Tutorial 01

- Binary Intro
- Two's Compliment
- Machine Lang age (MIPS)

Binary

- Binary = Way data is regrasentad in machines $\rightarrow 2$ digits: 0 's \& 1's
\rightarrow has many interpretations!
eg: How could we interpret 1000 ?
sols:
(1) $8 \quad(4-6 i+\#)$
(2) -8 (signed 4-bit \#, two's compliment)
(3) [True, False, False, False] (array of books)
(4) "backspace" char (ASCII cock 8)
\# bits can mean anything, interpretation is important!
- How can we convert binary to unsigned decimal? \rightarrow unsigned ints in binary are done with a positional number system representing powers of 2
\rightarrow The decimal value $=$ binary sum of $23 s$
eg: Convert 11010 to decimal
sols:

$$
\begin{aligned}
2^{4} 2^{3} 2^{2} 2^{1} 2^{0} & =2^{4} \cdot 1+2^{3} \cdot 1+2^{2} \cdot 0+2^{1} \cdot 1+2^{0} \cdot 0 \\
& =2^{4}+2^{3}+2^{1}=26
\end{aligned}
$$

In geneal: A n-bit $\#$ is represented by the bits (b)

$$
b_{n-1} b_{n-2} \cdots b_{2} b_{1} b_{0} \quad(b \in\{0,1\})
$$

has decimal value:

$$
2^{n-1} \cdot b_{n-1}+2^{n-2} \cdot b_{n-2}+\ldots+2^{2} \cdot b_{2}+2^{1} \cdot b_{1}+2^{0} \cdot b_{0}
$$

- How can we convert decimal to binay?
\rightarrow Idea 1: Repeatedly subtract by large powers of 2
\leq the decimal iteratively until the remainder $=0$
eg: Convert 23 to binary

$$
\begin{array}{llll}
23-16 & 2^{4} & \text { largest power of } 2 \leq 23 \\
7-4=3 & 2^{2} & " & \\
3-2=1 & 2^{\prime} & & \\
1-1=0 & 2^{\circ} & &
\end{array}
$$

Thus: $23=2^{4}+2^{2}+2^{1}+2^{0}$

$$
\begin{aligned}
& =2^{4} \cdot 1+2^{3} \cdot 0+2^{2} \cdot 1+2^{1} \cdot 1+2^{0} \cdot 1 \\
& =10111
\end{aligned}
$$

\rightarrow Idea 2: Repeatedly divide by 2, read remainders from bottom to top
eg: Convect 23 to binary

$$
\begin{array}{lll}
23 / 2=11 & \text { remainder } 1 \quad 2^{\circ} \\
11 / 2=5 & \text { remainder } 1 \\
5 / 2=2 & 1 & 1 \\
2 / 2=1 & 1 & 0 \\
1 / 2=0 & 1 & 1
\end{array} 2^{4}
$$

$\therefore 23=10111$ in binary
eq: Convert 01101001 into decimal
Sol:

$$
01^{65} 01^{3} 001^{0}=2^{6}+2^{5}+2^{3}+2^{0}=105
$$

eg: Convert 35 to an 8-bit binary
sol: $35 / 2=17 \mathrm{rem} 1$

$$
\begin{aligned}
& 17 / 2=8 \\
& 8 / 2=4 \\
& 4 / 2=2
\end{aligned}
$$

Thus $35=100011<6$-bits? Pad with 0 's!

$$
=00100011
$$

eg: 216 to 8-bit binary

$$
\begin{aligned}
& 216 / 2=108 \mathrm{rem} 0 \\
& 108 / 2=54 \quad: 0 \\
& 54 / 2=27 \quad " 0 \\
& 27 / 2=13 \\
& 13 / 2=6 \\
& 6 / 2=3 \\
& 3 / 2=1 \\
& 1 / 2=1
\end{aligned}
$$

Two's Compliment

- lets us represent positive \& negative \#'s in binary \rightarrow for a n-bit binary $b_{n-1} b_{n-2} \ldots b_{2} b_{1} b_{0}$ $\left\{\begin{array}{l}\text { If the } 1^{\text {st }} \text { bit }\left(b_{n-1}\right) \text { is } 0, \# \text { is positive } \\ \text { " " " " " } 1, \# \text { is negative }\end{array}\right.$ $\longrightarrow \frac{b_{n-1}, b_{n-2} \ldots b_{2} b_{1} b_{0},}{}$ sign: $1=-$ unsigned representation
$0=+$
0
- Range of values with n-bits:
\rightarrow In unsigned binary: 0 to $2^{n}-1$
\rightarrow In 2^{n} s compliment $:-2^{n-1}$ to $2^{n-1}-1$
$1^{\text {st }}$ bit resolved for \pm
- Converting from decimal to 2's compliment \rightarrow if the number ≥ 0, convert like an unsigned int eg: 7 in 4 -bit binary $=0111$
\rightarrow if the number is <0, then:
(1) flip all bits in its positive binary representation
(2) Add 1
eq: -7 in 4-bit binary:
(1) $|-7|=7=0111\}$ flip: all $0=1 \& 1=0$ $1000<" 1$ "s compliment"
(2) 1000

$$
\frac{+0001}{1001}=-7
$$

- Convert from 2's compliment to elecimal:

Method 1) if $b_{n-1}=1$: flip bits, add 1, negate decimal \rightarrow Even faster: flip bits to the left of the rightmost 1 Method 2) left most bit is -2 's power $b_{n-1} b_{n-2} \ldots b_{2} b_{1} b_{0}$ ~ unsigned \#

$$
\begin{gathered}
=-2^{n-1} \cdot b_{n-1}+2^{n-2} b_{n-2}+\ldots+2^{2} b_{2}+2^{1} b_{1}+2^{0} b_{0} \\
\uparrow b_{n-1}=1, \# \text { is }<0 \\
=0, \# \text { is } \geq 0
\end{gathered}
$$

eg: Convert 10100 to decimal
\rightarrow Method 1)

$$
\begin{array}{r}
01011 \\
+00001 \\
\hline 01100=2^{3}+2^{2}=12 \rightarrow-12 \quad\left(\because b_{4}=1\right)
\end{array}
$$

\rightarrow Methoel 2)

$$
\begin{aligned}
& \qquad \# \text { is }<0 \\
& =\frac{10100}{}=-2^{4}+2^{2}=-16+4=-12
\end{aligned}
$$

Machine Language

- CS241: 32-bid MIPS
$\rightarrow 4$ bytes of instructions per word in RAM (MEM)
\rightarrow Registers hold S2-bits of information ($\$ 5, \$ t, \$ d$)
\rightarrow Act like variables: Store data for access $\&$ manipulation
\rightarrow special register
- \$0: Always contains 0 , immutable dongs use
$\left.\begin{array}{l}-\$ 31 \text { : Return adders of the program } \\ \cdot \$ 3, \$ 29 \& \$ 30 \text { are special by convention }\end{array}\right\}$ for strange!
- PC contains the address do the current instruction
- IR contains the instruction to run from MEM[PC]
\rightarrow iii... $=$ 2's compliment numbers
- \# Programs live in the same space in RAM as the date they operate on! \&
$\longrightarrow P C$ does not know how to distinguish the two!
- Fetch-Execute Cycle Pseudocode:

$$
[P C=0 \times 00
$$

while True do: //loop until $P C=\$ 31$
$\mathbb{R}=M E M[P C] / /$ Instruction at address $P C$
$P C=P C+4 \quad / /$ Next instruction address execute command in IR
done

- Constant Values
\longrightarrow To load constant values in register, use the Load Immedzie $S_{k i p}$ instruction (iss $\$ d$) followed by a 2 's compliment number eg:- Store value 42 into register 5 $\left[\begin{array}{l}\text { lis } \$ 5<\text { treats } 32 \text {-bit word after lis } \$ 5 \text { as } \\ \text {-word } 42<a\end{array}\right.$ Machine Code Representation: (MIPS Reference Shot) op rode $\$$ s $\$ t$ \$d 1,1 $0000000000000000,00101,00000 \quad 010100$ lis $\$ 5$ 00000000000000000000000000101010 word 42
eg: load in the number 5 into $\$ 1$ \& 10 into $\$ 2$, then store the sum of $\$ 1 \& \$ 2$ into $\$ 4$.
son: (.word $n \equiv 2^{\prime}$ s compliment binary of n)
$\left[\begin{array}{l}\text { lis } \$ 1 \\ \text {. word S }\end{array}\right]$ \qquad $/ /$ Stores value 5 in $\$ 1$
lis $\$ 2$
.word 10 Stores value 10 in $\$ 2$
add $\$ 4 \$ 1 \$ 2 \quad / / \$ 4=\$ 1+\$ 2$
jo $\$ 31$ / Causes $P C=\$ 31$, ends program
Converted into machine code:
address o, o, code machine code: $\$ t$ In $0 \times 0000000000000000000000100000010100$ lis $\$ 1$ $0 \times 0400000000000000000000000000000101$ word 5 $0 \times 0800000000000000000001000000010100$ lis $\$ 2$ $0 \times 1200000000000000000000000000001010$ word 10 $0 \times 1600000000001000100010000000100000$ add $\$ 4 \$ 1 \$ 2$ $0 \times 2000000011111000000000000000001000$ ir \$31, DONE

Memory Diagram:

eg: load in $31^{*}\left(2^{21}\right)$ into $\$ 1$ \& 8 into $\$ 2$, write a program that stops without using any jump operations
\longrightarrow Goal: Recreate the machine code to call $P C=\$ 31$
\rightarrow Recall: each word contains 4 bytes starting from 0×00
\rightarrow Idea: Store Word will save a register value to a specific memory adders (MEM $[\$ s+i]=\$ t$)
At what if $M E M[\underbrace{\$ 0+P C+4}]=" P C=\$ 31 "$
address of next instruction \mathbb{R} runs.!
Soln:
\& Dynamically created instruction! \&
0×00 lis $\$ 1$
0×04 word $31^{* 21} 00000011111000000000000000000000$ 0×08 lis $\$ 2$
0×12 word 8 0000000 00000 00000 00080 00000001000 0×16 add $\$ 4 \$ 1 \$ 20_{000005} 111110000000000000000010005$

$$
\begin{aligned}
& \frac{0 \times 20}{M E M \text { address }} \operatorname{MEM}[\underbrace{\$ 0+24}_{P C+4}]=\underbrace{\$ 4}_{j r} \$ 31 \quad(i e: P C=\$ 31)
\end{aligned}
$$

$$
\$ 4=j r \$ 31
$$

Machine Code:
$0 \times 0000000000000000000000100000010100$ lis $\$ 1$ $0 \times 0400000011111000000000000000000000$ word $31 * 2^{21}$ $0 \times 0800000000000000000001000000010100$ lis $\$ 2$ $0 \times 1200000000000000000000000000001000$ word 8 $0 \times 1600000000001000100010000000100000$ add $\$ 4=\$ 1+\$ 2$

$0 \times 20101011000000001100000000000011000$ MEM [SO 24$]=\$ 4$ | NEW |
| :--- | :--- | :--- |
| 0×24 | $00000011111000000000000000001000 \quad P C=\$ 31$ creatal!1!!

Memory Diagram

\qquad

