Tutorial 6

- Top-down Parsing (LL(1))
- ε-NFAs to DIAs

LL (1) Parsing

- Inputs : CFG $G=(N, \Sigma, P, S) \&$ input string $x \in \Sigma^{*}$
- finds derivation from start symbol S to input string x (ie: $S \Rightarrow^{*} x$)
\rightarrow let α_{i} be derivation i from $S \Rightarrow \ldots \Rightarrow \alpha_{i} \Rightarrow \ldots \Rightarrow$, $i \geq 0, \alpha_{i} \in(N \cup \Sigma)^{*}$ (origin: $A \in N, A \rightarrow \underset{\alpha_{i}}{r N e} \in P$) ${ }^{(a p p l y}$
\rightarrow goal: find $S \Rightarrow \alpha_{0} \Rightarrow \alpha_{1} \Rightarrow \ldots \Rightarrow \alpha_{n} \Rightarrow x$ to prove $x \in \mathcal{L}^{L(G)}$ or prove $x \in L(G)$
$\uparrow L(G)=$ "Language of the grammar G "
- LL (1) \longrightarrow one symbol lookahered
\rightarrow parser makes decision about what rule α_{i} to apply based on only the next symbol in the input
\rightarrow \& $L L(1)$ parsing doesn'd always work doe to this limitation!
Predict Table
- Used to determine if $L L(1)$ parsing will worn for G
- let $A \in N$

$$
a, b, c \in \Sigma
$$

$\alpha, \beta \in(N \cup \Sigma)^{*}<$ strings of non-terminass \& terminals
$A \rightarrow \alpha \in P$

- Predict (A, a) creates a set of production rules \rightarrow Contains rule $A \rightarrow \alpha$ if:
(1) \propto can derive a string what $1^{\text {st }}$ symbol is a We want to see a string $A \rightarrow " a \beta^{\prime}$
(2) $<" " E$ and it is possible for a do immediately follow A in the elerivation \rightarrow get rid" of $A, A \Longrightarrow * " \varepsilon \propto \beta^{\prime}$
- Formally:

First $(\alpha)=\left\{b \mid \alpha \Rightarrow^{*} b \beta\right.$ for some $\left.\beta\right\}$
Follow $(A)=\left\{c \mid S^{\prime} \Rightarrow^{*} \alpha A c \beta\right.$ for some $\left.\alpha, B\right\}$
$\operatorname{Nulable}(\alpha)=$ true if $\alpha \Rightarrow^{*} \varepsilon$, fake otherwise
$\operatorname{Predict}(A, \alpha)=\{A \rightarrow \alpha \mid(a \in$ Fist $(\alpha))$ or
(Nullable (α) and $a \in$ Follow (A)) $\}$

- if Predict (A, α) contains ≤ 1 rule for all pairs (A, a), we say G is $L L(1)$ \& we con use $L L(1)$ to parse G
eg: Consider the CFG:
(1) $S^{\top} \rightarrow+S-1$
(2) $S \rightarrow a X Y b$
(3) $S \rightarrow X Y$
(4) $X \rightarrow p X$
(5) $x \rightarrow \varepsilon$
(6) $Y \rightarrow q$
(ㄱ) $Y \rightarrow \varepsilon$
Compute the predict table for this grammar.
- Tip: Compute in the order Nullable, First then Follow \rightarrow Use algas from class or intuition!

Nullable (A)

- $\forall A \in N$, track what rules can be used to "nullify" $A\left(\right.$ ie: $\left.A \Rightarrow{ }^{*} \varepsilon\right)$
$\rightarrow \operatorname{Nullable}(X)=\operatorname{Nullable}(y)=$ true from rules (5) \& (7)
$\longrightarrow " A=S$, $\operatorname{Nullable}(A)=$ true since $S \Rightarrow X Y$ by (3) \& X, Y are nullable
\rightarrow Nullable $\left(S^{\prime}\right)=$ false since S^{\prime} only has rule (1), $S^{\prime} \Rightarrow \mid-S-1$, with terminals $t,-1 \in \sum$

$A \in N$	Nullable (A)	Nullable Rules
S^{\prime}	False	none
S	True	(3)
X	True	(5)
Y	True	(T)

First (A)

- $\forall A \in N$, look at the $1^{\text {st }}$ symbol on the right hand sidle of each rule that expands A
$\rightarrow s^{\prime} \rightarrow \vdash S^{-1}$ by (1), \therefore First $\left(s^{2}\right)=\{\vdash\}$
\rightarrow add (1) to $\operatorname{Preclict}\left(s^{2}, 1\right)$
$\rightarrow X$ is expanded by (4) \& (5)
\rightarrow (4) $: x \rightarrow p x$, $\therefore \rho \in$ First (x), add (4) to $\operatorname{Predict}(x, p)$
\rightarrow (5) : $x \rightarrow \varepsilon$, ignore
$\rightarrow \ldots$ First $(x)=\{p\}$
$\rightarrow Y$ is expanded by (6) \& (7)
\rightarrow (6) : $Y \rightarrow q, \therefore q \in \operatorname{First}(Y)$, add (6) to $\operatorname{Predict}(Y, q)$
$\rightarrow(7): Y \rightarrow \varepsilon$, ignore

$$
\rightarrow \therefore \text { First }(y)=\{q\}
$$

$\rightarrow S$ is expanded by (2) \& (3)
\rightarrow (2): $S \rightarrow a X Y b$, $\therefore a \in$ First (s), add (2) do Predict (s, a)
\rightarrow (3): $S \rightarrow X Y \quad(S \Rightarrow X Y \Rightarrow p X Y \quad \& \quad S \Rightarrow X Y \Rightarrow Y \Rightarrow q)$
\rightarrow Anything in First (X) is in First (s) (ie: First $(x) \subseteq$ First (s))
\rightarrow : Nullable $(x)=$ true, Anything in First (Y) is in First (S) (ie: First $(Y) \subseteq$ First (s))
\rightarrow thus $p, g \in \operatorname{Fiot}(s)$, add (3) to $\operatorname{Predict}(s, q)$ \& $\operatorname{Predict}(s, p)$

$$
\rightarrow . \operatorname{First}(s)=\{a, p, q\}
$$

$A \in N$	First (A)
S^{\prime}	$\{\vdash\}$
S	$\{a, p, q\}$
X	$\{p\}$
Y	$\{q\}$

Partially-Filled Predict Table:

Predict	\vdash	-1	a	b	p	q
S^{\prime}	(1)					
S		(2)	(3) (3)			
X				(4)		
Y					(6)	

Follow (A)

- $\forall A \in N$, look at rules where A appeas on the right hand see \& figure out what symbols could appear after A
- If we add $a \in \sum$ to Follow (A), add all nulluble rules for A to Predict $(A, a) \longleftarrow$ lets us get rid of A to get a on the LHS
\rightarrow Follow $\left(S^{\prime}\right)=\varnothing$ since S^{3} docon'2l- appear in the RHS of any rule \rightarrow Follow $(S)=\{-1\}$ since by (1) we get $S^{3} \rightarrow+S^{-1}$ \& Nullable $(s)=$ true. by (3)
\rightarrow add (3) to $\operatorname{Predict}(5,-1)$

$$
\rightarrow \text { Follow }(Y)=\{6,-1\}
$$

$\rightarrow Y$ on RHS of $S \rightarrow a \times Y \hat{b}$ \& is followed by $b, b \in F_{\text {follow }}(Y)$
$\rightarrow Y$ " " " $S \rightarrow X Y^{2} \varepsilon$, anything in Follow (S) is in Follow (Y).
thus Follow $(S)=\{-1\} \subseteq \operatorname{Follar}^{(}(Y)$
\rightarrow Follow $(Y)=\{b\} \cup$ Follow $(S)=\{b,-1\}$, since
Nullable $(Y)=$ true add (7) to $\operatorname{Predict}(Y, 6) \& \operatorname{Predict}(Y,-1)$
\rightarrow Follow $(x)=\{6, q,-1\}$
$\rightarrow S \rightarrow a X Y$, any thing in First $(Y) \subseteq$ Follow (X)
$\rightarrow S \rightarrow a X Y b, b \in \operatorname{Follow}(X) \quad \because$ Nullable $(Y)=$ true
$\rightarrow S \rightarrow X Y \varepsilon, \because \operatorname{Nullable}(Y)=$ true, \quad Follow $(S) \leq$ Follow (X)
$\rightarrow X \rightarrow \rho X \varepsilon$, no info on Follow (X)
$\rightarrow \therefore$ Follow $(x)=$ First $(y) \cup\{b\} \cup$ Follow $(s)=\{b, q,-1\}$
\rightarrow add nullable rule (5) to $\operatorname{Predich}(x, b)$, $\operatorname{Predict}(x, g)$ \& $\operatorname{Predict}(x,-1)$

$A \in N$	Follow
S^{2}	\varnothing
S	$\{-1\}$
X	$\{6, q,-1\}$
Y	$\{6,-1\}$

Final Predict Table:

Preclict	1	-1	a	b	p	a
S^{\prime}	1					
S	3	2		3	3	
X	5	5	4	5		
Y	7	7				

eg: Parse tappqb-1 using the created predict table

- The stack rules from top $\left(S^{\nu}\right)$ to bottom (ε) give us the leftmost derivation of $S^{\prime} \Rightarrow{ }^{*}$ 1appged-1
- Parse Tree:

$\varepsilon-N F A_{s}$ to DFAs
- Simular to converting an NFA to a DFA, but you need to account for ε-transitions when figuring out what states are reachable from a given set of states
 \rightarrow for state q_{i}, find all transitions \forall symbols a $\left(\delta\left(q_{i}, a\right)\right)$ \& figure out what other states, g_{j}, are reachable by ≥ 1 E-transitions
finding the ε-closure \forall states $g_{i}, i \geq 0$
eg: Convert the E-NFA to a DFA

Transition table $(\delta(q, a) \forall q \in S$ and $a \in \Sigma)$ for the NFA

- Now we wort to create the NFA to DFA translation (remove E)
$\longrightarrow \notin$ Before adding a set to the table, add in all states that are reachable by states in the set by ≥ 1 transitions.

