































































Tutorial 10
Switch Statement Code Gen

Extending ti itt

Extending Pointers as Conditions

Recap Code Gen Conventions

For all code we have the following format

I Prolouge Push all vars to the stack setup temporaries

import print I printhn call with jair
lis 4

word 4
lis 10

word print I jair 10 calls print
his 11

word 1

sub 29 30,4 setup frame pointer
I Reserve space for vars push to stack

I Begin Code
code
I Epilouge Restore stack return

I deallocate vars reset 30

jr 31

Often we assume 3 holds the returnval of codec
5 to hold temporary values



y
Conditionals

statement IF test statements else statements

Assume

code test sets 83 1 if the test is true
83 0 false

code statements generates code for the statement

genLabel ID D generates a unique id EE
ie stores returns a counter that is incrementedeach call

With these assumptions we can code if statements like

void genCode tree t

if t.me statement it

genlabel IDC

genCode t children 2 3 test

beg 3 0 else x if test is false executes'É bloch

genCode t children 5 statements

beg 0 0 endif x 1 test was true skipthe block

else x

genCode t children 9 I statements

endif x



ef How could I add switch statements to WLP4
switch expr Ʃ

case expr

statements

case expr

statements

default
statements

Assumptions
case statements don't fall through noneed for break

default case is mandatory may not run butalwaysthere

expr is an arbitrary expression
assume all of scanning parsing semanticanalysis are done

Rules to add to WLP4
statement SWITCH expr cases default
cases cases case

cases E

case CASE expr statements

default DEFAULT statements



Challenge Rememberingwhich label the case statements need
to jump to after execution

Soln Augment the tree t to store an int parentLabelID
field on each node

void genCode tree E

if t rule statement SWITCH exr cases default3

genLabel DC

genCode t children 2 11 3 expr

push 3 11Pushed to compare withall case

E children 5 parentLabellD 11Passparent ID

genCode t children 5

genCode t children 6

endSwitch x

if t rule cases cases case

t children O parentLabel ID E parentLabel ID Propagate

t children 1 parentLabel ID E parentLabel ID parent ID

genCode t children 0 generate case statementcode

genCode t children 1

f t rule cases E

Do nothing



f t rule case CASE expr statements

genLabel ID

genCode t children 2 11 3 expr

pop 5 11 5 Switch statement's exer

11Compare switch expr to current case expr
one 3 5 endLabel X

genCode t children 5

Jr end Switch E parentLabe
3 5 gen case's

code break from swite

endLabel x

push 5 3 5 Push Switch's expr
back for the next case to try out

if t rule default DEFAULT statements

pop 5 throw away switch's expr not neededanymore

genCode t children 2



Eg Recall from tutorial 9 we implemented ttid itt for ints
lets extend these rules to also work for pointers into

factor PLUS PLUS value

factor Ivalue PLUS PLUS

Give type rules for the above grammarrules
Show modifications to the gencode for these rules
to increment int int s

501
If value is an int then so is factor
If value is an intt then so is factor

So
lets modify the line add 5 5 11 to say
if typeOf Ivalue int

add 5 5 4 I In increment

else

add 5 5 11 11 Int increment



eg Recall C pointers can be used as conditions

int C NULL

if c Commonly used to check

c is not Null if pointers are null

else

C is NULL

Modify the WLP4 grammar so pointers can be used
in if while tests

Describe how you wouldmodify type checking to
account for these new rules

Write pseudocode to generate code for thesenew rules

Soln
Recall all conditions are under the test non terminal

lets add our rule there
test exer

501

Verify that expr is type int for the rule test expr

to be well typed



So n

3 1 if the expr is not NULL

0 NULL

Assume the value for NULL 0 easy to swap out

genCode tree t

if t rule test expr

genCode t children 0 11 3 expr
add 5 3 0 11Backup exer

lis 6
word 0 Value for NULL
add 3 0 0

beg 5 6 1 1 83 0 if expr NULL

add 3 71 0 1 83 1 since expr NULL


