
Writing an Assembler: Part 2

Writing an Assembler with Labels

• For our first assembler, we made the simplifying assumption that
every line contains exactly one instruction or .word directive.

• Let's remove this assumption, and also add support for labels.

• The general format of a MIPS line is [labels] [instruction] [comment]
• All three parts are optional and can be omitted, but must appear in order.

• A line can be completely blank.

• A line can have only labels, only an instruction/directive, or only a comment.

• A line can have labels+instruction, labels+comment, or instruction+comment.

• A line can have all three parts (in the specified order only).

label: HELLO: meow241: beq $0, $0, meow241 ; three labels!

Extending Our Scanner

label: HELLO: meow241: beq $0, $0, meow241 ; three labels!

• This line illustrates the new syntax our scanner needs to support:
• Label definitions: A sequence of alphanumeric characters (uppercase or

lowercase) that starts with an alphabet letter, followed by a colon.

• Label uses: Like a label definition, but without the colon.

• Comments: A semicolon starts a comment. All characters up until the end of
the line are part of the comment. (Discarded by the scanner)

• The changes to our DFA should be fairly straightforward…

• A minor issue: Instruction identifiers are also valid label names.
beq: beq $0, $0, beq

Extending Our Scanner

label: HELLO: meow241: beq $0, $0, meow241 ; three labels!

• Instruction identifiers are also valid label names, so to support labels,
we will extend the definition of an identifier token:
• An Identifier is a sequence of alphanumeric characters (uppercase or

lowercase) that starts with an alphabet letter.

• A Label-Def token is an Identifier followed by a colon.

• Note this means that label uses are represented by Identifier tokens.

• For consistency, Dot-Identifiers will follow the same rules as Identifier tokens
except that they begin with a dot.

• A full MIPS scanning DFA is provided as a starter file for Project 1.

Extending our Parser

• Parsing MIPS instruction lines was fairly straightforward before.
• Look up the required syntax based on the instruction name.

• Match tokens against the required syntax to check for errors.

• Extract important information for the synthesis phase.

• The scanner discards comments, but we do need to worry about
blank lines and label definitions during parsing.

• If a line contains zero tokens, skip it.

• Otherwise, check if the first token is a label definition.
• If so, process all labels on the line first. Then, check for an instruction or

.word, and if one exists, process that as before.

Processing Labels

• Before we can explain what "processing labels" means, we need to
back up and look at the big picture.

label: HELLO: meow241: beq $0, $0, meow241

• A line can have multiple label definitions before the instruction.

• Each label must have a unique name, not just within the line, but
within the whole program. (No duplicate label definitions)

• Labels can be used in some instructions. For example,
beq $0, $0, meow241 uses the label called meow241.
• Using a label that has no definition is an error! (No undefined label uses)

Labels and .word Directives

• Aside from beq and bne, labels can also be used as an argument to
the .word directive.

• A line of the form ".word label" is equivalent to writing ".word i"
where i is the memory address where the label is defined.
• This address is computed assuming the program is loaded at address 0.

• What value does the program below place in $3?
lis $3
.word end
end: jr $31

• Answer: The address of the jr $31 instruction, which is 8 (because
there are two 4-byte words preceding it).

Labels and Machine Language

• How do you encode a label in machine language?

• There is not enough space in our 32-bit instruction words to do
something like encoding the name in ASCII.

• All labels need to be converted to the appropriate integer values.
loop: lis $7 lis $7
 .word pool .word 0x0C
 beq $0, $0, loop beq $0, $0, -3
pool: jr $31 jr $31

• The program on the left and the program on the right get translated
into the same machine code.

Summary of Label Problems

• We need to keep track of which labels have been defined.

• One reason is to check for duplicate label definition errors.

• Another is to check for undefined label use errors.

• We also need to keep track of where each label was defined to
compute the corresponding numeric values for encoding.

• More precisely, assuming the program is loaded at address 0, for each
label, we want to keep track of the memory address of the
corresponding location in the program.

• We will create a symbol table that maps label names to addresses.

Symbol Table Example

main: lis $2
 .word beyond
 lis $1
 .word 2
 ; Hello, I'm a comment
 add $3, $0, $0

 top: begin: ; Two labels on the same line
 add $3, $3, $2
 sub $2, $2, $1
 bne $2, $0, top ; Go to top
 jr $31
 beyond: ; Label after last instruction

Symbol Table Example

main: lis $2
 .word beyond
 lis $1
 .word 2
 ; Hello, I'm a comment
 add $3, $0, $0

 top: begin: ; Two labels on the same line
 add $3, $3, $2
 sub $2, $2, $1
 bne $2, $0, top ; Go to top
 jr $31
 beyond: ; Label after last instruction

Label definitions highlighted.

Symbol Table Example

0x00 main: lis $2
0x04 .word beyond
0x08 lis $1
0x0c .word 2
 ; Hello, I'm a comment
0x10 add $3, $0, $0

 top: begin: ; Two labels on the same line
0x14 add $3, $3, $2
0x18 sub $2, $2, $1
0x1c bne $2, $0, top ; Go to top
0x20 jr $31
 beyond: ; Label after last instruction

Each line with an instruction or
.word takes up 4 bytes (32 bits) in
memory once assembled.
Other lines do not take up space
in memory!!

Symbol Table Example

0x00 main: lis $2
0x04 .word beyond
0x08 lis $1
0x0c .word 2
 ; Hello, I'm a comment
0x10 add $3, $0, $0

 top: begin: ; Two labels on the same line
0x14 add $3, $3, $2
0x18 sub $2, $2, $1
0x1c bne $2, $0, top ; Go to top
0x20 jr $31
 beyond: ; Label after last instruction

Two views of label addresses:
• It's the address where the next

instruction after the label is (or
would be) located.

• Count the number of instruction
lines before the definition and
multiply by 4.

Symbol Table Example

0x00 main: lis $2
0x04 .word beyond
0x08 lis $1
0x0c .word 2
 ; Hello, I'm a comment
0x10 add $3, $0, $0

 top: begin: ; Two labels on the same line
0x14 add $3, $3, $2
0x18 sub $2, $2, $1
0x1c bne $2, $0, top ; Go to top
0x20 jr $31
 beyond: ; Label after last instruction

Two views of label addresses:
• It's the address where the next

instruction after the label is (or
would be) located.

• Count the number of instruction
lines before the definition and
multiply by 4.

Label Address

main 0x00 (0 x 4 = 0)

top 0x14 (5 x 4 = 20)

begin 0x14 (5 x 4 = 20)

beyond 0x24 (9 x 4 = 36)

Symbol Table Implementation

• Keep track of a counter which you start at 0 and increment by 4 each
time you encounter a line with an instruction or .word.
• You can think of this as where PC will be when the instruction executes.

• When you encounter a label definition during parsing, add the pair
(label name, PC counter) to the symbol table.

• Check first if the pair already exists in the table. If so, this is a
duplicate label definition error.

• Although you catch this error while parsing lines, it is an example of a
semantic error (an error in meaning rather than syntax).

Symbol Table Data Structures

• Use a data structure with efficient lookups.

• A vector or list of pairs will be slow.
• Lookups are linear time, so the performance could be quadratic in the

number of labels.

• A map (using a hash table or binary tree) is a good choice.
• In C++, std::map (probably) uses a binary tree, and std::unordered_map uses

a hash table.

• In Racket, you can use (hash …) or (make-hash …)

Replacing Labels

• Assembling ".word label" is equivalent to assembling ".word i", where i is
the location of the label.

• Assembling "beq $0, $0, label" is trickier because we need to convert the
label to an offset from PC.

• Let's think about what happens when we branch.

• Desired effect: PC is set to the address of the label (PC = address).

• Branching does PC += offset * 4, so we want: PC + (offset * 4) = address.

• Basic algebra gives the formula: offset = (address – PC) / 4.

• Conveniently, when we read the branch instruction, the counter we use to
determine label addresses will contain the required value of PC!

Synthesis with Labels

• Synthesis works just as before once labels have been translated into
the appropriate numeric values.

• There are two issues:
• What if we try to assemble an instruction that uses a label, and the label

turns out to be undefined? (See the following slides.)

• When assembling a branch instruction, what if the formula (address – PC) / 4
gives a value that is outside the 16-bit two's complement range?

• The out-of-range issue requires a rather large program to occur, but it
is possible! You need to check for this and report an error.

The Forward Reference Problem

• We still haven't seen how to deal with this very common situation:

 bne $1, $2, notEqual
 …
 notEqual:

• Here the label definition appears after the branch, so it's not in our
symbol table when we first encounter the branch instruction.

• In C/C++ this is solved by requiring "forward declarations" of symbols
that are used before their definition.

• But MIPS assembly allows labels to be freely defined anywhere.

Two-Pass Assembly

• A simple way of dealing with forward references, i.e., references to
names that are not yet defined, is to do two passes over the source.

• Pass 1: Build a complete symbol table.

• Pass 2: Resolve label references.
• In Pass 1, parse the instructions and store the parsed lines in a data structure.

Pass 2 is over the contents of this data structure.

• The two passes are not an "analysis pass" and a "synthesis pass".
• Duplicate label are checked in Pass 1 while the symbol table is being built.

• Undefined label errors and out-of-range branch offset errors must be checked
in Pass 2 since this requires knowing label addresses.

Dealing with Labels: Summary

• Implement the assembler in two passes.

• The first pass builds a symbol table containing a mapping of label
names to label locations.

• The second pass uses this table for error checking and synthesis.

• Duplicate label errors are caught in the first pass, undefined label
errors and branch offset range errors are caught in the second pass.

• Analysis can otherwise be split across both passes as you see fit.

• For .word with labels, the label is replaced with its value in the symbol
table. For branching with labels, use a formula to compute the offset.

Assembler Complete!

• We've covered enough to write a complete MIPS assembler that
supports labels.

• In Project 2, you will implement such an assembler yourself.

• Now that we can write complex programs more conveniently, we'll
dive even deeper into MIPS programming.

• We'll first discuss arrays in more detail, then learn how to implement
procedures (not in this lecture).

• We will see how to manage the associated memory by using part of
RAM as a stack.

• You will see how recursion actually works at a low level!

MIPS Assembly Language
Programming: Part 2

Arrays Revisited

• An array like "int A[3] = {1,2,3};" would
be stored as follows in memory.

• To access element A[i], you need to
multiply i by 4 and add it to the starting
address of the array A.

• The Load Word (lw) and Store Word (sw)
instructions read or write entire words.

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000001

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
PC for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000001

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = ? $5 = 0

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
PC beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000001

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = 1 $5 = 0

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
PC mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000001

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = 1 $5 = 0

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
PC mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000001

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = 1 lo = 0 $5 = 0

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
PC add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000001

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = 0 $5 = 0

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
PC sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000001

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = address of A[0] $5 = 0

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
PC add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = address of A[0] $5 = 0

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
PC beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = address of A[0] $5 = 1

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
PC for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = address of A[0] $5 = 1

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
PC beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = 1 $5 = 1

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
PC mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = 1 $5 = 1

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
PC mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = 1 lo = 4 $5 = 1

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
PC add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = 4 $5 = 1

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
PC sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000010

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = address of A[1] $5 = 1

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
PC add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000000

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = address of A[1] $5 = 1

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
PC beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000000

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = address of A[1] $5 = 2

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
PC for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000000

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = address of A[1] $5 = 2

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
PC beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000000

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = 1 $5 = 2

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
PC mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000000

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = 1 $5 = 2

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
PC mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000000

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = 1 lo = 8 $5 = 2

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
PC add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000000

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = 8 $5 = 2

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
PC sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000000

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000011

$1 = address of A[0] $2 = 3
$6 = address of A[2] $5 = 2

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
PC add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000000

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000000

$1 = address of A[0] $2 = 3
$6 = address of A[2] $5 = 2

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
PC beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000000

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000000

$1 = address of A[0] $2 = 3
$6 = address of A[2] $5 = 3

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
PC for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000000

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000000

$1 = address of A[0] $2 = 3
$6 = address of A[2] $5 = 3

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
PC beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000000

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000000

$1 = address of A[0] $2 = 3
$6 = 0 $5 = 3

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
PC end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000000

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000000

$1 = address of A[0] $2 = 3
$6 = 0 $5 = 3

Tracing an Array Loop

• The following program sets all elements of an array to 0.
 ; $1 contains the starting address of A
 ; $2 contains the size of A
 lis $11
 .word 1
 lis $4
 .word 4
 add $5, $0, $0 ; $5 holds i
 for: slt $6, $5, $2 ; $6 is 1 if i < n, 0 otherwise
 beq $6, $0, end ; Go to end if i < n is false
 mult $5, $4
 mflo $6 ; $6 = i * 4
 add $6, $1, $6 ; $6 = address of A[i]
 sw $0, 0($6) ; A[i] = 0
 add $5, $5, $11 ; i += 1
 beq $0, $0, for ; back to top of loop
 end: jr $31

A[0]

MEM[address of A] 00000000

MEM[address of A + 1] 00000000

MEM[address of A + 2] 00000000

MEM[address of A + 3] 00000000

A[1]

MEM[address of A + 4] 00000000

MEM[address of A + 5] 00000000

MEM[address of A + 6] 00000000

MEM[address of A + 7] 00000000

A[2]

MEM[address of A + 8] 00000000

MEM[address of A + 9] 00000000

MEM[address of A + 10] 00000000

MEM[address of A + 11] 00000000

$1 = address of A[0] $2 = 3
$6 = 0 $5 = 3

Allocating Arrays

• How do we actually get an array into memory so we can work with it?

• We can allocate it statically: the array is allocated before running the
program at a fixed location.

• In C/C++, we can allocate arrays dynamically (at runtime) on either
"the stack" or "the heap".

• We will learn how "the heap" works near the end of the course.

• We will learn about "the stack" today!

• But first, let's take a look at what static allocation looks like.

Example: A Statically Allocated Array

; returns 1 in $3 if $7 is in the courses array, returns 0 otherwise
PC 0x00 lis $4

0x04 .word 4
0x08 lis $1
0x0c .word courses ; equivalent to .word 0x38 $1 = ?
0x10 lis $2 $2 = ?
0x14 .word endArray ; equivalent to .word 0x44 $3 = ?
0x18 add $3, $0, $0 $4 = ?
0x1c loop: beq $1, $2, end ; go to end if $1 == endArray $6 = ?
0x20 lw $6, 0($1) ; load A[i] into $6 $7 = 241
0x24 add $1, $1, $4 ; $1 = address of A[i+1]
0x28 bne $6, $7, loop ; continue loop if $7 != A[i]
0x2c lis $3
0x30 .word 1 ; return $3 = 1 if $7 == A[i]
0x34 end: jr $31
0x38 courses: .word 240 ; array A starts here
0x3c .word 241
0x40 .word 251
0x44 endArray: ; array A ends here

Example: A Statically Allocated Array

; returns 1 in $3 if $7 is in the courses array, returns 0 otherwise
0x00 lis $4
0x04 .word 4

PC 0x08 lis $1
0x0c .word courses ; equivalent to .word 0x38 $1 = ?
0x10 lis $2 $2 = ?
0x14 .word endArray ; equivalent to .word 0x44 $3 = ?
0x18 add $3, $0, $0 $4 = 4
0x1c loop: beq $1, $2, end ; go to end if $1 == endArray $6 = ?
0x20 lw $6, 0($1) ; load A[i] into $6 $7 = 241
0x24 add $1, $1, $4 ; $1 = address of A[i+1]
0x28 bne $6, $7, loop ; continue loop if $7 != A[i]
0x2c lis $3
0x30 .word 1 ; return $3 = 1 if $7 == A[i]
0x34 end: jr $31
0x38 courses: .word 240 ; array A starts here
0x3c .word 241
0x40 .word 251
0x44 endArray: ; array A ends here

Example: A Statically Allocated Array

; returns 1 in $3 if $7 is in the courses array, returns 0 otherwise
0x00 lis $4
0x04 .word 4
0x08 lis $1
0x0c .word courses ; equivalent to .word 0x38 $1 = 0x38 (courses)

PC 0x10 lis $2 $2 = ?
0x14 .word endArray ; equivalent to .word 0x44 $3 = ?
0x18 add $3, $0, $0 $4 = 4
0x1c loop: beq $1, $2, end ; go to end if $1 == endArray $6 = ?
0x20 lw $6, 0($1) ; load A[i] into $6 $7 = 241
0x24 add $1, $1, $4 ; $1 = address of A[i+1]
0x28 bne $6, $7, loop ; continue loop if $7 != A[i]
0x2c lis $3
0x30 .word 1 ; return $3 = 1 if $7 == A[i]
0x34 end: jr $31

$1 0x38 courses: .word 240 ; array A starts here
0x3c .word 241
0x40 .word 251
0x44 endArray: ; array A ends here

Example: A Statically Allocated Array

; returns 1 in $3 if $7 is in the courses array, returns 0 otherwise
0x00 lis $4
0x04 .word 4
0x08 lis $1
0x0c .word courses ; equivalent to .word 0x38 $1 = 0x38 (courses)
0x10 lis $2 $2 = 0x44 (endArray)
0x14 .word endArray ; equivalent to .word 0x44 $3 = ?

PC 0x18 add $3, $0, $0 $4 = 4
0x1c loop: beq $1, $2, end ; go to end if $1 == endArray $6 = ?
0x20 lw $6, 0($1) ; load A[i] into $6 $7 = 241
0x24 add $1, $1, $4 ; $1 = address of A[i+1]
0x28 bne $6, $7, loop ; continue loop if $7 != A[i]
0x2c lis $3
0x30 .word 1 ; return $3 = 1 if $7 == A[i]
0x34 end: jr $31

$1 0x38 courses: .word 240 ; array A starts here
0x3c .word 241
0x40 .word 251
0x44 endArray: ; array A ends here

Example: A Statically Allocated Array

; returns 1 in $3 if $7 is in the courses array, returns 0 otherwise
0x00 lis $4
0x04 .word 4
0x08 lis $1
0x0c .word courses ; equivalent to .word 0x38 $1 = 0x38 (courses)
0x10 lis $2 $2 = 0x44 (endArray)
0x14 .word endArray ; equivalent to .word 0x44 $3 = 0
0x18 add $3, $0, $0 $4 = 4

PC 0x1c loop: beq $1, $2, end ; go to end if $1 == endArray $6 = ?
0x20 lw $6, 0($1) ; load A[i] into $6 $7 = 241
0x24 add $1, $1, $4 ; $1 = address of A[i+1]
0x28 bne $6, $7, loop ; continue loop if $7 != A[i]
0x2c lis $3
0x30 .word 1 ; return $3 = 1 if $7 == A[i]
0x34 end: jr $31

$1 0x38 courses: .word 240 ; array A starts here
0x3c .word 241
0x40 .word 251
0x44 endArray: ; array A ends here

Example: A Statically Allocated Array

; returns 1 in $3 if $7 is in the courses array, returns 0 otherwise
0x00 lis $4
0x04 .word 4
0x08 lis $1
0x0c .word courses ; equivalent to .word 0x38 $1 = 0x38 (courses)
0x10 lis $2 $2 = 0x44 (endArray)
0x14 .word endArray ; equivalent to .word 0x44 $3 = 0
0x18 add $3, $0, $0 $4 = 4
0x1c loop: beq $1, $2, end ; go to end if $1 == endArray $6 = ?

PC 0x20 lw $6, 0($1) ; load A[i] into $6 $7 = 241
0x24 add $1, $1, $4 ; $1 = address of A[i+1]
0x28 bne $6, $7, loop ; continue loop if $7 != A[i]
0x2c lis $3
0x30 .word 1 ; return $3 = 1 if $7 == A[i]
0x34 end: jr $31

$1 0x38 courses: .word 240 ; array A starts here
0x3c .word 241
0x40 .word 251
0x44 endArray: ; array A ends here

Example: A Statically Allocated Array

; returns 1 in $3 if $7 is in the courses array, returns 0 otherwise
0x00 lis $4
0x04 .word 4
0x08 lis $1
0x0c .word courses ; equivalent to .word 0x38 $1 = 0x38 (courses)
0x10 lis $2 $2 = 0x44 (endArray)
0x14 .word endArray ; equivalent to .word 0x44 $3 = 0
0x18 add $3, $0, $0 $4 = 4
0x1c loop: beq $1, $2, end ; go to end if $1 == endArray $6 = 240
0x20 lw $6, 0($1) ; load A[i] into $6 $7 = 241

PC 0x24 add $1, $1, $4 ; $1 = address of A[i+1]
0x28 bne $6, $7, loop ; continue loop if $7 != A[i]
0x2c lis $3
0x30 .word 1 ; return $3 = 1 if $7 == A[i]
0x34 end: jr $31

$1 0x38 courses: .word 240 ; array A starts here
0x3c .word 241
0x40 .word 251
0x44 endArray: ; array A ends here

Example: A Statically Allocated Array

; returns 1 in $3 if $7 is in the courses array, returns 0 otherwise
0x00 lis $4
0x04 .word 4
0x08 lis $1
0x0c .word courses ; equivalent to .word 0x38 $1 = 0x3c (courses+4)
0x10 lis $2 $2 = 0x44 (endArray)
0x14 .word endArray ; equivalent to .word 0x44 $3 = 0
0x18 add $3, $0, $0 $4 = 4
0x1c loop: beq $1, $2, end ; go to end if $1 == endArray $6 = 240
0x20 lw $6, 0($1) ; load A[i] into $6 $7 = 241
0x24 add $1, $1, $4 ; $1 = address of A[i+1]

PC 0x28 bne $6, $7, loop ; continue loop if $7 != A[i]
0x2c lis $3
0x30 .word 1 ; return $3 = 1 if $7 == A[i]
0x34 end: jr $31
0x38 courses: .word 240 ; array A starts here

$1 0x3c .word 241
0x40 .word 251
0x44 endArray: ; array A ends here

Example: A Statically Allocated Array

; returns 1 in $3 if $7 is in the courses array, returns 0 otherwise
0x00 lis $4
0x04 .word 4
0x08 lis $1
0x0c .word courses ; equivalent to .word 0x38 $1 = 0x3c (courses+4)
0x10 lis $2 $2 = 0x44 (endArray)
0x14 .word endArray ; equivalent to .word 0x44 $3 = 0
0x18 add $3, $0, $0 $4 = 4

PC 0x1c loop: beq $1, $2, end ; go to end if $1 == endArray $6 = 240
0x20 lw $6, 0($1) ; load A[i] into $6 $7 = 241
0x24 add $1, $1, $4 ; $1 = address of A[i+1]
0x28 bne $6, $7, loop ; continue loop if $7 != A[i]
0x2c lis $3
0x30 .word 1 ; return $3 = 1 if $7 == A[i]
0x34 end: jr $31
0x38 courses: .word 240 ; array A starts here

$1 0x3c .word 241
0x40 .word 251
0x44 endArray: ; array A ends here

Example: A Statically Allocated Array

; returns 1 in $3 if $7 is in the courses array, returns 0 otherwise
0x00 lis $4
0x04 .word 4
0x08 lis $1
0x0c .word courses ; equivalent to .word 0x38 $1 = 0x3c (courses+4)
0x10 lis $2 $2 = 0x44 (endArray)
0x14 .word endArray ; equivalent to .word 0x44 $3 = 0
0x18 add $3, $0, $0 $4 = 4
0x1c loop: beq $1, $2, end ; go to end if $1 == endArray $6 = 240

PC 0x20 lw $6, 0($1) ; load A[i] into $6 $7 = 241
0x24 add $1, $1, $4 ; $1 = address of A[i+1]
0x28 bne $6, $7, loop ; continue loop if $7 != A[i]
0x2c lis $3
0x30 .word 1 ; return $3 = 1 if $7 == A[i]
0x34 end: jr $31
0x38 courses: .word 240 ; array A starts here

$1 0x3c .word 241
0x40 .word 251
0x44 endArray: ; array A ends here

Example: A Statically Allocated Array

; returns 1 in $3 if $7 is in the courses array, returns 0 otherwise
0x00 lis $4
0x04 .word 4
0x08 lis $1
0x0c .word courses ; equivalent to .word 0x38 $1 = 0x3c (courses+4)
0x10 lis $2 $2 = 0x44 (endArray)
0x14 .word endArray ; equivalent to .word 0x44 $3 = 0
0x18 add $3, $0, $0 $4 = 4
0x1c loop: beq $1, $2, end ; go to end if $1 == endArray $6 = 241
0x20 lw $6, 0($1) ; load A[i] into $6 $7 = 241

PC 0x24 add $1, $1, $4 ; $1 = address of A[i+1]
0x28 bne $6, $7, loop ; continue loop if $7 != A[i]
0x2c lis $3
0x30 .word 1 ; return $3 = 1 if $7 == A[i]
0x34 end: jr $31
0x38 courses: .word 240 ; array A starts here

$1 0x3c .word 241
0x40 .word 251
0x44 endArray: ; array A ends here

Example: A Statically Allocated Array

; returns 1 in $3 if $7 is in the courses array, returns 0 otherwise
0x00 lis $4
0x04 .word 4
0x08 lis $1
0x0c .word courses ; equivalent to .word 0x38 $1 = 0x40 (courses+8)
0x10 lis $2 $2 = 0x44 (endArray)
0x14 .word endArray ; equivalent to .word 0x44 $3 = 0
0x18 add $3, $0, $0 $4 = 4
0x1c loop: beq $1, $2, end ; go to end if $1 == endArray $6 = 241
0x20 lw $6, 0($1) ; load A[i] into $6 $7 = 241
0x24 add $1, $1, $4 ; $1 = address of A[i+1]

PC 0x28 bne $6, $7, loop ; continue loop if $7 != A[i]
0x2c lis $3
0x30 .word 1 ; return $3 = 1 if $7 == A[i]
0x34 end: jr $31
0x38 courses: .word 240 ; array A starts here
0x3c .word 241

$1 0x40 .word 251
0x44 endArray: ; array A ends here

Example: A Statically Allocated Array

; returns 1 in $3 if $7 is in the courses array, returns 0 otherwise
0x00 lis $4
0x04 .word 4
0x08 lis $1
0x0c .word courses ; equivalent to .word 0x38 $1 = 0x40 (courses+8)
0x10 lis $2 $2 = 0x44 (endArray)
0x14 .word endArray ; equivalent to .word 0x44 $3 = 0
0x18 add $3, $0, $0 $4 = 4
0x1c loop: beq $1, $2, end ; go to end if $1 == endArray $6 = 241
0x20 lw $6, 0($1) ; load A[i] into $6 $7 = 241
0x24 add $1, $1, $4 ; $1 = address of A[i+1]
0x28 bne $6, $7, loop ; continue loop if $7 != A[i]

PC 0x2c lis $3
0x30 .word 1 ; return $3 = 1 if $7 == A[i]
0x34 end: jr $31
0x38 courses: .word 240 ; array A starts here
0x3c .word 241

$1 0x40 .word 251
0x44 endArray: ; array A ends here

Example: A Statically Allocated Array

; returns 1 in $3 if $7 is in the courses array, returns 0 otherwise
0x00 lis $4
0x04 .word 4
0x08 lis $1
0x0c .word courses ; equivalent to .word 0x38 $1 = 0x40 (courses+8)
0x10 lis $2 $2 = 0x44 (endArray)
0x14 .word endArray ; equivalent to .word 0x44 $3 = 1
0x18 add $3, $0, $0 $4 = 4
0x1c loop: beq $1, $2, end ; go to end if $1 == endArray $6 = 241
0x20 lw $6, 0($1) ; load A[i] into $6 $7 = 241
0x24 add $1, $1, $4 ; $1 = address of A[i+1]
0x28 bne $6, $7, loop ; continue loop if $7 != A[i]
0x2c lis $3
0x30 .word 1 ; return $3 = 1 if $7 == A[i]

PC 0x34 end: jr $31
0x38 courses: .word 240 ; array A starts here
0x3c .word 241

$1 0x40 .word 251
0x44 endArray: ; array A ends here

Example: A Statically Allocated Array

; returns 1 in $3 if $7 is in the courses array, returns 0 otherwise
0x00 lis $4
0x04 .word 4
0x08 lis $1
0x0c .word courses ; equivalent to .word 0x38 $1 = 0x40 (courses+8)
0x10 lis $2 $2 = 0x44 (endArray)
0x14 .word endArray ; equivalent to .word 0x44 $3 = 1
0x18 add $3, $0, $0 $4 = 4
0x1c loop: beq $1, $2, end ; go to end if $1 == endArray $6 = 241
0x20 lw $6, 0($1) ; load A[i] into $6 $7 = 241
0x24 add $1, $1, $4 ; $1 = address of A[i+1]
0x28 bne $6, $7, loop ; continue loop if $7 != A[i]
0x2c lis $3
0x30 .word 1 ; return $3 = 1 if $7 == A[i]
0x34 end: jr $31
0x38 courses: .word 240 ; array A starts here
0x3c .word 241

$1 0x40 .word 251
0x44 endArray: ; array A ends here

Stack Allocation

• When you run a program, it does not take up all available memory.
Instead, the program is allocated a specific chunk of memory.

• In our MIPS emulator, programs are always allocated the region of
memory from 0x00000000 (inclusive) to 0x01000000 (exclusive).
• Accessing addresses 0x01000000 or higher gives an "out of bounds" error.

• The program code itself is at address 0, the "lower end" of memory.

• We will use the opposite end of program memory as a stack.

• To facilitate this, $30 is initialized to 0x01000000, and we treat $30 as
the stack pointer, the memory address of the top of the stack.

Using the Stack

• Note that the initial value of the stack pointer $30 is an out of bounds
address. This represents the stack being empty.

• All addresses higher than 0x01000000 are out of bounds. So the stack
actually grows "backwards" from high to low addresses.
• It's a little confusing. When we push to the stack, we say the stack gets

"higher", but the address of the top of the stack decreases numerically.

• To push something on the stack, there are two steps.
• Store the word at the address 4 bytes before the stack pointer.

• Decrement the stack pointer by 4, so it points to the new top of the stack.

• Popping from the stack is similar, but reversed: increment then load.

Pushing and Popping: Examples

• Push value in $3 onto the stack:
sw $3, -4($30)
lis $3
.word 4
sub $30, $30, $3

• Pop value from top of stack into $3:
lis $3
.word 4
add $30, $30, $3
lw $3, -4($30)

• There are other ways of doing this, but the methods shown here are
fairly safe and general. Alternative approaches might require care.

Program Code

…

$30 (Out of Bounds Memory)

Pushing and Popping: Examples

• Push value in $3 onto the stack:
sw $3, -4($30)
lis $3
.word 4
sub $30, $30, $3

• Pop value from top of stack into $3:
lis $3
.word 4
add $30, $30, $3
lw $3, -4($30)

• There are other ways of doing this, but the methods shown here are
fairly safe and general. Alternative approaches might require care.

Push: $3 = 241

Program Code

…

$30 (Out of Bounds Memory)

Pushing and Popping: Examples

• Push value in $3 onto the stack:
sw $3, -4($30)
lis $3
.word 4
sub $30, $30, $3

• Pop value from top of stack into $3:
lis $3
.word 4
add $30, $30, $3
lw $3, -4($30)

• There are other ways of doing this, but the methods shown here are
fairly safe and general. Alternative approaches might require care.

Push: $3 = 241

Program Code

…

$30 – 4 241

$30 (Out of Bounds Memory)

Pushing and Popping: Examples

• Push value in $3 onto the stack:
sw $3, -4($30)
lis $3
.word 4
sub $30, $30, $3

• Pop value from top of stack into $3:
lis $3
.word 4
add $30, $30, $3
lw $3, -4($30)

• There are other ways of doing this, but the methods shown here are
fairly safe and general. Alternative approaches might require care.

Push: $3 = 4

Program Code

…

$30 – 4 241

$30 (Out of Bounds Memory)

Pushing and Popping: Examples

• Push value in $3 onto the stack:
sw $3, -4($30)
lis $3
.word 4
sub $30, $30, $3

• Pop value from top of stack into $3:
lis $3
.word 4
add $30, $30, $3
lw $3, -4($30)

• There are other ways of doing this, but the methods shown here are
fairly safe and general. Alternative approaches might require care.

Push: $3 = 4

Program Code

…

$30 241

(Out of Bounds Memory)

Pushing and Popping: Examples

• Push value in $3 onto the stack:
sw $3, -4($30)
lis $3
.word 4
sub $30, $30, $3

• Pop value from top of stack into $3:
lis $3
.word 4
add $30, $30, $3
lw $3, -4($30)

• There are other ways of doing this, but the methods shown here are
fairly safe and general. Alternative approaches might require care.

Pop: $3 = 333

Program Code

…

$30 241

(Out of Bounds Memory)

Pushing and Popping: Examples

• Push value in $3 onto the stack:
sw $3, -4($30)
lis $3
.word 4
sub $30, $30, $3

• Pop value from top of stack into $3:
lis $3
.word 4
add $30, $30, $3
lw $3, -4($30)

• There are other ways of doing this, but the methods shown here are
fairly safe and general. Alternative approaches might require care.

Pop: $3 = 4

Program Code

…

$30 241

(Out of Bounds Memory)

Pushing and Popping: Examples

• Push value in $3 onto the stack:
sw $3, -4($30)
lis $3
.word 4
sub $30, $30, $3

• Pop value from top of stack into $3:
lis $3
.word 4
add $30, $30, $3
lw $3, -4($30)

• There are other ways of doing this, but the methods shown here are
fairly safe and general. Alternative approaches might require care.

Pop: $3 = 4

Program Code

…

$30 – 4 241

$30 (Out of Bounds Memory)

Pushing and Popping: Examples

• Push value in $3 onto the stack:
sw $3, -4($30)
lis $3
.word 4
sub $30, $30, $3

• Pop value from top of stack into $3:
lis $3
.word 4
add $30, $30, $3
lw $3, -4($30)

• There are other ways of doing this, but the methods shown here are
fairly safe and general. Alternative approaches might require care.

Pop: $3 = 241

Program Code

…

$30 – 4 241

$30 (Out of Bounds Memory)

Pushing and Popping: Examples

• Push value in $3 onto the stack:
sw $3, -4($30)
lis $3
.word 4
sub $30, $30, $3

• Pop value from top of stack into $3:
lis $3
.word 4
add $30, $30, $3
lw $3, -4($30)

• There are other ways of doing this, but the methods shown here are
fairly safe and general. Alternative approaches might require care.

Pop: $3 = 241

Program Code

…

241

$30 (Out of Bounds Memory)

Examples of Pitfalls

• "I don't like the use of -4. Why not just use offset 0 instead?"

sw $3, 0($30)
lis $3
.word 4
sub $30, $30, $3

Examples of Pitfalls

• "I don't like the use of -4. Why not just use offset 0 instead?"

sw $3, 0($30)
lis $3
.word 4
sub $30, $30, $3

• Initially, $30 is an out-of-bounds address, so this will crash.

Examples of Pitfalls

• "I don't like the use of -4, so I will decrement first, then use offset 0."

lis $3
.word 4
sub $30, $30, $3
sw $3, 0($30)

Examples of Pitfalls

• "I don't like the use of -4, so I will decrement first, then use offset 0."

lis $3
.word 4
sub $30, $30, $3
sw $3, 0($30)

• $3 gets overwritten with 4, so you need to use a different register for
the decrement, or you lose the value of $3.

Examples of Pitfalls

• "I don't like the use of -4, so I will decrement first, then use offset 0."

lis $4
.word 4
sub $30, $30, $4
sw $3, 0($30)

• This is fine, as long as you weren't using $4 for anything important.
Being able to use the same register for increment/decrement and
store/load is kind of nice.

Allocating an Array on the Stack

• To allocate an array of n words, simply decrement the stack pointer by
4n rather than just 4.

; assume $2 contains n, the size of the array
lis $4
.word 4
mult $2, $4
mflo $5 ; $5 contains 4 * n
sub $30, $30, $5 ; decrement stack pointer
add $1, $30, $0
; now $1 contains the starting address of the array

• Notice that we didn't do anything to "initialize" the array! We just
made space for it. You can initialize it using a loop as discussed earlier.

• To deallocate, increment the stack pointer by 4n.

Coming Up Next

• Now that we understand how to use part of memory as a stack, we
will use this to implement procedures in MIPS assembly.

• You may be familiar with the concept of the "call stack" that forms
when procedures call each other.

• We will see the precise details of how this is implemented using our
stack pointer in $30!

• We will learn about the final instruction in our version of MIPS, Jump
and Link Register (jalr) which is used for procedure calls.

• We'll even be able to write recursive procedures!

	Slide 1: Writing an Assembler: Part 2
	Slide 2: Writing an Assembler with Labels
	Slide 3: Extending Our Scanner
	Slide 4: Extending Our Scanner
	Slide 5: Extending our Parser
	Slide 6: Processing Labels
	Slide 7: Labels and .word Directives
	Slide 8: Labels and Machine Language
	Slide 9: Summary of Label Problems
	Slide 10: Symbol Table Example
	Slide 11: Symbol Table Example
	Slide 12: Symbol Table Example
	Slide 13: Symbol Table Example
	Slide 14: Symbol Table Example
	Slide 15: Symbol Table Implementation
	Slide 16: Symbol Table Data Structures
	Slide 17: Replacing Labels
	Slide 18: Synthesis with Labels
	Slide 19: The Forward Reference Problem
	Slide 20: Two-Pass Assembly
	Slide 21: Dealing with Labels: Summary
	Slide 22: Assembler Complete!
	Slide 23: MIPS Assembly Language Programming: Part 2
	Slide 24: Arrays Revisited
	Slide 25: Tracing an Array Loop
	Slide 26: Tracing an Array Loop
	Slide 27: Tracing an Array Loop
	Slide 28: Tracing an Array Loop
	Slide 29: Tracing an Array Loop
	Slide 30: Tracing an Array Loop
	Slide 31: Tracing an Array Loop
	Slide 32: Tracing an Array Loop
	Slide 33: Tracing an Array Loop
	Slide 34: Tracing an Array Loop
	Slide 35: Tracing an Array Loop
	Slide 36: Tracing an Array Loop
	Slide 37: Tracing an Array Loop
	Slide 38: Tracing an Array Loop
	Slide 39: Tracing an Array Loop
	Slide 40: Tracing an Array Loop
	Slide 41: Tracing an Array Loop
	Slide 42: Tracing an Array Loop
	Slide 43: Tracing an Array Loop
	Slide 44: Tracing an Array Loop
	Slide 45: Tracing an Array Loop
	Slide 46: Tracing an Array Loop
	Slide 47: Tracing an Array Loop
	Slide 48: Tracing an Array Loop
	Slide 49: Tracing an Array Loop
	Slide 50: Tracing an Array Loop
	Slide 51: Tracing an Array Loop
	Slide 52: Tracing an Array Loop
	Slide 53: Allocating Arrays
	Slide 54: Example: A Statically Allocated Array
	Slide 55: Example: A Statically Allocated Array
	Slide 56: Example: A Statically Allocated Array
	Slide 57: Example: A Statically Allocated Array
	Slide 58: Example: A Statically Allocated Array
	Slide 59: Example: A Statically Allocated Array
	Slide 60: Example: A Statically Allocated Array
	Slide 61: Example: A Statically Allocated Array
	Slide 62: Example: A Statically Allocated Array
	Slide 63: Example: A Statically Allocated Array
	Slide 64: Example: A Statically Allocated Array
	Slide 65: Example: A Statically Allocated Array
	Slide 66: Example: A Statically Allocated Array
	Slide 67: Example: A Statically Allocated Array
	Slide 68: Example: A Statically Allocated Array
	Slide 69: Stack Allocation
	Slide 70: Using the Stack
	Slide 71: Pushing and Popping: Examples
	Slide 72: Pushing and Popping: Examples
	Slide 73: Pushing and Popping: Examples
	Slide 74: Pushing and Popping: Examples
	Slide 75: Pushing and Popping: Examples
	Slide 76: Pushing and Popping: Examples
	Slide 77: Pushing and Popping: Examples
	Slide 78: Pushing and Popping: Examples
	Slide 79: Pushing and Popping: Examples
	Slide 80: Pushing and Popping: Examples
	Slide 81: Examples of Pitfalls
	Slide 82: Examples of Pitfalls
	Slide 83: Examples of Pitfalls
	Slide 84: Examples of Pitfalls
	Slide 85: Examples of Pitfalls
	Slide 86: Allocating an Array on the Stack
	Slide 87: Coming Up Next

