Tutorial 6 Top-down Parsing (LL(1)) E-NFAS to DFAS LL(1) Parsing · Inputs: CFG G=(N, E, P, S) & input string x E E* · finds derivation from start symbol S to input string x (ie: S⇒*x) L> let \varkappa_i be derivation i from $S \Rightarrow ... \Rightarrow \varkappa_i \Rightarrow ... \Rightarrow \varkappa_i$ i≥O, KiE(NUZ)* (origin: AEN, A→Ki EP) L> goal: find S⇒Ko⇒K, ⇒... ⇒Kn ⇒x to prove XEL(G) or prove XEL(G)

• LL(1) -> One symbol lookaheed L> parsor makes decision about what rule xi to apply based on only the next symbol in the input L> & LL(1) parsing closess 2 always work due to this limitation!

L (G) = "Language of the grammar G"

Predict Table · Used to determine if LL(1) parsing will work for G • let AEN a,b,cEZ K, B E(NUE)* - strings of non-terminals & terminals A->×EP

Predict (A, a) creates a set of production rules L> contains rule A->x if: (1) × can derive a string whose 1st symbol is a L> We want to see a string A -> "a B" 2 K " " E and it is possible for a to immediately follow A in the elerivation La "get rid" of A, A => * "ExB" · Formally: First (x) = Eb | x =>* bB for some B} Follow (A) = E c | S' = * * A c B for some x, B} Nullable (x) = true if x =>*E, fake otherwise Predict $(A, \kappa) = \{ A \rightarrow \kappa \mid (\alpha \in First(\kappa)) \text{ or } \}$ (Nullable (x) and a E Follow (A))? · A if Predict (A, x) contains < 1 rule for all pairs (A, a), we say G is LL(1) & we can use LL(1) to parse G

eg: Consider the CFG: O S→aXYb ⊕ X→p× S×→ε © Y→q ⑦ Y→ ٤ Compute the predict table for this grammar. · Tip: Compute in the order Nullable, First then Follow Lo Use algos from class or intuition! Nullable (A) · VAEN, track what rules can be used to "nullify" A (ie: A ⇒*E) L> Nullable (X) = Nullable (Y) = true from rules 5 & 7 A = S, Nullable (A) = true since $S \Longrightarrow XY$ by (3) & X, Y are nullable L> Nullable (S') = false since S' only has rule (D, S'⇒+S+, with terminals +, -1 EZ AEN Nullable (A) Nullable Rules ٢, False none S True 3 S Х True $\overline{\mathbf{G}}$ Y True

First(A)

· VAEN, look at the 1st symbol on the right band side of
each rule that expands A
L> S'→ FS-1 by ①, .: First(S')= E+3
\rightarrow add (1) to Preclict (S ² , +)
Ly X is expanded by @ & 5
\rightarrow (4): $X \rightarrow pX$, $\therefore p \in First(X)$, add (4) to Predict(X,p)
\rightarrow (5): $\times \rightarrow \varepsilon$, ignore
\rightarrow . First (X) = $\xi p 3$
Ly Y is expanded by 687
$\rightarrow \bigcirc$ $\Upsilon \rightarrow \varphi$, $\therefore q \in First(\Upsilon)$, add \bigcirc to Predict(Y,q)
$\rightarrow \overline{7}$: $Y \rightarrow \varepsilon$, ignore
\rightarrow First (Y) = $\xi q \xi$
L> S is expanded by @& B
$\rightarrow @ : S \rightarrow a \times Yb, : a \in First(S), add @ to Predict(S,a)$
$\rightarrow (3) : S \rightarrow XY (S \Rightarrow XY \Rightarrow_{P}XY \mathcal{L} S \Rightarrow XY \Rightarrow_{P})$
Ly Anything in First (X) is in First (S) (ie: First (X) \leq First (S))
L> Nullable (X) = true, Anything in First (Y) is in First (S)
$(ie: First(Y) \subseteq First(S))$
L> thus p,q E First (S), add (3) to Predict (S,q) & Predict (S,p)
\rightarrow . First(S) = $\mathcal{E} \propto \rho, q, \mathcal{E}$

AEN	First(A)
s'	€ ⊢3
S	$\{\alpha, p, q\}$
×	٤,93
Y	843

Partially - Filled Predict Table: Predict \vdash Ь \neg a ٩ 9 ເລ (\mathbf{I}) 3 3 2 S 4 Х \bigcirc Y

Follow (A)

· VAEN, look at rules where A appears on the right hard side

I figure out what symbols could appear after A · If we add a E to Follow (A), add all <u>nullable</u> rules for A to Predict (A, a) <- lets us get rid of A to get a on the LHS L> Follow (S') = Ø since S' doesn's appear in the RHS of any rule L> Follow (S) = E-13 since by ① we get S2→+S-1 & Nullable (S)=true. by 3 -> add (3) to Predict (S, -1)

L> Follow (Y) = 26, -13
-> Y on RHS of S->a×Y6 & is followed by b, b ∈ Follow(Y)
\rightarrow Y""" $S \rightarrow X Y \stackrel{*}{\epsilon}$, any thing in Fallow(S) is in Fallow(Y).
thus Follow (S) = E-13 = Follow(Y)
\rightarrow Follow(Y) = $\xi b \exists \cup Follow(S) = \xi b, \neg \exists$, since
Nullable (Y) = true add @ to Predict (Y, b) & Predict (Y, -1)
\vdash Follow (X) = \mathcal{E} 6, q, -13
\rightarrow $S \rightarrow a \times Y b$, any H_{ing} in $F_{inst}(Y) \subseteq F_{ollow}(x)$
\rightarrow S $\rightarrow a \times Yb$, b \in Follow(X) \therefore Nullable(Y) = true
\rightarrow $S \rightarrow \chi \gamma \epsilon$, \therefore Nullable (Y) = true, Follow (S) \leq Follow (X)
$\rightarrow \times \rightarrow \rho \times \epsilon$, no info on Follow(X)
-> . · Follow(X) = First(Y) U & b3 U Follow(S) = & b,q, -13
L> add nullable rule (5) to Predict (X, b), Predict (X,y) & Predict (X, -1)

AEN	Follow
 S	ø
S	€+3
×	86,9,-13
Y	ξь, q, -13 ξь, -13

Final Predict Table:

Predict	H + a b p q
s'	1
S	3 2 3 3
×	5 5 4 5
Y	ר ר

eg: Parse	- Happab-	using th	e cranted predict table
Stack	Matcheel	Input	Action
<u>S</u> ²	З	Happy b-1	$Predict(S^{2}, +) = Apply (1) S^{2} \rightarrow + S - 1$
E S-I	3 ~	1-0 9990b-1	Match + (Pop +, consume + from input)
<u>5</u> -1	F	<u>∽</u> ??q,b-1	Predict(S,a) = Apply 2, S=aXY6
AXY6-	1	£ ??q/b-1	Match a
<u>×</u> Yb –	Fa	2896-1	Predict $(X, p) = Apply (4), X \rightarrow pX$
2XY6-1	ta_	399 b-1	Match p
<u>х</u> Үь –1	Fap	296-1	Predict $(X, p) = Apply (4), X \rightarrow pX$
ox Yb-1	tap_	pab-1	Match p
<u>×</u> Yb-1	tapp	46-1	Predict $(X,q) = Apply(5), X \rightarrow \varepsilon$
Y6 -1	Fapp	<u>q</u> b-1	Predict (Y,q) = Apply (G, Y->q
9-b-1	+app_	<u></u> в–1	Match g
6-1	Happa-	<u>6</u> -1	Match b
<u> </u>	+appqb_	-	Match –
E	Happab-1	ε	Accept! (Stuck = Input = E)
S'=>*+appqb-1	1 As desired!		

· The Stack rules from top (S3) to bottom (E) give us

the leftmost derivation of S'=>*+appgol-1

• Parse Tree: F = S = -1 F = -1 F = S = -1 F = -1 F

E-NFAs to DFAs

· Similar to converting an NFA to a DFA, but you need to account for E-transitions when figuring out what states are reachable from a given set of states > Initial State: Eq. 3 U Eq. 1 q reached by taking 21 E-trans from go 3 (L> for state qi, find all transitions V symbols a (d(qi) a)) & figure out what other states, q_j , are reachable by ≥ 1 E-transitions - finding the E-closure \forall states g_i , $i \ge 0$ eq: Convert the E-NFA to a DFA

Transition table $(\delta(q, a) \forall q \in S \text{ and } a \in E)$ for the NFA $\sim 0 \xi \circ 3 \emptyset \xi \cdot 13 \longleftrightarrow Seperate column for clarity 1 \emptyset \xi \cdot 23 \emptyset \xi \cdot 13 \longleftrightarrow $				
		a	6	E Seperate column for clarity
8	0	٤٥3	ø	ξ13 ← @ ⁻ ^ε >①
	1	ø	<u>{23</u>	Ø
	~	235	2-2	
ß	3	Ø	{٤٤	ξ23 <u>←</u> 3 <u>ε</u> >2

• Now we want to create the NFA to DFA translation (remove \mathcal{E}) L> At Before colding a set to the table, cold in <u>all states</u> that are reachable <u>by states in the set</u> by ≥ 1 \mathcal{E} -transitions.

	a	Ъ	
<i>€0,13</i>	£0,13	<u></u> <u></u> <u></u> 23	we short in O or O by E (x ref)
٤23	£2,3 <u>3</u>	E <i>0</i> ,13	- Add E2,33, from @ given a end in @ or 3
£2,33	₹2,33 E	0,1,2,3}	- on b, E2,33 goes to E0,33, account for
٤0,1,2,3 <u>3</u>	E0,1,2,33 E0	D, 1, 2, 3}	E-trans in 0 & 3 gives us \$0,1,2,3}

