Tutorial 7

- Bottom-Up Parsing (LR(1) & SLR(1))

Bottom-Up Parsing

- Top-down parsing is ill-suited for left-recursive grammars
 - Big problem: almost all programming languages are left-associative

- Bottom-Up parsing
 - Given a CFG grammar \(G = (N, \Sigma, P, S) \) & an input string \(x \in \Sigma^* \), determine if \(x \in L(G) \)
 - To show \(x \in L(G) \), show from \(x \) we can work backwards to find a derivation path \(\langle x_0, x_1, ..., x_n \rangle \) until we reach our start symbol \(S' \)
 \[\Rightarrow \quad x \leq x_0 \leq x_{n-1} \leq \ldots \leq x_0 \leq S' \]
 \[\uparrow \quad \text{Start at } x \quad \text{Find } x_n \ldots \quad \text{until we find } S' \]

- LR Parsing
 - Start with input string \(x' = 1 \cdot x^{-1} \), \(x \in \Sigma^* \)
 - A symbols in \(x' \) we do one of the following:
 1. **Shift**: Consume the next input symbol & push it to the stack
 2. **Reduce**: If we recognize the right hand side \(B \) of a rule \((A \rightarrow B)\), then pop the right hand side of the rule \((B)\) off the stack & push the left hand side onto the stack \((A)\)
 - Includes rules where \(A \rightarrow \varepsilon \) (pushes \(A \) onto the stack, no pop)
Consider the CFG:

0. \(S^3 \rightarrow \cdot S \cdot \)
1. \(X \rightarrow px \)
2. \(Y \rightarrow e \)
3. \(S \rightarrow S \cdot a \cdot b \)
4. \(X \rightarrow e \)
5. \(S \rightarrow x \cdot y \)
6. \(Y \rightarrow \cdot q \)

Defn: An item is a production with a bookmark (denoted \(\cdot \)) somewhere on the right hand side (RHS) of a rule.

- \(L \rightarrow S^3 \rightarrow \cdot S \cdot \) is a fresh item; none of the RHS is on the stack.
- If we push \(\cdot \) on the stack, the rule updates to \(S^3 \rightarrow \cdot \cdot S \cdot \) to tell us \(A \) is on the stack.
- Continue pushing symbols until \(S^3 \rightarrow \cdot S \cdot \cdot \), entire RHS of the rule is on the stack \(\rightarrow \) Reducible to \(S \)!
- We can represent positions of the bookmark as states in a DFA! Transition based on symbols being pushed to the stack.

DFA Production Steps

1. Create a start state with a single fresh item for the start rule \(S^3 \).

\[\text{state label} \]

\[S^3 \rightarrow \cdot S \cdot \] \[\text{fresh item} \]

2. Select a state \(q_i \) that has \(\geq 1 \) non-reducible item.

- For each non-reducible item, create a transition to a new state on the symbol after \(\cdot \) in a rule.
- In the new state, any AEN that follow the \(\cdot \) should have their rules expanded into the new state as fresh items.

\[\rightarrow \] If this adds rules where \(\cdot \) is before B\(E \cdot N \), expand for B\(E \cdot N \)'s rules.
Repeat step 2 until no new states are discovered.

Mark states containing reducible items as accept states.

\[L \rightarrow i c : \quad 4 \rightarrow S \rightarrow S a : b \quad b \rightarrow (6) S \rightarrow S a b \rightarrow \text{reduce} \quad \text{sub to} \quad S \]

- Problem: What if a state has \(\geq 1 \) reductions or a mix of shifts & reductions?

- Shift-reduce Conflict: When a state has a shift & reduce item.

\[L \rightarrow e g : \quad (7) A \rightarrow x : a \quad B \rightarrow B \]

- Reduce-reduce conflict: When a state has \(\geq 1 \) reducible items.

\[L \rightarrow e g : \quad (7) A \rightarrow x : a \quad B \rightarrow B \]

- A grammar is LR(0) iff \(\not\exists \) any shift-reduce and reduce-reduce conflicts in its automaton.

- SLR(1) uses one symbol lookahead to determine if it should shift or what reduction to apply.

\[L \rightarrow \text{With LR(0)'s DFA, uses the follow set of a reduction rule in a conflict to determine what action to take.} \]

\[\rightarrow \text{Reduce if the lookahead is follow(A) for } A \rightarrow B^*, \text{ else shift.} \]

If the lookahead is follow(A), we reduce, else we shift from the next symbol from input.
SLR(1) Diagram

E.g. Use the shift-reduce table to parse `1pxab1`.

LR Parsing Steps:

1. Begin with DFA state 0 on the stack.

2. Use top of the state stack & 1st letter of input to determine next action.
 - **Shift:** move top of the input to the symbol stack & push the new state to the state stack.
 - **Reduce:** Remove a number of items equal to the length of the RHS rule then shift the LHS EN.

3. If the entry does not exist, reject (\(\vdash x \in \{\text{LGLG}\} \)).

4. If we shift -1, accept (\(\vdash x \in \{\text{LGLG}\} \)).
<table>
<thead>
<tr>
<th>State Stack</th>
<th>Symbol Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>t-pqab-1</td>
<td>Initialize, push 0</td>
</tr>
<tr>
<td>0</td>
<td>E</td>
<td>t-pqab-1</td>
<td>Shift 1, push 1</td>
</tr>
<tr>
<td>0 1</td>
<td>t</td>
<td>pqab-1</td>
<td>Shift p, push 5 shift X, push 6</td>
</tr>
<tr>
<td>0 1 5</td>
<td>t-p</td>
<td>gab-1</td>
<td>Reduce X→E shift X, push 6</td>
</tr>
<tr>
<td>0 1 5 9</td>
<td>t-p</td>
<td>gab-1</td>
<td>Reduce X→pX shift X, push 6</td>
</tr>
<tr>
<td>0 1 3</td>
<td>t-x</td>
<td>gab-1</td>
<td>Shift q, push 7</td>
</tr>
<tr>
<td>0 1 3 7</td>
<td>t-x-y</td>
<td>ab-1</td>
<td>Reduce Y→q shift Y, push 2</td>
</tr>
<tr>
<td>0 1 3 2</td>
<td>t-x-y</td>
<td>ab-1</td>
<td>Reduce S→xy shift S, push 3</td>
</tr>
<tr>
<td>0 1 8</td>
<td>t-s</td>
<td>ab-1</td>
<td>Shift a, push 4</td>
</tr>
<tr>
<td>0 1 8 4</td>
<td>t-sa</td>
<td>b-1</td>
<td>Shift b, push 5</td>
</tr>
<tr>
<td>0 1 8 4 10</td>
<td>t-sab</td>
<td>-</td>
<td>Reduce S→Sab shift S, push 6</td>
</tr>
<tr>
<td>0 1 8</td>
<td>t-s</td>
<td>-</td>
<td>Shift 1, push 6</td>
</tr>
<tr>
<td>0 1 8 6</td>
<td>t-s-1</td>
<td>E</td>
<td>Accept</td>
</tr>
</tbody>
</table>

- Rightmost derivation is obtained by reading the symbol stack concatenated with the remaining input bottom to top:

\[
S' \\
\Rightarrow tS-1 \\
\Rightarrow tSa-1 \quad S' \quad S' \\
\Rightarrow tXYab-1 \quad S' \\
\Rightarrow tXyab-1 \quad S' \\
\Rightarrow tpxqab-1 \quad t \quad S - 1 \quad S' \\
\Rightarrow tpxab-1 \quad S' \\
\Rightarrow tpx-1 \quad S' \\
\Rightarrow \epsilon
\]
For the grammar:
1. \(S' \rightarrow 1S1 \)
2. \(S \rightarrow S + T \)
3. \(S \rightarrow T \)
4. \(T \rightarrow ID \)

Show that \(x = "+" \) is \(x \notin L(G) \) (ie: input \(t+t \) is rejected)

SLR(1) DFA (Also LR(0) : there are no conflicts)

<table>
<thead>
<tr>
<th>State Stack</th>
<th>Symbol Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon)</td>
<td>(\epsilon)</td>
<td>(\epsilon)</td>
<td>Initialize</td>
</tr>
<tr>
<td>0</td>
<td>(\epsilon)</td>
<td>(t+t)</td>
<td>Shift (t), push 1</td>
</tr>
<tr>
<td>0 1</td>
<td>(t)</td>
<td>(+t)</td>
<td>Shift +, error!</td>
</tr>
</tbody>
</table>

\(\Rightarrow \) : there is no transition from state 0 on input "+", we error & "+" \(\notin L(G) \)
• SLR(1) can fix the limitations of LL(1) & LR(0), but also has a limitation itself.

with grammar:

\[S' \rightarrow 1 \cdot S 1 \]

\[S \rightarrow 1D \]

\[S \rightarrow E = E \]

\[E \rightarrow 1D \]

\[\text{Follow}(S) = \{ \epsilon, 13 \} \]

\[\text{Follow}(E) = \{ \epsilon, -13 \} \]

consider the DFA snippet:

\[\text{(1) } S' \rightarrow 1 \cdot S 1 \]

\[S \rightarrow 1D \]

\[S \rightarrow E = E \]

\[E \rightarrow 1D \]

\[\text{(2) } S \rightarrow 1D \cdot \{ \epsilon, 13 \} \]

\[E \rightarrow 1D \cdot \{ \epsilon, -13 \} \]

\[\text{Both reduce on lookahead } = -1, \text{ what do I choose?} \]

• In state (2), the SLR(1)'s simple lookahead using \text{Follow}(\ldots) does not work as \[1 \in \text{Follow}(S) \text{ and } 1 \in \text{Follow}(E). \]

\[\Rightarrow \text{ our SLR(1) DFA has } \geq 1 \text{ reduce-reduce or shift-reduce conflicts, our grammar cannot be SLR(1)} \]

• This can only be fixed by a more adaptive \text{Follow} set for reduction conflicts that guarantee no shared elements between sets.

\[\Rightarrow \text{LR(1)} \text{ does this for us!} \]