
 Tutorial 3

Miss Loops

Mips Arrays
Symbol Tables

Mips Loops
Done via branching
Assembly

beg 5 t i If s t thenbranch with offset i

bne s sit i If s t then branch with offset i

i can be tve to move PC forward of ve to move

PC backwards

Machine Code

beg 000100 ssssstttttiiiiiiiiiiiiii.ie

One 000101 ssssstttttiiiiiiiiiiiiii.it
i is encoded in 16 bit 2 s compliment

How does branching with offset i work
Recall the fetch execute cycle
PC 0

while PC 3

112 MEM PC Agent instruction at MEMEPC
PC PC 4 next 4 byte 32 bit instruction

run IR's instruction

done



beg one will modify PC by adding i
Implicit conversion PC PC 4 i

Loop idea

y
loop start keep running the loop until
É 2 lines bne condition fails

bne I

next line when one runs PC is pointing to the next instruction

Annoying to hardcode loop offet i easier to use labels

start loop start

q
Same loop

n 2 lines

bne start

a next line



eg Write a MIPS program that takes non negative

integer n in 1 stores the factorial n into 3

so n

i Initialize the answer 83 1 877 7

lis 3

word I
add 11 3 0

i Loop until 81 0

loop beg 1 0 end 5

molt 3 7

m flo 3 83 83 81

sub 7 7 77 1 1 1

beg 0 0 1003

end jr 31



eg Recall the Fibonacci sequence def
fo O

f 1

futz frit t In for n 20

Write a MIPS program which takes non negative integer
n in 1 stores fn in 3

so n

add 3 0 0 3 fo
lis 4

word 1 i 4 f

add 11 4,80 877 7

I Loop until 1 O
1003 beg 1 0 end

add 5 84 0 5 fit
add 4 3 4 4 fitz fit fi
add 3 5 0 3 5 fit

sub 1 1 77 87 87 7

beg 0 0 1003

end jr 31



MIPS Arrays
We can use miss array to write programs that

manipulate arrays
lets us write programs that can accept 2 inputs

eg Write a MIPS program that accepts the address of an

array in 1 its length in 2 stores the produit
of the numbers in the array in 3

so n

add 2 2 2
add 2 2 2

add 2 2 81 82 4 82 1 last arrayaddress
lis 4

word 4

lis 3

word 1

Loop until 1 2 incrementing 1 by 4 each loop
loop beg 7 2 end

Iw 5 0681 5 1 Arr i

Mutt 3 5

mflo 3 3 83 Arr i

add 7 7 4 81 87 4 Ci ith next Are index

beg 0 0 loop

end jr 31



Symbol Tables
Assembler divided into 2 phases
1 Analysis

Checks input instruction correctness

Construct a Symbol Table

Stores the values of all labels defined in code
2 Synthesis

Uses symbol table to substitute labels with theirvalues

compute branch one beg offsets i

A labels are why we do 2 passes over the code
Can't combine Analysis Synthesis since we can't know

if a label is beingusedbefore it is defined

During the second pass

Check that label operands when converted to addresses

ior offsets fall in the correct ranges

Remember to check for duplicate label def's when

constructing a symbol table



eg Construct the symbol table for the following code

begin
label beg 0 0 after

jr 4

after
Sw 31 166 07
lis 4

abco abet word after

loadstore

Iw 20 4680

Sw 20 286 07

end



So n

label values are the number of non null lines with

instructions that proceed the label multiplied by 4

7544 2 label beg 0 0 after
6433 1 jr 4

Null line not counted

5322 Sw 31 166 07

4217 lis 4

31 abc 0 abel word after

Null line not counted
loadstore

2 Iw 20 4680

1 Sw 20 286 07

Null line not counted
end

Symbol Table
begin O no instructions preceed begin

label O fbegdoesnot proceed label def
after 8 2 proceeding instructions
abcd 16
agee

word comes after both labels

16 4 instruction lines

loadStore 20 5 preceding instruction lines
end 28 8


