructions increment PC by i words, where i is the 16-bit
immediate operand.

• Example: If $3 is zero, set $3 = $1, otherwise, set $3 = $2.

 bne $3, $0, 2

 add $3, $1, $0

 beq $0, $0, 1  When this beq executes

 add $3, $2, $0  PC is here

 jr $31

Conditional Branching, Explained

• Recall: The jr $s (Jump Register) instruction sets PC to the value in $s.

• The branch instructions increment PC by i words, where i is the 16-bit
immediate operand.

• Example: If $3 is zero, set $3 = $1, otherwise, set $3 = $2.

 bne $3, $0, 2

 add $3, $1, $0

 beq $0, $0, 1  Since $0 == $0, PC += 4 (1 word)

 add $3, $2, $0

 jr $31  PC is now here

Loops with Branching

• Branch offsets can be negative, which lets us implement loops.

• Example: A MIPS program that sums the numbers from 1 to n, where
$2 starts out holding the value of n.

 add $3, $0, $0 Pseudocode version:

 add $3, $3, $2 $3 = 0

 lis $1 repeat

 .word -1 $3 += $2

 add $2, $2, $1 $1 = -1

 bne $2, $0, -5 $2 += $1

 jr $31 until $2 == 0

Loops with Branching

• Notice we load the value -1 into $1 on every iteration of the loop.

• This is wasteful because the value doesn’t change. It would be more
efficient to move this code outside of the loop.

 add $3, $0, $0 Pseudocode version:

 add $3, $3, $2 $3 = 0

 lis $1 repeat

 .word -1 $3 += $2

 add $2, $2, $1 $1 = -1

 bne $2, $0, -5 $2 += $1

 jr $31 until $2 == 0

Loops with Branching

• We moved it out of the loop… or did we?

• We did not change the branch offset! It is still -5, so the loop still
includes the code we moved.

 add $3, $0, $0 Pseudocode version:

 lis $1 $3 = 0

 .word -1 $1 = -1

 add $3, $3, $2 repeat

 add $2, $2, $1 $3 += $2

 bne $2, $0, -5 $2 += $1

 jr $31 until $2 == 0

Loops with Branching

• Now we have successfully moved it out of the loop.

• Updating the branch offsets every time you change the length of a
loop is a hassle. Fortunately, there is a better way.

 add $3, $0, $0 Pseudocode version:

 lis $1 $3 = 0

 .word -1 $1 = -1

 add $3, $3, $2 repeat

 add $2, $2, $1 $3 += $2

 bne $2, $0, -3 $2 += $1

 jr $31 until $2 == 0

Branching with Labels

• When working in assembly language, instead of using numeric
offsets, we can use labels to specify the location to branch to.

 (Without labels) (With labels)

 bne $3, $0, 2 bne $3, $0, nonZero

 add $3, $1, $0 add $3, $1, $0

 beq $0, $0, 1 beq $0, $0, skip

 add $3, $2, $0 nonZero: add $3, $2, $0

 jr $31 skip: jr $31

Branching with Labels

• When working in assembly language, instead of using numeric
offsets, we can use labels to specify the location to branch to.

 (Without labels) (With labels)

 add $3, $0, $0 add $3, $0, $0

 lis $1 lis $1

 .word -1 .word -1

 add $3, $3, $2 loop: add $3, $3, $2

 add $2, $2, $1 add $2, $2, $1

 bne $2, $0, -3 bne $2, $0, loop

 jr $31 jr $31

Example: Absolute Value

• $1 contains a two's complement integer.

• Write a program that computes the absolute value of this integer and
store its unsigned representation in $3.
add $3, $0, $1 ; Copy $1 to $3
slt $2, $1, $0 ; $2 = 1 if $1 is negative, 0 otherwise
beq $2, $0, nonNegative
sub $3, $0, $3 ; Negate the value in $3
nonNegative:
jr $31

Example: Sum of Bits

• Compute the sum of bits of the value in $1, and store the result in $3.

• To get the rightmost bit of a binary value, take the value modulo 2.

• To shift the value right by one bit, divide it by 2.

• Our program will be based on the following pseudocode:
$3 = 0
while($1 != 0):
 lo = $1 / 2
 hi = $1 % 2
 $1 = lo
 $3 += hi

Example: Sum of Bits

• Compute the sum of bits of the value in $1, and store the result in $3.
$3 = 0
while($1 != 0):
 lo = $1 / 2
 hi = $1 % 2
 $1 = lo
 $3 += hi

Example: Sum of Bits

• Compute the sum of bits of the value in $1, and store the result in $3.
add $3, $0, $0
while($1 != 0):
 lo = $1 / 2
 hi = $1 % 2
 $1 = lo
 $3 += hi

Example: Sum of Bits

• Compute the sum of bits of the value in $1, and store the result in $3.
add $3, $0, $0
while($1 != 0):
 lo = $1 / 2
 hi = $1 % 2
 $1 = lo
 $3 += hi

Example: Sum of Bits

• Compute the sum of bits of the value in $1, and store the result in $3.
add $3, $0, $0
loop:
beq $1, $0, end
 lo = $1 / 2
 hi = $1 % 2
 $1 = lo
 $3 += hi
beq $0, $0, loop
end:

Example: Sum of Bits

• Compute the sum of bits of the value in $1, and store the result in $3.
add $3, $0, $0
loop:
beq $1, $0, end
 lo = $1 / 2
 hi = $1 % 2
 $1 = lo
 $3 += hi
beq $0, $0, loop
end:

Example: Sum of Bits

• Compute the sum of bits of the value in $1, and store the result in $3.
add $3, $0, $0
lis $2
.word 2
loop:
beq $1, $0, end
 divu $1, $2
 $1 = lo
 $3 += hi
beq $0, $0, loop
end:

Example: Sum of Bits

• Compute the sum of bits of the value in $1, and store the result in $3.
add $3, $0, $0
lis $2
.word 2
loop:
beq $1, $0, end
 divu $1, $2
 $1 = lo
 $3 += hi
beq $0, $0, loop
end:

Example: Sum of Bits

• Compute the sum of bits of the value in $1, and store the result in $3.
add $3, $0, $0
lis $2
.word 2
loop:
beq $1, $0, end
 divu $1, $2
 mflo $1
 $3 += hi
beq $0, $0, loop
end:

Example: Sum of Bits

• Compute the sum of bits of the value in $1, and store the result in $3.
add $3, $0, $0
lis $2
.word 2
loop:
beq $1, $0, end
 divu $1, $2
 mflo $1
 $3 += hi
beq $0, $0, loop
end:

Example: Sum of Bits

• Compute the sum of bits of the value in $1, and store the result in $3.
add $3, $0, $0
lis $2
.word 2
loop:
beq $1, $0, end
 divu $1, $2
 mflo $1
 mfhi $5
 add $3, $3, $5
beq $0, $0, loop
end:

Example: Sum of Bits

• Compute the sum of bits of the value in $1, and store the result in $3.
add $3, $0, $0
lis $2
.word 2
loop:
beq $1, $0, end
 divu $1, $2
 mflo $1
 mfhi $5
 add $3, $3, $5
beq $0, $0, loop
end: jr $31

Example: Array Loops

• $1 contains the address of an array A and $2 contains its size n.
Express the following loop in assembly, using $5 to hold the index i.
for(int i = 0; i < n; ++i) { A[i] = 0; }
lis $11
.word 1
lis $4
.word 4
add $5, $0, $0 ; $5 holds i
for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end of loop if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A + (i * 4) = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
end:

Example: Array Loops

• $1 contains the address of an array A and $2 contains its size n.
There are a lot of ways to write a loop that zeroes out the array.
• Instead of multiplying by 4, can increment a separate counter by 4:
lis $11
.word 1
lis $4
.word 4
add $5, $0, $0 ; $5 holds i
for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end of loop if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A + (i * 4) = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
end:

Example: Array Loops

• $1 contains the address of an array A and $2 contains its size n.
There are a lot of ways to write a loop that zeroes out the array.
• Instead of multiplying by 4, can increment a separate counter by 4:
lis $11
.word 1
lis $4
.word 4
add $5, $0, $0 ; $5 holds i
for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end of loop if i < n is false

 add $6, $1, $6 ; $6 = address of A + (i * 4) = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
end:

Example: Array Loops

• $1 contains the address of an array A and $2 contains its size n.
There are a lot of ways to write a loop that zeroes out the array.
• Instead of multiplying by 4, can increment a separate counter by 4:
lis $11
.word 1
lis $4
.word 4
add $5, $0, $0 ; $5 holds I

for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end of loop if i < n is false
 add $6, $1, $6 ; $6 = address of A + (i * 4) = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1

 beq $0, $0, for ; back to top of loop
end:

Example: Array Loops

• $1 contains the address of an array A and $2 contains its size n.
There are a lot of ways to write a loop that zeroes out the array.
• Instead of multiplying by 4, can increment a separate counter by 4:
lis $11
.word 1
lis $4
.word 4
add $5, $0, $0 ; $5 holds i
add $7, $0, $0 ; $7 holds i * 4
for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end of loop if i < n is false
 add $6, $1, $7 ; $6 = address of A + (i * 4) = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 add $7, $7, $4 ; $7 += 4
 beq $0, $0, for ; back to top of loop
end:

Example: Array Loops

• $1 contains the address of an array A and $2 contains its size n.
There are a lot of ways to write a loop that zeroes out the array.
• Instead of comparison with slt, can decrement $2 until it reaches 0:
lis $11
.word 1
lis $4
.word 4
add $5, $0, $0 ; $5 holds i
add $7, $0, $0 ; $7 holds i * 4
for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end of loop if i < n is false
 add $6, $1, $7 ; $6 = address of A + (i * 4) = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 add $7, $7, $4 ; $7 += 4
 beq $0, $0, for ; back to top of loop
end:

Example: Array Loops

• $1 contains the address of an array A and $2 contains its size n.
There are a lot of ways to write a loop that zeroes out the array.
• Instead of comparison with slt, can decrement $2 until it reaches 0:
lis $11
.word 1
lis $4
.word 4
add $5, $0, $0 ; $5 holds i
add $7, $0, $0 ; $7 holds i * 4
for: beq $6, $0, end ; Go to end of loop if i < n is false
 add $6, $1, $7 ; $6 = address of A + (i * 4) = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 add $7, $7, $4 ; $7 += 4

 beq $0, $0, for ; back to top of loop
end:

Example: Array Loops

• $1 contains the address of an array A and $2 contains its size n.
There are a lot of ways to write a loop that zeroes out the array.
• Instead of comparison with slt, can decrement $2 until it reaches 0:
lis $11
.word 1
lis $4
.word 4
add $5, $0, $0 ; $5 holds i
add $7, $0, $0 ; $7 holds i * 4
for: beq $2, $0, end ; Go to end of loop if n == 0
 add $6, $1, $7 ; $6 = address of A + (i * 4) = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 add $7, $7, $4 ; $7 += 4
 sub $2, $2, $11 ; n -= 1
 beq $0, $0, for ; back to top of loop
end:

Example: Array Loops

• $1 contains the address of an array A and $2 contains its size n.
There are a lot of ways to write a loop that zeroes out the array.
• Instead of comparison with slt, can decrement $2 until it reaches 0:
lis $11
.word 1
lis $4
.word 4
; $5 is no longer used!
add $7, $0, $0 ; $7 holds i * 4
for: beq $2, $0, end ; Go to end of loop if n == 0
 add $6, $1, $7 ; $6 = address of A + (i * 4) = address of A[i]
 sw $0, 0($6) ; A[i] = 0

 add $7, $7, $4 ; $7 += 4
 sub $2, $2, $11 ; n -= 1
 beq $0, $0, for ; back to top of loop
end:

Example: Array Loops

• $1 contains the address of an array A and $2 contains its size n.
There are a lot of ways to write a loop that zeroes out the array.
• Can modify the address in $1 directly instead of using a temporary register:
lis $11
.word 1
lis $4
.word 4

add $7, $0, $0 ; $7 holds i * 4
for: beq $2, $0, end ; Go to end of loop if n == 0
 add $6, $1, $7 ; $6 = address of A + (i * 4) = address of A[i]
 sw $0, 0($6) ; A[i] = 0

 add $7, $7, $4 ; $7 += 4
 sub $2, $2, $11 ; n -= 1
 beq $0, $0, for ; back to top of loop
end:

Example: Array Loops

• $1 contains the address of an array A and $2 contains its size n.
There are a lot of ways to write a loop that zeroes out the array.
• Can modify the address in $1 directly instead of using a temporary register:
lis $11
.word 1
lis $4
.word 4

add $7, $0, $0 ; $7 holds i * 4
for: beq $2, $0, end ; Go to end of loop if n == 0

 sw $0, 0($1) ; On iteration i, set A[i] = 0

 add $1, $1, $4 ; $1 = address of A[i+1]
 sub $2, $2, $11 ; n -= 1
 beq $0, $0, for ; back to top of loop
end:

Example: Array Loops

• $1 contains the address of an array A and $2 contains its size n.
There are a lot of ways to write a loop that zeroes out the array.
• Can modify the address in $1 directly instead of using a temporary register:
lis $11
.word 1
lis $4
.word 4

; $7 is no longer used!
for: beq $2, $0, end ; Go to end of loop if n == 0

 sw $0, 0($1) ; On iteration i, set A[i] = 0

 add $1, $1, $4 ; $1 = address of A[i+1]
 sub $2, $2, $11 ; n -= 1
 beq $0, $0, for ; back to top of loop
end:

Example: Array Loops

• $1 contains the address of an array A and $2 contains its size n.
There are a lot of ways to write a loop that zeroes out the array.
• Can modify the address in $1 directly instead of using a temporary register:
lis $11
.word 1
lis $4
.word 4
for: beq $2, $0, end ; Go to end of loop if n == 0
 sw $0, 0($1) ; On iteration i, set A[i] = 0
 add $1, $1, $4 ; $1 = address of A[i+1]
 sub $2, $2, $11 ; n -= 1
 beq $0, $0, for ; back to top of loop
end:

	Slide 1: MIPS Assembly Language Programming: Part 1
	Slide 2: Let's Learn More MIPS Instructions!
	Slide 3: Multiplication
	Slide 4: Getting Multiplication Results
	Slide 5: Move From Lo/Hi
	Slide 6: Division
	Slide 7: Notes about (Signed) Division
	Slide 8: Comparison
	Slide 9: Conditional Branching
	Slide 10: Conditional Branching, Explained
	Slide 11: Conditional Branching, Explained
	Slide 12: Conditional Branching, Explained
	Slide 13: Conditional Branching, Explained
	Slide 14: Conditional Branching, Explained
	Slide 15: Conditional Branching, Explained
	Slide 16: Loops with Branching
	Slide 17: Loops with Branching
	Slide 18: Loops with Branching
	Slide 19: Loops with Branching
	Slide 20: Branching with Labels
	Slide 21: Branching with Labels
	Slide 22: Example: Absolute Value
	Slide 23: Example: Sum of Bits
	Slide 24: Example: Sum of Bits
	Slide 25: Example: Sum of Bits
	Slide 26: Example: Sum of Bits
	Slide 27: Example: Sum of Bits
	Slide 28: Example: Sum of Bits
	Slide 29: Example: Sum of Bits
	Slide 30: Example: Sum of Bits
	Slide 31: Example: Sum of Bits
	Slide 32: Example: Sum of Bits
	Slide 33: Example: Sum of Bits
	Slide 34: Example: Sum of Bits
	Slide 35: Example: Array Loops
	Slide 36: Example: Array Loops
	Slide 37: Example: Array Loops
	Slide 38: Example: Array Loops
	Slide 39: Example: Array Loops
	Slide 40: Example: Array Loops
	Slide 41: Example: Array Loops
	Slide 42: Example: Array Loops
	Slide 43: Example: Array Loops
	Slide 44: Example: Array Loops
	Slide 45: Example: Array Loops
	Slide 46: Example: Array Loops
	Slide 47: Example: Array Loops

