Tutorial O 2

- Regular Expressions
- DFAs
- Scanning

Regular Expressions

- Alphabet $(\Sigma)=$ finite non-empty set of symbols $L_{\text {eg }}: \sum=\{a\}, \Sigma=\{a, b, c\}, \Sigma=\{$ hello, world $\}$
- word $(\omega)=$ finite sequence of symbols in Σ $\rightarrow \varepsilon=$ sequence with no symbols
$L_{>}$eg: if $\Sigma=\{a, b, c\}$
valid words $\in \Sigma=\varepsilon, a, b, c, a a, a b c, a b b c a, \ldots$
eg: if $\Sigma=\left\{h_{i}\right.$, bye $\}$
valid words $\in \Sigma=\varepsilon$, hi, bye, hihi, hibye,...
- Regular Language (L) over Σ is a set of words iteratively deft:

1) $L=\varnothing$
2) $L=\{\varepsilon\}$
3) $L=\{a\}$
4) $L=L_{1} \cup L_{2}=\left\{x: x \in L_{1}\right.$ or $\left.x \in L_{2}\right\}$ (union)
5) $L=L_{1} L_{2}=\left\{x y: x \in L_{1}, y \in L_{2}\right\}$ (concatenation)
6) $L=L_{1}^{*}=\bigcup_{i=0}^{\infty} L_{1}^{i}=\left\{"{ }^{\prime \prime}, L_{1}, L_{1} L_{1}, L, L_{1}, L_{1}, \ldots\right\}$

- Regular expressions \rightarrow concise/simple deft of regular languages

1) $R=\varnothing$
2) $R=\varepsilon$
3) $R=a$ where $a \in E$
4) $R=R_{1} \mid R_{2}=\left\{x: x \in R_{1}\right.$ or $\left.x \in R_{2}\right\}$ union
5) $R=R_{1} R_{2}=\left\{x y: x \in R_{1}, y \in R_{2}\right\} \quad$ concatenation
6) $R=R_{1}^{*}=\left\{\cdots, R_{1}, R_{1} R_{1}, \ldots\right\}$ Kline Star

- Operator Precedence: $R^{*}>R_{1} R_{2}>R_{1} \cup R_{2}$ \rightarrow eg: anal $b^{*} \equiv \operatorname{aa|b(b+)} \equiv(a a) \mid\left(b\left(b^{*}\right)\right)$
eg: Provide a regex for $\sum=\{a, b\}, L=\{a a, a b, b a, b b\}$
\rightarrow valid words: $a a, a b, b a, b b \in L$
\rightarrow Sol 1) $R=a a l a b(b a / 66$
$\longrightarrow_{\text {Sol }}$ 2) $R=(a \mid b)(a \mid b)$
eg: Provide a regex for $\Sigma=\{0,1\}, L=\left\{x \in \Sigma^{*}\right.$: x's $2^{\text {nd }}$ symbol $=0$ \& $5^{\text {th }}$ symbol is 1$\}$
$\longrightarrow 00111,10001101101 \in L$
\rightarrow Sol) (011)O (011) (011)1 (011)*
eg: Provide a regex for $\sum=\{a, b,+,-, \cdot, /\}$
$L=\left\{x \in \Sigma^{*}: x\right.$ represents a valid arithmetic operation $\}$ \rightarrow Note: No unary ops ($-b \& L$) \& no implicit mut ($a b \& L$) $\rightarrow a, b, a+b, a-b, a \cdot b, a / b, a+a+a \in L$
\rightarrow Patton: term op term op term... op term
Soln) (alb) $[(+1-1.1 /)(a \mid b)]^{*}$

Deterministic Finite Automat (DFA)

- DFA's model computations \& argos $\left(\Sigma, Q, q_{0}, A, \delta\right)$

1) \sum : input alphabet
2) $Q:$ finite set of states
(90) (91) ... (qu)
3) $q_{0} \in Q$: starting state
4) $A \leq Q$: set of accepting states
5) $\delta: Q \times \Sigma \rightarrow Q:$ transition f_{n}

$$
\begin{equation*}
\rightarrow \delta(q, a)=q^{\prime} \quad q, q^{\prime} \in Q \& a \in \Sigma \tag{q}
\end{equation*}
$$

\rightarrow if $\delta(q, a)$ DNE, transition to non-accepting error state

$$
\rightarrow \delta(\text { error }, a)=\text { error } \quad \forall a \in \Sigma
$$

eg: Draw a DFA for $\sum=\{a, b, c\}, L=\left\{x \in \Sigma^{*}\right.$: x contains exactly 1 a \& an even \# of c 's $\}$
\rightarrow Accept: $a, a c c, c a c, a c c b, b b c a c b c c \in L$
Reject: "", cc, aa, ...
$\rightarrow T_{i \rho}$: think about what stakes are needed to differentiate between accepting \& rejecting stats

eg: DFA for $\Sigma=\{0,1\}$ accepting $L\left\{x \in \Sigma^{*}: x\right.$ ends

eg: DFA for $\Sigma=\{0,1,2,3\}$ accepting $L=\left\{x \in \Sigma^{*}\right.$:
$x^{\prime} s$ difit sum is 3$\}$
\longrightarrow Accept: 3, 03, 0300, 0+1+2=3, 01+1+0+1+0+1+0=3
Accept: 3, 03, 0300, 012, 12, 111, $0101010, \ldots$
Reject: $0,1,2,00,10,20,31,13,33333, \ldots$

Scanning

- Goal: Take non-empty input (ω) \& split it into non-empty token sequences.
\longrightarrow input $w=\underbrace{\omega_{1}+w_{2}+\ldots+w_{n}}_{\text {string cancel }}$ where $\underbrace{w_{1}, \ldots, w_{n}}_{\text {tokens }} \in L$ for $n>0$
\rightarrow word w can be scanned w.r.t. to L if $\exists w=w_{1}+\ldots+w_{n} n>0$
- Maximal munch \& simplified maximal munch are scanning algos:
- Simplified Maximal Munch (SMM)
\rightarrow Run DFA accepting L with input w
\rightarrow if transition f_{n} in state q on char a does not exist:
\rightarrow If g is accepting, output current token \& reset DFA with remaining input
\rightarrow If q is not accepting, produce ERROR \& exit
\rightarrow Consume input chars from w until ERROR or no more input.
- Maximal Munch (MM):
\rightarrow Run DFA accepting L with input w
\rightarrow Backtrack input \& DFA if transition on state q with char a does not exist to last seen accepting state
\rightarrow Output token \& reset DFA if accepting state is found/reached
\rightarrow ERROR if backtracking dish'' reach an accepting state
- Possible that MM \& SMM might scanlaccept different w
eg: Suppose we have the DFA:

give the sequence of tollens produced by SMM for each input below.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1) Input: $\mathrm{O} \times \mathrm{a} \mathrm{O} \times 6 \mathrm{O} \times \mathrm{cd}$ HEXINT OxaO ID $\quad x b 0 \times c d$

2) Input: Oxend -.-

HEXINT Oxe
ID nd
DECR --
MINUS -

3) $\frac{1234-120 \times 6}{123 T}$

INT - 120
ID $\times b$

4) abcend=-en-3 ID abcend error? DECR -ERROR ($\delta(E N,-)$ DNE)

5) Olend-end10
ZERO O

INT 1
END end
MINUS -
ID endio

