
CS 341, Fall 2025 T. Brown, É. Schost

ASSIGNMENT 5

DUE: Tue Dec 2, 11:59 PM. DO NOT COPY. ACKNOWLEDGE YOUR SOURCES.

Please read http://www.student.cs.uwaterloo.ca/~cs341 for general instructions and policies.
Note: All logarithms default to base 2 (i.e., log x is defined as log2 x). Note: “Giving” an

algorithm means doing the four parts (i)–(iv) as described on the course web page. Proofs are
required unless we explicitly state otherwise. If you think we made a mistake and a proof is
not required, feel free to ask. You may use the unit cost model unless otherwise stated.

1. [10 marks] (6 marks, 2 marks, 2 marks) In the Clique3 problem, we are given a graph
G = (V,E) with maximum degree 3 and a positive integer k; we must determine if G has
a clique of size at least k or not. (A clique is a (sub)set of the graph’s vertices that have
all-to-all edges. That is, the subgraph defined by these vertices is a complete graph.)

(i) Prove that Clique3 ∈ NP.

(ii) Here’s a claimed proof that Clique3 is NP-complete. Explain why the argument is
incorrect.

We showed in part (a) that Clique3 is in NP.
We (will) know from lectures that Clique is NP-complete.
We complete the proof by showing that Clique3 ≤P Clique: Let F be the
(trivial) algorithm that takes in a graph G with vertices of degree at most 3 and
a parameter k, and leaves both as-is. The algorithm F runs in polynomial time
and gives a transformation from inputs of the Clique3 problem to inputs of the
Clique problem, and the answer to these inputs is always identical. Therefore,
this is a valid polynomial-time reduction and Clique3 is NP-complete.

(iii) In the VertexCover3 problem, we are given a graph G = (V,E) with maximum degree
3 and a positive integer k; we must determine if G has a vertex cover of size at most k
or not. It is known that VertexCover3 is NP-complete, and for this question we may
use this fact without proof.

Here’s another claimed proof that Clique3 is NP-complete. Explain why the argument
is incorrect.

We already showed in part (a) that Clique3 is in NP.
As stated in the question, we know that VertexCover3 is NP-complete.
We complete the proof by showing that VertexCover3 ≤P Clique3: Let
F be the algorithm that transforms the input (G, k) into the input (G,n − k)
where G is the complement of G—the graph on the same set V of vertices as G
where for every pair of distinct vertices u, v ∈ V , (u, v) is an edge in G if and
only if it is not an edge in G.
The algorithm F has polynomial-time complexity. And there is a vertex cover of
size ≤ k in G if and only if there is a clique of size at least (n−k) in G. Therefore
this is a valid polynomial-time reduction and Clique3 is NP-complete.

1



2. [10 marks] Minimum S-spanning tree.

Suppose we take as input an undirected graph G = (V,E) with n nodes and m edges, and a
non-negative weight function w such that w(e) is the weight of edge e, as well as a set S ⊆ V
of important nodes. We want to connect all of the important nodes in S ⊆ V together
with the lowest total cost (i.e., lowest total sum of weights).

At first glance this might sound like the minimum spanning tree problem, but note that we do
not have to connect all nodes, but rather only the nodes in S. That said, it may be cheaper
to connect nodes in S by using some nodes that are not in S.

As a trivial example, if we have three nodes a, b, c and edges (a, b, 1), (b, c, 1), (a, c, 10), and
S = {a, c}, we could connect the important nodes a and c with a single edge at cost 10, or
with two edges via a non-important node b at cost 2. The latter is, of course, better, even
though we have also connected a non-important node.

We can define two flavours of this problem: a decision version, and an optimization version.

Decision version (MSST-Dec): In addition to the basic input above, the input also includes
a threshold k. The desired output is: true if there is a way to connect all nodes in S with
total cost ≤ k, and false otherwise.

Optimization version (MSST-Opt): The input is just the basic input above (no threshold
k). The desired output is a list of edges that connect all nodes in S with the lowest total
cost. If there is no way to connect them, you can return ∞.

The goal in this question is to find a polynomial Turing reduction from the optimization
version to the decision version. In other words, you are to proveMSST-Opt ≤T

P MSST-Dec.

(To be clear, this involves “giving” an algorithm. So, you’ll want to prove correctness, i.e.,
that your reduction always returns the correct value. And you’ll want to compute your
runtime, input size, and show the runtime is polynomial in the input size. Unit cost model is
fine.)

3. [25 marks] NP-Completeness Consider the SINK-SOURCE SUBGRAPH (SSS) problem:

Input: a directed graph G(V,E).

Output: “YES” iff there is a subgraph H(V,E′), with E′ ⊆ E, such that each v ∈ V satisfies
one of two conditions: (i) either, in-degree(v) = 0 and out-degree(v) > 0; or (ii) out-degree(v)
= 0 and in-degree(v) > 0. The in/out degree conditions are within H.1

Let us call a subgraph H satisfying the above property sink-source subgraph. Observe that
in a sink-source subgraph, there are no paths of length 2, since every vertex either has zero
in-degree or zero out-degree.

(a) [5 marks] Prove that SSS is in NP.

(b) [20 marks] Prove that SSS is NP-Complete through a reduction from 3SAT. Remember
to have an iff argument in your reduction.

[Hint: Consider having one vertex ui for each clause Ci in the 3SAT formula. Similarly
have one vertex vj for each variable xj in the 3SAT formula. If xj appears in Ci have

1In other words, an edge from a node u ∈ H to a node v /∈ H does not count towards out-degree(u), and an edge
from v to u does not count towards in-degree(u).

2



an edge from vj to ui. If xj appears in Ci, add another edge from ui to vj . Add another
vertex t to the graph and add edges from each vj to t. Finally, add one more node s and
add an edge from s to t.]

3


